1-2016

Why Superellipsoids: A Probability-Based Explanation

Pedro Barragan Olague
The University of Texas at El Paso, pabarraganolague@miners.utep.edu

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

Part of the Computer Sciences Commons, and the Mathematics Commons

Comments:

Technical Report: UTEP-CS-16-08

Recommended Citation

https://scholarworks.utep.edu/cs_techrep/1001

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.
Why Superellipsoids: A Probability-Based Explanation

Pedro Barragan and Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
pabarraganolague@miners.utep.edu
vladik@utep.edu

Abstract

In many practical situations, it turns out that the set of possible values of the deviation vector is (approximately) a super-ellipsoid. In this paper, we provide a theoretical explanation for this empirical fact—an explanation based on the natural notion of scale-invariance.

1 Formulation of the Problem

Need to describe uncertainty domains. The intent of the mass production of a gadget is to produce gadgets with identical values \((x_1, \ldots, x_n)\) of the desired characteristics \(x_i\). In reality, of course, different gadgets end up having slightly different values \(\tilde{x}_i\) of these characteristics: \(\Delta x_i \overset{\text{def}}{=} \tilde{x}_i - x_i \neq 0\). For each of these characteristics \(x_i\), we usually have a tolerance bound \(\Delta x_i\) for which \(|\Delta x_i| \leq \Delta_i\), so that possible values of \(\Delta x_i\) form an interval \([-\Delta_i, \Delta_i]\). Thus, possible values of the deviation vector \(\Delta x = (\Delta x_1, \ldots, \Delta x_n)\) are located in the box \([-\Delta_1, \Delta_1] \times \ldots \times [-\Delta_n, \Delta_n]\).

In practice, not all vectors \(\Delta x\) from this box are possible. It is therefore desirable to describe the set of all possible deviation vectors \(\Delta x\). This set is known as the uncertainty domain.

Shall not we also determine probabilities? At first glance, it seems that we should be interested not only in finding out which deviation vectors \(\Delta x\) are possible and which are not, but also in how frequent different possible vectors are. In other words, we should be interested not only in the uncertainty domain, but also on the probability distribution on this domain.

In reality, however, it is not possible to find these probabilities. Indeed, the manufacturing process may slightly change (and often does change). After
each such change, the tolerance intervals and the resulting uncertainty domain remain largely unchanged, but the probabilities change (often drastically).

Empirical shapes of uncertainty domains. Empirical analysis has shows that in many practical cases, the uncertainty domain can be well approximated by a super-ellipsoid \(\sum_{i=1}^{n} \left(\frac{\Delta x_i}{\sigma_i} \right)^{p} \leq C \) for some values \(\sigma_i, p, \) and \(C, \) and the accuracy of this approximation is higher than for other approximation families with the same number of parameters; see, e.g., [4, 5].

Historical comment. Super-ellipsoids were first successfully used to describe uncertainty domain in [3]. Super-ellipsoids are also actively used in image processing, to describe different components of an image; see, e.g., [2, 6, 7, 10].

What we do in this paper. In this paper, we provide a theoretical explanation for this empirical phenomenon.

2 Our Idea

Let us apply probabilistic approach. In reality, there is some probability distribution \(\rho_i(\Delta x_i) \) for each of the random variables \(\Delta x_i. \) Since we have no reason to assume that positive values of \(\Delta x_i \) are more probable than negative values or vice versa, it makes sense to assume that they are equally probable, i.e., that each distribution \(\rho_i(\Delta x_i) \) is symmetric: \(\rho_i(\Delta x_i) = \rho_i(|\Delta x_i|). \)

Similarly, since we have no reasons to believe that different deviations are statistically dependent, it makes sense to assume that the corresponding random variables are independent. In this case, the overall probability density function (pdf) has the form \(\rho(\Delta x) = \prod_{i=1}^{n} \rho_i(|\Delta x_i|). \)

Usually, we consider a deviation vector possible if its probability exceed a certain threshold \(t. \) Thus, the desired set has the form \(S_{t} \) def \(= \{ \Delta x : \rho(\Delta x) \geq t \}. \)

Scaling and scale-invariance: an informal description. Numerical values of the deviations \(\Delta x_i \) depend on the choice of a measuring unit; if we replace the original unit by a unit which is \(\lambda \) times smaller, then for the exact same physical situation, we get the new numerical values \(\Delta x'_{i} = \lambda \cdot \Delta x_i. \)

Since the physics remains the same, it makes sense to require that the uncertainty domains do not change under such a re-scaling.

