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Abstract

In many application areas, it is important to predict the user’s reaction
to new products. In general, this reaction changes with time. Empirical
analysis of this dependence has shown that it can be reasonably accu-
rately described by a power law. In this paper, we provide a theoretical
explanation for this empirical formula.

1 Formulation of the Problem

For many industries, it is important to predict the user’s reaction to new prod-
ucts. To make this prediction, it is reasonable to use the past records of the
user’s degree of satisfaction with different similar products.

One of the problems with such a prediction is that the user’s degree of
satisfaction may change with time: the first time you see an exciting movie or
read an exciting book, you feel very happy, when you see this movie the second
time, you may notice holes in the plot or outdated (and thus, somewhat clumsy)
computer simulation.

Because of this phenomenon, for each user, the ratings of the same product
decrease with time. In other words, instead of the simplified formula r = r(u, p)
that describes how the ratings depend on the user u and on the product p, a
more accurate estimates can be obtained if we take this dependence into account
and use a more complex formula

r = r(u, p) + cu(t),
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where a decreasing function cu(t) – which is, in general, different from different
users – change with time.

To test different ratings models, in the 2000s, Netflix had a competition in
which different formulas were compared. The winning model (see, e.g., [3]) used
an empirical formula

cu(t) = αu · sign(t− tu) · |t− tu|βu , (1)

where tu is the mean date of rating, and αu and βu are parameters depending
on the user. (Actually, it turned out that the value βu is approximately the
same for all the users.)

The question is: why this formula works well, while possible other depen-
dencies on time do not work so well?

2 Our Explanation

First technical comment. The formula (1) does not uniquely determine the
functions r(u, p) and cu(t): we can add a constant to all the ratings r(u, p)
and subtract the same constant from all the values cu(t) and still get the same
overall ratings r.

To avoid this non-uniqueness, we can, e.g., select cu(t) in such a way that
cu(tu) = 0; this is, by the way, exactly what is done in the formula (1). This
equality is easy to achieve: if we have a function cu(t) for which cu(tu) 6= 0,

then we can consider new functions c̃u(tu)
def
= cu(t) − cu(tu) and r̃(u, p)

def
=

r(u, p) + cu(tu). Then, as one can easily see, we have

r̃(u, p) + c̃u(t) = r(u, p) + cu(t),

i.e., all the predicted ratings remain the same.
In view of this possibility, in the following text, we will assume that

cu(tu) = 0.

First idea: the description should not depend on the unit for measur-
ing time. We are interested in finding out how the change in ratings depends
on time. In a computer model, time is represented by a number, but the nu-
merical value of time depends on what starting point we choose and what unit
we use for measuring time. In our situation, there is a fixed moment tu, so it is

reasonable to use tu as the starting point and thus use T
def
= t − tu to measure

time instead of the original t.
In the new scale, the formula describing how ratings change with time takes

the form Cu(T ), so that cu(t) = Cu(t− tu). The condition cu(tu) = 0 takes the
form Cu(0) = 0.
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In terms of the new time scale, the empirically best formula (1) leads to the
following expression for Cu(T ):

Cu(T ) = αu · sign(T ) · |T |βu . (2)

While there is a reasonable starting point for measuring time, there is no
fixed unit of time. We could use years, months, weeks, days, whatever units
make sense. If we replace the original measuring unit with a new unit which
is λ times smaller, then all numerical values of time are multiplied by λ. So,
instead of the original value T , we get a new value T̃ = λ · T .

Since there is nothing special in selecting a measuring unit for time, it makes
sense to require that the corresponding formulas not change when we make a
different selection.

This has to be related to a change in how we measure ratings. Of
course, we cannot simply require that the formula for Cu(T ) be invariant under
the change T → λ ·T . Indeed, in this case, we would have Cu(λ ·T ) = Cu(T ) for
all λ and T . Thus, for each T0 > 0, by taking T = 1 and λ = T0, we would be
able to conclude that Cu(T0) = Cu(1) – i.e., instead of the desired decreasing
function, we would have a constant function Cu(T ) = const.

