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Abstract

In many practical situations, we encounter Gaussian distributions, for
which the distribution tails are light – in the sense that as the value in-
creases, the corresponding probability density tends to 0 very fast. There
are many theoretical explanations for the Gaussian distributions and for
similar light-tail distributions. In practice, however, we often encounter
heavy-tailed distributions, in which the probability density is asymptoti-
cally described, e.g., by a power law. In contrast to the light-tail distribu-
tions, there is no convincing theoretical explanation for the heavy-tailed
ones. In this paper, we provide such a theoretical explanation. This ex-
planation is based on the fact that in many applications, we approximate
a continuous distribution by a discrete one. From this viewpoint, it is
desirable, among all possible distributions which are consistent with our
knowledge, to select a distribution for which such an approximation is the
most accurate. It turns out that under reasonable condition, this require-
ment (of allowing the most accurate discrete approximation) leads to the
desired power-law heavy-tailed distributions.

1 Formulation of the Problem

Many usual probability distributions have light tails. In many prac-
tical situations, we encounter Gaussian distributions. Their ubiquity can be
explained by the fact that in many of these situations, the corresponding ran-
dom quantity is the result of joint effect of many different factors, and according
to the Central Limit Theorem, the distribution of the sum of many independent
small random variables is close to Gaussian; see, e.g., [20].
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Gaussian distribution also comes from the use of the Maximum Entropy ap-
proach [8]: if we have only partial information about the probability distribution,
i.e., if several different probability density functions ρ(x) are consistent with our
knowledge, then it is reasonable to select the distributions with the largest un-
certainty, i.e., with the largest value of the entropy S = −

∫
ρ(x) · ln(ρ(x)) dx.

Often, the only information that we have about the probability distribution
is its first two moments E and M2, i.e., we only know that

∫
ρ(x) dx = 1,∫

x · ρ(x) dx = E, and
∫
x2 · ρ(x) dx = M2. If we apply the Lagrange multi-

plier method to maximize entropy under these three constraints, we thus reduce
the original constraint optimization problem to the unconstrained problem of
maximizing the following functional

−
∫

ρ(x) · ln(ρ(x)) dx+ λ0 ·
(∫

ρ(x) dx− 1

)
+ λ1 ·

(∫
x · ρ(x) dx− E

)
+

λ2 ·
(∫

x2 · ρ(x) dx−M2

)
.

Differentiating this expression with respect to each unknown ρ(x) and equating
the resulting derivative to 0, we conclude that

− ln(ρ(x))− 1 + λ0 + λ1 · x+ λ2 · x2 = 0,

hence ρ(x) = exp((λ0−1)+λ1 ·x+λ2 ·x2). One can check that for the constraints
to be satisfied, this function has to have the usual Gaussian form

ρ(x) =
1√

2π · σ
· exp

(
− (x− a)2

2σ2

)
,

where a = E and σ =
√
M2 − E2.

For the Gaussian distribution, the probability density has light tails in the
sense that as x increases, the probability density tends to 0 fast: so fast that for
every k, we have a finite moment

∫
xk · ρ(x) dx. Similarly, many other practical

distributions have light tails.

Some empirical distributions have heavy tails. On the other hand, in
many empirical situations, we encounter heavy-tail distributions, i.e., distribu-
tions for which the probability density ρ(x) tends to 0 much slower – so that some
moments become infinite; see, e.g., [2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 19, 21, 22].
A typical case is when asymptotically, the probability density function has a
power law distribution ρ(x) = C · x−α for some α > 0.

Natural question. If usual arguments lead to light-tail distributions, how can
we explain the ubiquity of the heavy-tailed ones?

What we do in this paper. In this paper, we provide a possible answer to
the above question: namely, we show that the need for most accurate discrete
approximations naturally leads to heavy-tailed distributions.
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2 Need for Most Accurate Discrete Approxima-
tions: The Main Idea

Need for discrete approximations: an example. Many real-life situations
are well-described by random walkmodels; such models are especially ubiquitous
in econometrics; see, e.g., [11] and references therein.

In the general random walk, each component x(t+1) of the state at the next
moment of time t+1 is obtained from the state x(t) at the previous moment of
time t by adding a random step r(t): x(t+1) = x(t) + r(t). In many cases, the
random steps r(t) and r(t′) corresponding to different moments of time t ̸= t′

are independent.
In some applications, the empirical data is well-described by the simplest

type of random walk, in which, for some constant r0 > 0, the random step is
equal either to r0 or to −r0, with probability 0.5 of each of these two values. In
other applications, this simple model is not sufficient, so we need to use a more
complex model, in which the step takes three, four, or more values with different
probabilities. In the limit, when the number n of values tends to infinity, we get
a continuous description, in which a step r(t) is distributed according to some
probability density function ρ(x).

