
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

4-2016

How to Describe Measurement Uncertainty and
Uncertainty of Expert Estimates?
Nicolas Madrid
University of Ostrava, nicolas.madrid@osu.cz

Irina Perfilieva
University of Ostrava, Irina.Perfilieva@osu.cz

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep

Part of the Computer Sciences Commons
Comments:
Technical Report: UTEP-CS-16-12a
To appear in Proceedings of the 2016 World Conference on Soft Computing, Berkeley, California, May
22-25, 2016.

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Madrid, Nicolas; Perfilieva, Irina; and Kreinovich, Vladik, "How to Describe Measurement Uncertainty and Uncertainty of Expert
Estimates?" (2016). Departmental Technical Reports (CS). Paper 997.
http://digitalcommons.utep.edu/cs_techrep/997

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F997&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F997&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F997&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F997&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F997&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/997?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F997&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


How to Describe Measurement Uncertainty and
Uncertainty of Expert Estimates?

Nicolas Madrid and Irina Perfilieva
Institute ofr Research and Applications of Fuzzy Modeling

University of Ostrava, Ostrava, Czech Republic
nicolas.madrid@osu.cz, Irina.Perfilieva@osu.cz

Vladik Kreinovich
Department of Computer Science

University of Texas at El Paso
El Paso, TX 79968, USA

vladik@utep.edu

Abstract—Measurement and expert estimates are never ab-
solutely accurate. Thus, when we know the result M(u) of
measurement or expert estimate, the actual value A(u) of the
corresponding quantity may be somewhat different from M(u).
In practical applications, it is desirable to know how different it
can be, i.e., what are the bounds f(M(u)) ≤ A(u) ≤ g(M(u)).
Ideally, we would like to know the tightest bounds, i.e., the largest
possible values f(x) and the smallest possible values g(x). In this
paper, we analyze for which (partially ordered) sets of values such
tightest bounds always exist: it turns out that they always exist
only for complete lattices.

I. FORMULATION OF THE PROBLEM

How can we describe measurement uncertainty: formula-
tion of the problem. We want to know the actual values of
different quantities. To get these values, we perform measure-
ments.

Measurements are never absolutely accurate, there is always
measurement uncertainty, in the sense that the actual value
A(u) of the corresponding physical quantity is, in general,
different from the measurement result M(u); see, e.g., [8].

This uncertainty means that the actual value A(u) can be
somewhat different from the measurement result M(u). It is
therefore desirable to describe what are the possible values
of A(u). This will be a perfect way to describe uncertainty:
for each measurement result M(u), we describe the set of all
possible values of A(u).

How can we attain this description?

Important remark: in practice, we do not know the actual
values. Ideally, for different situations u, we should compare
the measurement result M(u) with the actual value A(u).
The problem is that we do not know the actual value – if
we knew the actual value, we would not need to perform
any measurements. So how do practitioners actually gauge the
accuracy of measuring instruments?

A usual approach (see, e.g., [8]) is to compare the mea-
surement result M(u) with the result S(u) of measuring the
same quantity by using a much more accurate (“standard”)
measuring instrument. If the standard measuring instrument is
indeed much more accurate than the one whose accuracy we
are gauging, then, for the purpose of this gauging, we can:

• assume that S(u) = A(u), and
• compare the results M(u) and S(u) of measuring the

same quantity by two different measuring instruments.

In general, all we have is measurement results, so all we can
do to gauge accuracy is to compare two measurement results.
So, from the practical viewpoint, the above problem can be
reformulated as follows:

• we know the measurement result M(u) corresponding to
some situation u,

• we would like to describe the set of possible values S(u)
that we would have obtained if we apply a standard
measuring instrument to these same situation u.

Let us first list typical situations. Before we consider the
general case, let us first describe several typical situations.

Case of absolute measurement error. In some cases, we
know the upper bound ∆ on the absolute value of the mea-
surement error M(u)−A(u), i.e., we know that

|M(u)−A(u)| ≤ ∆.

In this case, once we know the measurement result M(u), we
can conclude that the (unknown) actual value A(u) satisfies
the inequality

M(u)−∆ ≤ A(u) ≤ M(u) + ∆.

