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Abstract

It is known that the distribution of seismic inter-event times is well
described by the Gamma distribution. Recently, this fact has been used
to successfully predict major seismic events. In this paper, we explain
that the Gamma distribution of seismic inter-event times can be naturally
derived from the first principles.

1 Formulation of the Problem

Gamma distribution of seismic inter-event times: empirical fact. De-
tailed analysis of the seismic inter-event times t – i.e., of times between the two
consequent seismic events occurring in the same area – shows that these times
are distributed according to the Gamma distribution, with probability density

ρ(t) = C · tγ−1 · exp(µ · t), (1)

for appropriate values γ, µ, and C; see, e.g., [1, 2].
Lately, there has been a renewed interest in this seemingly very technical

result, since a recent paper [4] has shown that the value of the parameter µ
can be used to predict a major seismic event based on the preceding foreshocks.
Specifically, it turns out that more than 70% of major seismic events in Southern
California could be predicted some time in advance – with an average of about
two weeks in advance.

Why gamma distribution? This interest raises a natural question: why
the inter-event times follow gamma distribution? In this paper, we provide a
possible theoretical explanation for this empirical fact.
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2 Our Explanation

Maximum entropy: general idea. In our explanation, we will use Laplace’s
Indeterminacy Principle, which is also known as the maximum entropy ap-
proach; see, e.g., [3]. The simplest case of this approach is when we have n
alternatives, and we have no reasons to believe that one of them is more proba-
ble. In this case, a reasonable idea is to consider these alternatives to be equally
probable, i.e., to assign, to each of these n alternatives, the same probability

p1 = . . . = pn. Since the probabilities should add to 1, i.e.,
n∑
i=1

pi = 1, we thus

get pi = 1/n.
In this case, we did not introduce any new degree of certainty into the

situation that was not there before – as would have happened, e.g., if we selected
a higher probability for one of the alternatives. In other words, out of all possible
probability distributions, i.e., out of all possible tuples (p1, . . . , pn) for which
n∑
i=1

pi = 1, we selected the only with the largest possible uncertainty.

In general, it is known that uncertainty can be described by the entropy S,

which in the case of finitely many alternatives has the form S = −
n∑
i=1

pi · ln(pi),

and in the case of a continuous random variable with probability density ρ(x),
for which sum becomes an integral, a similar form

S = −
∫
ρ(x) · ln(ρ(x)) dx. (2)

Maximum entropy: examples. If the only information that we have about
a probability distribution is that it is located somewhere on the given interval
[a, b], then the only constraint on the corresponding probability density function
is that the overall probability over this interval is 1, i.e., that∫ b

a

ρ(x) dx = 1. (3)

So, to apply the maximum entropy approach, we need to maximize the objective
function (2) under the constraint (3). The usual way of solving such constraint
optimization problem is to apply Lagrange multiplier method that reduces the
original constraint optimization problem to an appropriate unconstrained op-
timization problem. In this case, this new problem means maximizing the ex-
pression

−
∫
ρ(x) · ln(ρ(x)) dx+ λ ·

(∫ b

a

ρ(x) dx− 1

)
, (4)

where the parameter λ – known as Lagrange multiplier – needs to be determined
from the condition that the solution to this optimization problem satisfies the
constraint (3).
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For this problem, the unknowns are the values ρ(x) corresponding to different
x. Differentiating the expression (4) with respect to ρ(x) and equating the
derivative to 0, we get the following equation:

− ln(ρ(x))− 1 + λ = 0.

(Strictly speaking, we need to use variational differentiation, since the unknown
is a function.) The above equation implies that ln(ρ(x)) = λ−1, and thus, that
ρ(x) = const. So, we get a uniform distribution – in full accordance with the
original idea that, since we do not have any reasons to believe that some points
on this interval are more probable than others, we consider all these points to
be equally probable.

If, in addition to the range [a, b], we also know the mean value∫ b

a

x · ρ(x) dx = m (5)

of the corresponding random variable, then we meed to maximize the entropy
(2) under two constraints (3) and (5). In this case, the Lagrange multiplier
methods leads to the unconstrained optimization problem of maximizing the
following expression:

−
∫
ρ(x) · ln(ρ(x)) dx+λ ·

(∫ b

a

ρ(x) dx− 1

)
+λ1 ·

(∫ b

a

x · ρ(x) dx−m

)
. (6)

Differentiating this expression with respect to ρ(x) and equating the derivative
to 0, we get the following equation:

− ln(ρ(x))− 1 + λ+ λ1 · x = 0,

hence ln(ρ(x)) = (λ−1)+λ1 ·x and so, we get a (restricted) Laplace distribution,

with the probability density ρ(x) = C · exp(µ · x), where we denoted C
def
=

exp(λ− 1) and µ
def
= λ1.