To be more precise, the pdf threshold \(t \) may change, but the family of such sets should remain unchanged: \(S'_{t} = \{ S_{t} \} \), where \(S'_{t} \) corresponds to the re-scaled pdf \(\rho'(\Delta x) = \text{const} \cdot \rho(\lambda \cdot \Delta). \)

We will prove that under this scale-invariance, the corresponding sets \(S_{t} \) are exactly super-ellipsoids. Thus, we will get the desired explanation.
3 Definitions and the Main Result

Definition. Let \(n > 1 \), and let \(\rho(y) = (\rho_1(y_1), \ldots, \rho_n(y_n)) \) be a tuple of positive symmetric \((\rho_i(-y_i) = \rho_i(y_i)) \) smooth functions of one variable.

- For every \(t > 0 \), let us denote the set \(\{ (y_1, \ldots, y_n) : \prod_{i=1}^{n} \rho_i(y_i) \geq t \} \) by \(S_t(\rho) \).
- We say that a tuple \(\rho(y) \) is bounded if the set \(S_t(\rho) \) is bounded for every \(t \).
- For every \(\lambda > 0 \), by a \(\lambda \)-re-scaling of the tuple \(\rho(x) \), we mean a tuple \(\rho_{\lambda}(y) \), for which \(\rho_{\lambda,i}(y_i) \) \(\triangleq \frac{1}{\lambda} \cdot \rho_i(\lambda \cdot y_i) \).
- We say that a tuple \(\rho(y) \) is scale-invariant if for every \(\lambda > 0 \), re-scaling does not change the family \(S_t : \{ S_t(\rho) \}_t \).

Main Result. If the tuple \(\rho(y) \) is bounded and scale-invariant, then each set \(S_t(\rho) \) is a super-ellipsoid.

Comments.

- Vice versa, it is easy to prove that each super-ellipsoid can be represented as a set \(S_t \) for the bounded and scale-invariant distributions of the type \(\rho_i(y_i) = \text{const} \cdot \exp \left(-\frac{|y_i|^p}{\sigma_i^p} \right) \). Such probability distributions indeed occur as probability distributions of measuring errors corresponding to some measuring instruments; see, e.g., [9].
- Processing super-ellipsoids is similar to processing ellipsoids; see, e.g., [8].

Proof. For convenience, let us consider logarithms \(\psi_i(y_i) \) \(\triangleq -\log(\rho_i(y_i)) \). Once we take the negative logarithm of both sides of the inequality \(\prod_{i=1}^{n} \rho_i(y_i) \geq t \) that describes the set \(S_t(\rho) \), we get an equivalent description \(\sum_{i=1}^{n} \psi_i(y_i) \leq c \), where we denoted \(c \) \(\triangleq -\log(t) \). In these terms, scale-invariance means that the corresponding family of sets is the same for all \(c \).

In terms of the new functions \(\psi_i(y_i) \), scaling means

\[
\psi_{\lambda,i}(y_i) = -\ln(\rho_{\lambda,i}(y_i)) = -\log \left(\frac{1}{\lambda} \cdot \rho_i(\lambda \cdot y_i) \right) = \log(\lambda) - \log(\rho_i(y_i)) = \rho_i(y_i) + \log(\lambda),
\]

i.e., has the form \(\psi_{\lambda,i}(y_i) = \psi_i(\lambda \cdot y_i) + \log(\lambda) \).