In other words, we conclude that A(u) belongs to the interval
[M(u)−∆,M(u) + ∆]; see, e.g., [2], [4], [5].

In more general terms, we can describe the corresponding
bounds as

f(M(u)) ≤ A(u) ≤ g(M(u)),

where
f(x)

def
= x−∆ and g(x)

def
= x+∆.

Case of relative measurement error. In some other cases, we
know the upper bound δ on the relative measurement error:

|M(u)−A(u)|
|A(u)|

≤ δ.

In this case, for positive values,

(1− δ) ·A(u) ≤ M(u) ≤ (1 + δ) ·A(u).



Thus, once we know the measurement result M(u), we
can conclude that the actual (unknown) value A(u) of the
corresponding physical quantity satisfies the inequality

M(u)

1 + δ
≤ A(u) ≤ M(u)

1− δ
.

In other words, we have

f(M(u)) ≤ A(u) ≤ g(M(u))

for
f(x)

def
=

x

1 + δ
and g(x)

def
=

x

1− δ
.

In some cases, we have both types of measurement errors.
In some cases, we have both:

• additive measurement errors, i.e., errors whose absolute
value does not exceed ∆, and

• multiplicative measurement errors, i.e., errors whose rel-
ative value does not exceed δ and thus, whose absolute
value does not exceed δ · |A(u)|.

In this case, for positive values, we get

A(u)−∆− δ ·A(u) ≤ M(u) ≤ A(u) + ∆+ δ ·A(u).

The left inequality can be reformulated as

A(u) · (1− δ)−∆ ≤ M(u),

hence
A(u) · (1− δ) ≤ M(u) + ∆

and thus,

A(u) ≤ M(u) + ∆

1− δ
.

Similarly, the right inequality can be reformulated as

M(u) ≤ A(u) · (1 + δ) + ∆,

hence
A(u) · (1 + δ) ≥ M(u)−∆

and thus,

A(u) ≥ M(u)−∆

1 + δ
.

In this case, we have

f(M(u)) ≤ A(u) ≤ g(M(u)),

where
f(x)

def
=

x−∆

1 + δ
and f(x)

def
=

x+∆

1− δ
.

Towards a general case. The above formulas assume that
parameters ∆ and δ describing measurement accuracy are the
same for the whole range. In reality, measuring instruments
have different accuracies in different ranges. Hence, the re-
sulting functions f(x) and g(x) are non-linear.

It should be mentioned that all the above functions f(x)
and g(x) are monotonic, and this is usually true for all
measuring instruments: when the measurement result is larger,

this usually means that the bounds on possible values of the
actual quantity also increase (or at least do not decrease).

To describe the accuracy of a general measuring instrument,
it is therefore reasonable to use:

• the largest of the monotonic functions f(x) for which
f(M(u)) ≤ A(u) and

• the smallest of the monotonic functions g(x) for which
A(u) ≤ g(M(u)).

Similarly, to describe the relative accuracy of a measuring
instrument M(u) in comparison to a standard measuring
instrument S(u), it is reasonable to use:

• the largest of the monotonic functions f(x) for which
f(M(u)) ≤ S(u) and

• the smallest of the monotonic functions g(x) for which
S(u) ≤ g(M(u)).

From measurements to expert estimates. While measure-
ment are very important, a large part of our knowledge
comes from expert estimates. Expert estimates are extremely
important in areas such a medicine.

In contrast to measurements that always result in numbers,
expert estimates often can also result in “values” from a
partially ordered set. For example, when a medical doctor is
asked how probable is a certain diagnosis, the doctor may
provide an approximate probability, or an interval of possi-
ble probabilities, or a natural-language term like “somewhat
probable” or “very probable”.

Such possibilities are described, e.g., in different general-
izations and extensions of the traditional [0, 1]-based fuzzy
logic; see, e.g., [3], [6], [10]; see also [1]. What is in common
for all such extensions is that on the corresponding set of
value L, there is always an order (sometimes partial), so that
ℓ < ℓ′ means that ℓ′ represents a stronger expert’s degree of
confidence.