Resulting need for the most accurate discrete approximations. The
more accurately we can approximate the actual continuous distribution with an
n-point one, the more accurate are the discrete-approximation models (e.g., the
corresponding random walk models).

Since random walk models are widely used, it makes sense to use the exis-
tence of the most accurate discrete approximations as an alternative criterion
for selecting a probability distribution in situations when we only have partial
information about the probabilities – i.e., in which several different probability
distributions are consistent with our knowledge.

This is our main idea. This is our main idea, an idea that, as we show in
this paper, will lead to an explanation for power-law distributions. To come up
with this explanation, we first need to formulate our idea in precise terms.

3 Towards Formalizing the Main Idea

Approximating a continuous distribution by discrete ones: analysis
of the problem. When we approximate a continuous probability distribution
by a discrete one, we thus:

• approximate the actual random variable r which can take, in principle,
take any value from the real line,

• by a discrete variable that can only take a finite number of values

r1, . . . , rn.
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The approximating value ri is, in general, different from the actual value r,

so there is the approximation inaccuracy δ
def
= |ri − r|. To describe continuous

distributions which allow the most accurate discrete approximations, we need
to formalize what it means, for a given probability distribution and for a given
n, to select the most accurate discrete approximation.

Rational decision making: reminder. It is known that, in general, decision
of a rational decision maker can be described as maximizing the expected value
of an appropriate objective function u(x) called utility [6, 10, 17, 18]. This
function is determined modulo a general linear transformation u → a · u+ b for
some a > 0 and b.

Maximizing utility is equivalent to mininizing disutility U
def
= −u. Disutility

is also defined modulo a general linear transformation U → a · U + b.

Let us apply the general ideas of rational decision making to our
situation. To apply the general ideas of rational decision making to our case,
we need to describe the disutility U(δ) caused by inaccuracy δ.

To describe this disutility, we can take into account that in most case, the
numerical value r of the corresponding quantity depends on the choice of a
measuring unit.

• For a geometric random walk, the value r represents a distance, whose
numerical value depends on our choice of a distance unit – e.g., meters
or feet.

• For a financial random walk, e.g., for the financial random walk describing
the stock market index, the value r represents the price, and its numerical
value depends on the monetary unit – e.g., dollars or Euros.

If we choose a new measuring unit which is k times smaller than the original
one, then the numerical value of the corresponding quantity increases by a factor
of k: r → k · r. For example, if we use centimeters instead of meters, then in
centimeters, the distance of r = 2 m takes the value k · r = 100 · 2 cm.

The choice of a measuring unit is usually rather arbitrary. It is therefore
reasonable to require that the disutility function U(δ) not depend on the choice
of a measuring unit. Of course, we cannot simply require that the disutility
function does not change at all, i.e., that U(k · δ) = U(δ) for all k and δ, since
that would imply that U(δ) ≡ const. However, we can take into account the
fact that the disutility function is defined modulo some linear transformation.
If we fix U(0) = 0, this still leaves us with a transformation U → a · U . We
can therefore require that when we re-scale the unit for measuring the original
quantity, the disutility function remains the same modulo an appropriate linear
transformation, i.e., that for every k > 0, there exist a value a(k) for which, for
every δ ≥ 0, we have U(k · δ) = a(k) · U(δ).

Small changes in accuracy should lead to small changes in utility. In mathe-
matical terms, this means that the disutiliuty function U(δ) must be continuous.
It is known that for a continuous function, the above functional equation implies
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that U(δ) = C · δβ for some values C > 0 and β; see, e.g., [1]. The larger the
inaccuracy δ, the larger the disutility. So, we must have β > 0.

Towards formalizing the problem. Let us use this disutility function to
describe the expected disutility of approximating the original continuous vari-
able with a discrete one. Since the disutility increase with inaccuracy, once the
points r1 < . . . < rn are selected, we should assign, to each value r, the point
ri for which the inaccuracy is the smallest possible, i.e., the value which is the
closest to r. Thus, for every i, the point ri is assigned to all the values r from

the interval

[
ri−1 + ri

2
,
ri + ri+1

2

]
.

For large n, we can describe the selection of the points r1 < r2 < . . . < rn
by describing the frequency ρ0(r), i.e., the number of points per unit length.
The overall number of points is n, so we have

∫
ρ0(r) dr = n. In this case, the

length of each intervals [ri, ri+1] is approximately equal to
1

ρ0(r)
, and similarly,

the length of the interval Ii
def
=

[
ri−1 + ri

2
,
ri + ri+1

2

]
, which is composed of the

halves of [ri−1, ri] and of [ri, ri+1], is also approximately equal to
1

ρ0(r)
. On this

interval, the average value of inaccuracy is proportional to the interval width
and thus, the average value of the disutility is proportional to the β-th power

of this width, i.e., to Ui ≈
1

(ρ0(ri))β
.