Comment. It is worth mentioning that if, in addition to the mean value, we
also know the second moment of the corresponding random variable, then sim-
ilar arguments lead us to a conclusion that the corresponding distribution is
Gaussian. This conclusion is in good accordance with the ubiquity of Gaussian
distributions.

What are the reasonable quantities in our problem. We are interested in
the probability distribution of the inter-event time t. Based on the observations,
we can find the mean inter-event time, so it makes sense to assume that we know
the mean value of this time.

Usual (astronomical) time vs. internal time: general idea. This mean
value is estimated if we use the usual (astronomical) time t, as measured, e.g.,
by rotation of the Earth around its axis and around the Sun. However, it is
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known that many processes also have their own “internal” time – based on
the corresponding internal cycles. For example, we can measure the biological
time of an animal (or a person) by such natural cyclic activities as breathing or
heartbeat. Usually, breathing and hear rate are more or less constant, but, e.g.,
during sleep, they slow down – as most other biological processes slow down. On
the other hand, in stressful situations, e.g., when the animal’s life is in danger,
all the biological processes speed up – including breathing and heart rate. To
adequately describe how different biological characteristics change with time, it
makes sense to consider them not only how they change in astronomical time,
but also how they change in the corresponding internal time – measured not by
number of Earth’s rotations around the sun, but rather in terms of number of
heartbeats. An even more drastic slowdown occurs when an animal hibernates.
In general, the system’s internal time can be sometimes slower than astronomical
time, and sometimes faster.

Usual (astronomical) time vs. internal time: case of seismic events.
In our problem, there is a similar phenomenon: usually, seismic events are rea-
sonably rare. However, the observations indicate that the frequency with which
foreshocks appear increases when we get closer to a major seismic event. In
such situation, the corresponding seismic processes speed up, so we can say
that the internal time speeds up. In general, an internal time is often a more
adequate description of the system’s changes than astronomical time. It is there-
fore reasonable to supplement the mean value of the inter-event time measured
in astronomical time by the mean value of the inter-event time measured in the
corresponding internal time.

How internal time depends on astronomical time: general idea. To
describe this idea in precise terms, we need to know how this internal time τ
depends on the astronomical time. As we have mentioned, the usual astronom-
ical time is measured by natural cycles, i.e., by processes which are periodic in
terms of the time t. So, to find the expression for internal time, we need to
analyze what cycles naturally appear in the studied system – and then define
internal time in terms of these cycles.

To describe the system’s dynamics means to describe how the corresponding
physical quantities x(t) change with time t. In principle, in different physical
situations, we can have different functions x(t). In principle, to describe a
general function, we need to have infinitely many parameters – e.g., we need to
describe the values of this function at different moments of time. In practice,
however, we can only have finitely many parameters. So, it is reasonable to
consider finite-parametric families of functions. The simplest – and most natural
– is to select some basic functions e1(t), . . . , en(t), and to consider all possible
linear combinations of these functions, i.e., all possible functions of the type

x(t) = C1 · e1(t) + . . .+ Cn · en(t), (6)

where C1, . . . , Cn are the corresponding parameters. This is indeed what is done
in many situations: sometimes, we approximate the dynamics by polynomials
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– linear combinations of powers tk, sometimes we use linear combinations of
sinusoids, sometimes linear combinations of exponential functions, etc.

How internal time depends on astronomical time: case of seismic
events. The quality of this approximation depends on how adequate the cor-
responding basis functions are for the corresponding physical process. Let us
analyze which families are appropriate for our specific problem: analysis of fore-
shocks preceding a major seismic event. In this analysis, we can use the fact
that, in general, to transform a physical quantity into a numerical value, we need
to select a starting point and a measuring unit. If we select a different starting
point and/or a different measuring unit (e.g., minutes instead of seconds), we
will get different numerical values for the same quantity.

For the inter-event times, the starting point is fixed: it is 0, the case when
the next seismic events follows immediately after the previous one. So, the only
remaining change is the change of a measuring unit. If we replace the original
time unit with a one which is r times smaller, then all numerical values are
multiplied by r, i.e., instead of the original value t, we get a new value tnew =
r · t. For example, if we replace minutes by seconds, then the numerical values
of all time intervals are multiplied by 60, so that, e.g., 2.5 minutes becomes
60 · 2.5 = 150 seconds.