Need to describe uncertainty of expert estimates. Some
experts are very good, in the sense that based on their
estimates, we make very effective decisions. These experts
can be viewed as analogs of standard measuring instruments.

Other experts may be less accurate. It is therefore desirable
to gauge the uncertainty of such experts in relation to the
“standard” (very good) ones. If a regular expert provides an
estimate M(u) for a situation u, then, to make a good decision
based on this estimate, we would like to know what would the
perfect expert conclude in this case, i.e., what are the bounds
on the perfect expert’s estimates S(u)? In general, we may
have several functions f(x) and g(x) for which

f(M(u)) ≤ S(u) ≤ g(M(u)).

It is desirable to find:
• the largest of the monotonic functions f(x) for which

f(M(u)) ≤ S(u) and
• the smallest of the monotonic functions g(x) for which

S(u) ≤ g(M(u)).

What is known and what we do in this paper. For the case
when the set L is an interval – e.g., the interval [0, 1] – the



existence of the largest f(x) and smallest g(x) was proven in
[7] (see also [9]).

In this paper, we analyze for which partially ordered sets
such largest f(x) and smallest g(x) exist. It turns out that they
exist for complete lattices – and, in general, do not exist for
more general partially ordered sets. To be more precise,

• the largest f(x) exists for complete lower semi-lattices
(precise definitions are given below), while

• the smallest g(x) exists for complete upper semi-lattices.

II. MAIN RESULT: FOR LATTICES, IT IS POSSIBLE TO
DESCRIBE UNCERTAINTY IN TERMS OF THE BOUNDING

FUNCTIONS f(x) AND g(x)

Definition 1. Let L be a (partially) ordered set, and let U be
any set. We say that a function F : U → L is smaller that a
function G : U → L is F (u) ≤ G(u) for all u ∈ U . We will
denote this by F ≤ G.

Definition 2. We say that a function L → L is monotonic if
x ≤ y implies f(x) ≤ f(y).

Notation 1. For every ordered set L, by ML, we denote the
set of all monotonic functions f : L → L.

Definition 3. Let f ∈ ML. We say that a function F : U → L
is f -smaller than a function G : U → L if f(F (u)) ≤ G(u)
for all u ∈ U . We will denote this by F ≤f G.

Notation 2. By F(F,G) we will denote the set of all functions
f ∈ ML for which F ≤f G.

Definition 4. Let L be an ordered set, and let S ⊆ L be its
subset.

• We say that an element x is a lower bound for the set S
if x ≤ s for all s ∈ S.

• An ordered set is called a complete lower semi-lattice if
for every set S, among all its lower bounds, there exists
the largest one. This largest lower bound is denoted by∧
S.

• We say that an element x is an upper bound for the set
S if s ≤ x for all s ∈ S.

• An ordered set is called a complete upper semi-lattice if
for every set S, among all its upper bounds, there exists
the smallest one. This smallest upper bound is denoted
by

∨
S.

• An ordered set L is called a complete lattice if it is both a
complete lower semi-lattice and a complete upper semi-
lattice.

Proposition 1. If L is a complete lower semi-lattice, then for
every two functions F,G : U → L, the set F(F,G) has the
largest element fF,G for which

F(F,G) = {f ∈ ML : f ≤ fF,G}.

Proof. We will prove that the function

fF,G(x)
def
=

∧
{G(u) : x ≤ F (u)}

is the desired function. In other words, we will prove:

• that the function fF,G belongs to the class F(F,G) and
• that the function fF,G is the largest function in this class.

Let us first prove that fF,G ∈ F(F,G), i.e., that for every
u, we have fF,G(F (u)) ≤ G(u). Indeed, for x = F (u), we
have x ≤ F (u), and thus, the element G(u) belongs to the set
{G(u) : x ≤ F (u)}. Thus, this element G(u) is larger than
or equal to the largest lower bound

fF,G(x) =
∧

{G(u) : x ≤ F (u)}

for this set, i.e., indeed

fF,G(F (u)) = fF,G(x) ≤ G(u).