The overall expected value EU of the disutility – the one that we need to

minimize – is equal to EU =
n∑

i=1

pi · Ui, where pi is the probability that the

original random variable r occurs in the interval Ii. Here, pi =
∫
Ii
ρ(r) dr,

where ρ(r) is the probability density of the original random variable. Thus,

EU =
n∑

i=1

1

(ρ0(ri))β
·
∫
Ii

ρ(r) dr.

By moving the term
1

(ρ0(ri))β
inside the intervals, we get

EU =
n∑

i=1

∫
Ii

1

(ρ0(ri))β
· ρ(r) dr.

For large n and narrow intervals, we have ri ≈ r and thus,

EU ≈
n∑

i=1

∫
Ii

1

(ρ0(r))β
· ρ(r) dr.

The intervals Ii cover the whole real line. Thus, the sum of integrals of the same
function over all intervals Ii is simply the integral over the whole real line:

EU ≈
∫

1

(ρ0(r))β
· ρ(r) dr.
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So, we arrive at the following precise reformulation of the best discrete op-
timization problem:

• we know the probability density ρ(r);

• we want to find the density ρ0(r) of the distribution of the discrete points

as the one that minimizes the integral
∫ 1

(ρ0(r))β
· ρ(r) dr under the con-

straint
∫
ρ0(r) dr = n.

After that, we will need to select, in each class of probability distributions, a
distribution for which this best-case expected disutility has the smallest possible
value.

4 Solving the Resulting Optimization Problem

Solving the resulting optimization problem: first step. Let us first
find the optimal function ρ0(r) corresponding to a given probability density
function ρ(r).

To find this function ρ0(r), we must solve the above constraint optimization
problem. For this problem, the Lagrange multiplier method leads to minimizing
the following objective function:∫

1

(ρ0(r))β
· ρ(r) dr + λ ·

(∫
ρ0(r) dr − n

)
.

Differentiating this expression with respect to each unknown ρ0(r) and equating
the derivative to 0, we conclude that

−β · ρ(r)

(ρ0(r))β+1
+ λ = 0,

hence (ρ0(r))
β+1 = const · ρ(r), with const =

λ

β
. Thus,

ρ0(r) = c · (ρ(r))1/(β+1),

for some constant c. This constant can be determined from the condition that∫
ρ0(r) dr = n. Substituting the above expression into this condition, we con-

clude that

ρ0(r) = n · (ρ(r))1/(β+1)∫
(ρ(s))1/(β+1) ds

.

Solving the resulting optimization problem: second step. Now that
we know which point density ρ0(r) is optimal for the given probability density
function ρ(r), we need to find the probability density function ρ(r) for which the
corresponding best-case disutility function attains the smallest possible value.
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To find such ρ(r), let us first use our result of solving the first-step opti-
mization problem to come up with an explicit (and thus, easier-to-minimize)
expression for the best-case average disutility.

Substituting the above expression for ρ0(r) into the formula for EU , we get

EU =

∫
ρ(r)

(ρ0(r))1/(β+1)
dr =

∫
(ρ(r))1/(β+1) dr(∫
(ρ(r))1/(β+1) dr

)β =
1(∫

(ρ(r))1/(β+1) dr
)β−1

.

Thus, depending on whether β < 1 or β > 1, minimizing the best-case expected
disutility is equivalent to either minimizing or maximizing the integral

J
def
=

∫
(ρ(r))1/(β+1) dr.

Comment. It is worth mentioning that the resulting objective function for se-
lecting a probability distribution is one of the scale-invariant objective functions
described in [9]. This is not surprising since we based our derivation on the ideas
of invariance with respect to selecting a measuring unit – which, in mathematical
terms, is exactly scale invariance.

Solving the resulting optimization problem: final step. Now, in a class of
probability density functions which are consistent with our knowledge, we need
to find the ones for which the above expression J is optimal. In particular, if our
knowledge consists of a moment-related constraint

∫
|r|k · ρ(r) dr = Mk, then

we need to optimize the expression J under this constraint and the additional
constraint

∫
ρ(r) dr = 1. For this constraint optimization problem, the Lagrange

multiplier method leads to the need for optimizing the following expression:∫
(ρ(r))1/(β+1) dr + λ0 ·

(∫
ρ(r) dr − 1

)
+ λk ·

(∫
|r|k · ρ(r) dr −Mk

)
.

Differentiating this expression with respect to each unknown ρ(r) and equating
the derivative to 0, we conclude that

1

β + 1
· (ρ(r))−β/(β+1) = −λ0 + λk · |r|k,

hence

ρ(r) =
1

(C0 + C1 · |r|k)1+1/β
,

for some constants C0 and C1.
Asymptotically, when |r| increases, we have

ρ(r) ∼ |r|−α

for α = k ·
(
1 +

1

β

)
. Thus, we indeed have an explanation for the heavy-tail

distributions.
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