This seeming problem can be easily explained if we take into account how
similar scale-invariance works in physics. For example, the formula v = d/t
that describes how the average velocity v depends on the distance d and time t
clearly does not depend on what measuring unit we use for measuring distance:
we could use meters, we could use centimeters, we could use inches. However,
this does not mean that if simply change the measuring unit for distance and
thus replace the original value d with the new value λ · d, the formula remains
the same: for the formula to remain valid, we also need to accordingly change
the unit for measuring velocity, e.g., from meters per second to centimeters per
second.

Similarly in our case, when we describe the dependence of rating on time,
we cannot just change the unit for time, we also need to change another unit –
which, in this case, is the unit for ratings.

But does this change make sense? At first glance, it may seem that it does
not: we ask the use to mark the quality of a product (e.g., of a movie) on a
certain fixed scale (e.g., 0 to 5), so how can we change this scale? Actually, we
can. Users are different. Some users use all the scale, and mark the worst of the
movies by 0, and the best by 5. What happens when a new movie comes which
is much better than anything that the user has been before? In this case, the
user has no choice but to give a 5 to this movie as well – wishing that the scale
had 6 or 7 or even more. Similarly, if a movie has a very negative experience
with a movie, a much worse one than anything that he or she has seen before,
this user places 0 and wishes that there was a possibility to give −1 or even −2.

Other users recognize this problem and thus, use only, e.g., grades from 1
to 4, reserving 0 and 5 for future very bad and very good products. Some
professors grade the student papers the same way, using, e.g., only values up to
70 or 80 out of 100, and leaving higher grades for possible future geniuses.
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In other words, while the general scale – from 0 to 5 or from 0 to 100 – is
indeed fixed, the way we use it changes from one user to another one. Some
users use the whole scale, some “shrink” their ratings to fit into a smaller sub-
scale. A natural way to describe this shrinking is by an appropriate linear
transformations – this is how, e.g., we estimate the grade of a student who for
legitimate reasons had to skip a test worth 20 points out of 100: if overall, the

student earned 72 points out of 80, we mark it as
72

80
· 100 = 90 points on a 0 to

100 scale.
Depending on what scale we use for ratings, the corresponding rating values

change by a linear formula: r → r̃ = a · r + b. In particular, for the difference
between the ratings, we get

r1 − r2 → (a · r1 + b)− (a · r2 + b) = a · (r1 − r2).

So, when we change the unit for measuring time by a λ times smaller one, we
may need to according re-scale our difference C(T ) between the ratings. Thus,
we arrive at the following precise formulation of the desired invariance.

Formal description of unit-independence. We want to select a function
Cu(T ) for which, for each λ > 0, there exists a value a(λ) for which

Cu(λ · T ) = a(λ) · Cu(T ). (2)

It is also reasonable to assume that the function Cu(T ) continuously change
with time – or at least change with time in a measurable way.

What can we conclude based on this independence. It is known (see, e.g.,
[1]), every measurable (in particular, every continuous) solution to the equation
(2) for T > 0 has the form

Cu(T ) = α+
u · T β

+
u , (3)

for some α+
u and β+

u .
Similarly, for T < 0, we get

Cu(T ) = α−
u · |T |β

−
u , (4)

for some α−
u and β−

u .
These formulas are similar to the desired formula (1), but we still have too

many parameters: four instead of the desired two. To get the exact form (1),
we need one more idea.

Second idea: the change in rating should be the same before and
after tu. It is reasonable to require that for each time interval T > 0, the
change of rating should be the same before and after tu, i.e., the change of
ratings between the moments tu − T and tu should be the same as the change
of ratings between the moments tu and tu + T .

4



The change of ratings between the moments tu − T and tu is equal to

cu(tu)− cu(tu − T ) = −(cu(tu − T )− cu(T )) = −Cu(−T ).

The change of ratings between the moments tu + T and tu is simply equal to

cu(tu + T )− cu(tu) = Cu(T ).

Thus, the above requirement means that for every T > 0, we should have

−Cu(−T ) = Cu(T ).

Substituting the expressions (3) and (4) into this formula, we conclude that
for each T , and taking into account that | − T | = T , we have

α+
u · T β

+
u = −α−

u · T β
−
u .

Since this must be true for all T , we must have α+
u = −α−

u and β+
u = β−

u .
Thus, for both T > 0 and T < 0, we indeed have the formula (1), with

αu = α+
u and βu = β+

u . The formula (1) is explained.
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