Let us now prove that the function fF,G is the largest
function in the class F(F,G), i.e., that if f ≤ F(F,G), then
f ≤ fF,G. Indeed, let f ∈ F(F,G). By definition of this class,
this means that f is monotonic and f(F (u)) ≤ G(u) for all
u. Let us pick some x ∈ L and show that f(x) ≤ fF,G(x). In-
deed, for every value u ∈ U for which x ≤ F (u), we have, due
to monotonicity, f(x) ≤ f(F (u)). Since f(F (u)) ≤ G(u), we
this conclude that f(x) ≤ G(u). So, the value f(x) is smaller
than or equal to all elements of the set {G(u) : x ≤ F (u)},
i.e., f(x) is a lower bound for this set. Every lower bound is
smaller than or equal to the largest lower bound

fF,G(x) =
∧

{G(u) : x ≤ F (u)},

so indeed f(x) ≤ fF,G(x).
Let us now prove that F(F,G) = {f ∈ ML : f ≤ fF,G}.

We have shown that every function f ∈ F(F,G) is ≤ fF,G,
i.e., that

F(F,G) ⊆ {f ∈ ML : f ≤ fF,G}.

Vice versa, if f ≤ fF,G, then for every u, from fF,G(F (u)) ≤
G(u) and f(F (u)) ≤ fF,G(F (u)), we conclude that
f(F (u)) ≤ G(u), i.e., that indeed f ∈ F(F,G).

The proposition is proven.

Discussion. A similar result can be obtained for the upper
bounds.

Definition 5. Let f ∈ ML. We say that a function G : U → L
is g-larger than a function F : U → L if F (u) ≤ g(G(u)) for
all u ∈ U . We will denote this by G ≥g F .

Notation 3. By G(F,G) we will denote the set of all functions
g ∈ ML for which G ≥g F .

Proposition 2. If L is a complete upper semi-lattice, then for
every two functions F,G : U → L, the set G(F,G) has the
smallest element gF,G for which

G(F,G) = {g ∈ ML : g ≥ gF,G}.

Proof is similar to the proof of Proposition 1.



III. THE MAIN RESULT CANNOT BE EXTENDED BEYOND
COMPLETE LOWER SEMI-LATTICES

Let us prove that this result cannot be extended beyond
complete semi-lattices.

Proposition 3. Let L be an ordered set for which, for every
two functions F,G : U → L, the set F(F,G) has the largest
element. Then the set L is a complete lower semi-lattice.

Proof. Let us assume that the ordered set L has the above
property. Let us prove that L is a complete lower semi-lattice.
Indeed, let S ⊆ L be any subset of L. Let us take U = S, and
take G(u) = u for all u ∈ S. Let us also pick any element
x0 ∈ L and take F (u) = x0 for all u ∈ S. Because of our
assumption, the set F(F,G) of all the functions for which
f(F (u)) ≤ G(u) for all u has the largest element fF,G.

Because of our choice of the functions F (u) and G(u), the
inequality f(F (u)) ≤ G(u) simply means that f(x0) ≤ u for
all u ∈ S, i.e., that f(x0) is the lower bound for the set S. The
fact that there is the largest of such functions f ∈ F(F,G)
means that there is the largest of the lower bounds – which is
exactly the definition of the complete lower semi-lattice. The
proposition is proven.

Proposition 4. Let L be an ordered set for which, for every
two functions F,G : U → L, the set G(F,G) has the smallest
element. Then the set L is a complete upper semi-lattice.

Proof is similar to the proof of Proposition 3.

IV. AUXILIARY RESULTS: WHAT IF THERE IS NO BIAS?

Comment about bias. In some practical situations, measuring
instrument has a bias (shift): a clock can be regularly 2 min-
utes behind, a thermometer can regularly show temperatures
which are 3 degrees higher, etc. Bias means that we get the
measurement result M(u), then this value cannot be equal to
the actual value of the measured quantity: there is always a
non-zero shift A(u)−M(u).

Bias can easily be eliminated by re-calibrating the measur-
ing instrument: for example, if I move to a different time zone,
I can simply add or subtract the corresponding time difference
and get the exact local time.