Some seismic processes are faster, some are slower. This means that, in effect,
they differ by this slower-to-faster or faster-to-slower transformations t→ r · t.
We would like to have a general description that would fit all these cases. In
other words, we would like to make sure that the class (6) remains the same
after this “re-scaling”, i.e., that for each i and for each r, the re-scaled function
ei(r · t) belongs to the same class (6). In other words, we require that for each
i and r, there exists values Cij(r) for which

ei(r · t) = Ci1(r) · e1(t) + . . .+ Cin(r) · en(t). (7)

Let us solve the resulting systems of equations. Seismic waves may be
changing fast but, in general, they are still smooth. It is therefore reasonable
to consider only smooth functions ei(t). If we pick n different values t1, . . . , tn,
then, for each r and for each i, we get a system of n linear equations for deter-
mining n unknowns Ci1(r), . . . , Cin(r):

ei(r · t1) = Ci1(r) · e1(t1) + . . .+ Cin(r) · en(t1);

. . .

ei(r · tn) = Ci1(r) · e1(tn) + . . .+ Cin(r) · en(tn).

Due to Cramer’s rule, each component Cij(r) of the solution to this system of
linear equations is a ratio of two determinants and is thus, a smooth function
of the corresponding coefficients ei(r · tj) and ei(tj). Since the function ei(t) is
differentiable, we conclude that the functions Cij(r) are also differentiable.
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Since all the functions ei(t) and Cij(r) are differentiable, we can differentiate
both sides of the formula (7) with respect to r and get:

e′i(r · t) · t = C ′i1(r) · e1(t) + . . .+ C ′in(r) · en(t),

where for each function f , the expression f ′, as usual, denotes the derivative.
In particular, for r = 1, we get

e′i(t) · t = ci1 · e1(t) + . . .+ cin · en(t),

where we denoted cij
def
= C ′ij(1). For the auxiliary variable T = ln(t) for which

t = exp(T ), we have dT =
dt

t
, hence

dei(t)

dt
· t =

dei(t)

dT
. So, for the auxiliary

functions Ei(T )
def
= ei(exp(T )), we get

E′i(T ) = ci1 · E1(T ) + . . .+ cin · En(T ).

So, for the functions Ei(T ), we get a system of linear differential equations with
constant coefficients. It is well known that a general solution to such a system
is a linear combination of the expressions T k · exp(a · T ) · sin(ω · T + ϕ) for
some natural number k and real numbers a, ω, and ϕ. Thus, each function
ei(t) = Ei(ln(t)) is a linear combination of the expressions

(ln(t))k · exp(a · ln(t)) · sin(ω · ln(t) + ϕ) = (ln(t))k · ta · sin(ω · ln(t) + ϕ). (8)

So, the general expression (6) is also a linear combination of such functions.
The periodic part of this expression is a sine or cosine function of ln(t), so

we can conclude that for seismic processes, the internal time τ is proportional
to the logarithm ln(t) of the astronomic time: τ = c · ln(t) for some constant c.

This explains the ubiquity of Gamma distributions. Indeed, suppose
that we know the mean values mt and mτ of the astronomical time t and the
mean value of the internal time τ = c · ln(t). This means that the corresponding
probability density function ρ(t), in addition to the usual constraint

∫
ρ(t) dt,

also satisfies the constraints ∫
t · ρ(t) dt = mt

and ∫
c · ln(t) · ρ(t) dt = mτ .

Out of all possible distributions satisfying these three inequalities, we want to
select the one that maximizes entropy

−
∫
ρ(t) · ln(ρ(t)) dt.
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To solve the resulting constraint optimization problem, we can apply the La-
grange multiplier method and reduce it to the unconstrained optimization prob-
lem of maximizing the expression:

−
∫
ρ(t) · ln(ρ(t)) dt+ λ ·

(∫
ρ(t) dt− 1

)
+

λt ·
(∫

t · ρ(t) dt−mt

)
+ λτ ·

(∫
c · ln(t) · ρ(t) dt−mτ

)
,

for some values λ, λt, and λτ . Differentiating both sides with respect to each
unknown ρ(t), we conclude that

− ln(ρ(t))− 1 + λ+ λt · t+ λτ · c · ln(t) = 0,

i.e., that
ln(ρ(t)) = (λ− 1) + λ · t+ (λτ · c) · ln(t).

Exponentiating both sides, we get the desired Gamma distribution form (1).

ρ(t) = C · τγ−1 · exp(µ · t),

with C = exp(λ−1), γ = λτ ·c+1, and µ = λt. Thus, we have indeed explained
the ubiquity of the Gamma distribution.
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