It is therefore reasonable to assume that the bias has already
been eliminated, and that, thus, A(u) = M(u) is one of the
possible actual values. For this value A(u) = M(u), our
inequality

f(M(u)) ≤ A(u) ≤ g(M(u))

implies that
f(x) ≤ x ≤ g(x).

So, it makes sense to only consider functions f(x) and g(x)
for which f(x) ≤ x and x ≤ g(x). It turns out that similar
results hold when we thus restrict the functions f(x) and g(x).

Notation 4. For every ordered set L, by ΩL, we denote the
set of all monotonic functions f : L → L for which f(x) ≤ x
for all x ∈ L.

Notation 5. By Fu(F,G) we will denote the set of all functions
f ∈ ΩL for which F ≤f G.

Proposition 5. If L is a complete lower semi-lattice, then for
every two functions F,G : U → L, the set Fu(F,G) has the
largest element fF,G for which

Fu(F,G) = {f ∈ ΩL : f ≤ fF,G}.

Proof. We will prove that the function

fF,G(x)
def
=

∧
{G(u) ∧ x : x ≤ F (u)}

is the desired function. In other words, we will prove:
• that the function fF,G belongs to the class Fu(F,G) and
• that the function fF,G is the largest function in this class.
Let us first prove that fF,G ∈ Fu(F,G), i.e., that for every

u, we have fF,G(F (u)) ≤ G(u). Indeed, for x = F (u), we
have x ≤ F (u), and thus, the element G(u) belongs to the set
{G(u) : x ≤ F (u)}. Thus, this element G(u) is larger than
or equal to the largest lower bound

fF,G(x) =
∧

{G(u) : x ≤ F (u)}

for this set, i.e., indeed

fF,G(F (u)) = fF,G(x) ≤ G(u).

Since G(u) ∧ x ≤ x, we conclude that fF,G(x) ≤ x. Thus,
indeed, fF,G ∈ ΩL.

Let us now prove that the function fF,G is the largest
function in the class Fu(F,G), i.e., that if f ≤ Fu(F,G),
then f ≤ fF,G. Indeed, let f ∈ Fu(F,G). By definition of this
class, this means that f is monotonic, f(x) ≤ x or all x, and
f(F (u)) ≤ G(u) for all u. Let us pick some x ∈ L and show
that f(x) ≤ fF,G(x). Indeed, for every value u ∈ U for which
x ≤ F (u), we have, due to monotonicity, f(x) ≤ f(F (u)).
Since f(F (u)) ≤ G(u), we this conclude that f(x) ≤ G(u).
So, the value f(x) is smaller than or equal to all elements of
the set {G(u) : x ≤ F (u)}, i.e., f(x) is a lower bound for
this set. Moreover, as f(x) ≤ x, we have

f(x) ≤
∧

{G(u) ∧ x : x ≤ F (u)} = fF,G(x),

so indeed f(x) ≤ fF,G(x).
Let us now prove that

Fu(F,G) = {f ∈ ΩL : f ≤ fF,G}.

We have shown that every function f ∈ Fu(F,G) is ≤ fF,G,
i.e., that

F(F,G) ⊆ {f ∈ ΩL : f ≤ fF,G}.

Vice versa, if f ≤ fF,G, then for every u, from fF,G(F (u)) ≤
G(u) and f(F (u)) ≤ fF,G(F (u)), we conclude that
f(F (u)) ≤ G(u), i.e., that indeed f ∈ Fu(F,G).

The proposition is proven.

Notation 6. For every ordered set L, by ΘL, we denote the
set of all monotonic functions g : L → L for which x ≤ g(x)
for all x ∈ L.



Notation 7. By Gu(F,G) we will denote the set of all functions
g ∈ ΘL for which G ≥g F .

Proposition 6. If L is a complete upper semi-lattice, then for
every two functions F,G : U → L, the set Gu(F,G) has the
smallest element gF,G for which

Gu(F,G) = {g ∈ ΘL : g ≥ gF,G}.

Proof is similar to the proof of Proposition 5.
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