In these terms, the fact that scaling does not change the family of sets \(S_t \) means that if two tuples \((y_1, \ldots, y_n) \) and \((z_1, \ldots, z_n) \) always belong or not belong to the same sets – i.e., have the same value of the corresponding sum
\[\sum_{i=1}^{n} \psi_i(y_i) = \sum_{i=1}^{n} \psi_i(z_i), \] then the re-scaled functions should also have the same value of the sum, i.e., \(\sum_{i=1}^{n} \psi_{\lambda,i}(y_i) = \sum_{i=1}^{n} \psi_{\lambda,i}(z_i). \) Substituting the above expression for \(\psi_{\lambda,i}(y_i) \) into this formula, we get

\[\sum_{i=1}^{n} (\psi_i(\lambda \cdot y_i) + \log(\lambda)) = \sum_{i=1}^{n} (\psi_i(\lambda \cdot z_i) + \log(\lambda)), \] (2)

i.e.,

\[n \cdot \lambda + \sum_{i=1}^{n} \psi_i(\lambda \cdot y_i) = n \cdot \lambda + \sum_{i=1}^{n} \psi_i(\lambda \cdot z_i). \] (3)

Subtracting \(n \cdot \lambda \) from both sides of this equality, we get

\[\sum_{i=1}^{n} \psi_i(\lambda \cdot y_i) = \sum_{i=1}^{n} \psi_i(\lambda \cdot z_i). \] (4)

Thus, we have the following property:

- if \(\sum_{i=1}^{n} \psi_i(y_i) = \sum_{i=1}^{n} \psi_i(z_i), \)

- then \(\sum_{i=1}^{n} \psi_i(\lambda \cdot y_i) = \sum_{i=1}^{n} \psi_i(\lambda \cdot z_i). \)

In particular, this property holds if we perform very small changes to only two of the values \(y_i \), i.e., if for some \(a \neq b \), we replace \(y_a \) with \(z_a = y_a + \delta_a \) and \(y_b \) with \(z_b = y_b + \delta_b \); for \(i \neq a, b \), we take \(z_i = y_i \).

In this case,

\[\psi_a(z_a) = \psi_a(y_a + \delta_a) = \psi_a(y_a) + \psi'_a(y_a) \cdot \delta_a + o(\delta), \] (5)

where \(\psi'_a(y_a) \), as usual, denotes the derivative of the function \(\psi_a(y_a) \). Similarly, we have

\[\psi_b(z_b) = \psi_b(y_b + \delta_b) = \psi_b(y_b) + \psi'_b(y_b) \cdot \delta_b + o(\delta). \] (6)

Thus,

\[\sum_{i=1}^{n} \psi_i(z_i) = \sum_{i=1}^{n} \psi_i(y_i) + \psi'_a(y_a) \cdot \delta_a + \psi'_b(y_b) \cdot \delta_b + o(\delta), \] (7)

and the original equality \(\sum_{i=1}^{n} \psi_i(y_i) = \sum_{i=1}^{n} \psi_i(z_i) \) takes the form

\[\psi'_a(y_a) \cdot \delta_a + \psi'_b(y_b) \cdot \delta_b + o(\delta) = 0. \] (8)

Similarly, we have

\[\psi_a(\lambda \cdot z_a) = \psi_a(\lambda \cdot (y_a + \delta_a)) = \psi_a(\lambda \cdot y_a + \lambda \cdot \delta_a) = \]
\[\psi_a(\lambda \cdot y_a) + \lambda \cdot \psi'_a(\lambda \cdot y_a) \cdot \delta_a + o(\delta) \quad (9) \]

and

\[\psi_b(\lambda \cdot z_b) = \psi_b(\lambda \cdot (y_b + \delta_b)) = \psi_b(\lambda \cdot y_b + \lambda \cdot \delta_b) = \psi_b(\lambda \cdot y_b) + \lambda \cdot \psi'_b(\lambda \cdot y_b) \cdot \delta_b + o(\delta). \quad (10) \]

Thus, the equality \(\sum_{i=1}^{n} \psi_i(\lambda \cdot y_i) = \sum_{i=1}^{n} \psi_i(\lambda \cdot z_i) \) takes the form

\[\lambda \cdot \psi'_a(\lambda \cdot y_a) \cdot \delta_a + \lambda \cdot \psi'_b(\lambda \cdot y_b) \cdot \delta_b + o(\delta) = 0, \quad (11) \]

i.e., equivalently,

\[\psi'_a(\lambda \cdot y_a) \cdot \delta_a + \psi'_b(\lambda \cdot y_b) \cdot \delta_b + o(\delta) = 0. \quad (12) \]

So, the scale-invariance condition takes the following form:

- if \(\psi'_a(\lambda) \cdot \delta_a + \psi'_b(\lambda) \cdot \delta_b + o(\delta) = 0, \)
- then \(\psi'_a(\lambda \cdot y_a) \cdot \delta_a + \psi'_b(\lambda \cdot y_b) \cdot \delta_b + o(\delta) = 0. \)

The first condition is satisfied if we choose

\[-\frac{\delta_b}{\delta_a} = \frac{\psi'_a(y_a)}{\psi'_b(y_b)} + o(\delta). \quad (13) \]

The satisfaction of the second condition then means that

\[-\frac{\delta_b}{\delta_a} = \frac{\psi'_a(\lambda \cdot y_a)}{\psi'_b(\lambda \cdot y_b)} + o(\delta), \quad (14) \]

i.e., that

\[\frac{\psi'_a(\lambda \cdot y_a)}{\psi'_b(\lambda \cdot y_b)} = \frac{\psi'_a(y_a)}{\psi'_b(y_b)} + o(\delta). \quad (15) \]

Since this is true for all \(\delta \), then we can take \(\delta \to 0 \) and conclude that

\[\frac{\psi'_a(\lambda \cdot y_a)}{\psi'_b(\lambda \cdot y_b)} = \frac{\psi'_a(y_a)}{\psi'_b(y_b)}. \quad (16) \]

This equality is equivalent to

\[\frac{\psi'_a(\lambda \cdot y_a)}{\psi'_a(y_a)} = \frac{\psi'_b(\lambda \cdot y_b)}{\psi'_b(y_b)}. \quad (17) \]

The left-hand side of this equality does not depend on \(y_b \); thus, the right-hand side does not depend on \(y_b \) either. Hence, this ratio depends only on \(\lambda \). Let us denote this common ratio by \(r(\lambda) \). Then, for each \(a \), we have

\[\frac{\psi'_a(\lambda \cdot y_a)}{\psi'_a(y_a)} = r(\lambda). \quad (18) \]
\[\psi_a'(\lambda \cdot y_a) = r(\lambda) \cdot \psi_a'(y_a). \] (19)

The derivative of a smooth function is always measurable, and thus, the function \(r(\lambda) \) is also measurable, as a ratio of two measurable functions.

Now, let us take arbitrary values \(\lambda_1 > 0 \) and \(\lambda_2 > 0 \). Then, we can re-scale first by \(\lambda_1 \), then by \(\lambda_1 \), or we can right away re-scale by \(\lambda = \lambda_1 \cdot \lambda_2 \). In the first case, the above formula has the form

\[\psi_a'(\lambda_2 \cdot y_a) = r(\lambda_2) \cdot \psi_a'(y_a) \] (20)

and then

\[\psi'(\lambda_1 \cdot (\lambda_2 \cdot y_a)) = r(\lambda_1) \cdot \psi'(\lambda_2 \cdot y_a) = r(\lambda_1) \cdot r(\lambda_2) \cdot \psi_a'(y_a), \] (21)

i.e.,

\[\psi'(\lambda_1 \cdot \lambda_2 \cdot y_a) = r(\lambda_1) \cdot r(\lambda_2) \cdot \psi_a'(y_a). \] (22)

In the second case, we get

\[\psi'(\lambda_1 \cdot \lambda_2 \cdot y_a) = r(\lambda_1 \lambda_2) \cdot \psi_a'(y_a). \] (23)

Since the left-hand sides of the two equalities (22) and (23) coincide, their right-hand sides must coincide as well, i.e., we must have \(r(\lambda_1 \cdot \lambda_2) = r(\lambda_1) \cdot r(\lambda_2) \).

It is known (see, e.g., [1]) that all measurable functions satisfying this property have the form \(r(\lambda) = \lambda^\beta \) for some real number \(\beta \). Now, from the condition

\[\psi_a'(\lambda \cdot y_a) = r(\lambda) \cdot \psi_a'(y_a) = \lambda^\beta \cdot \psi_a'(y_a), \] (24)

for \(\lambda = z \) and \(y_a = 1 \), we conclude that \(\psi_a'(z) = \psi_a'(1) \cdot z^\beta \), i.e., that \(\psi_a'(y_a) = c_a \cdot y_a^\beta \) for some constant \(c_a \).

Integrating, for \(\beta \neq -1 \), for \(y_a > 0 \), we get \(\psi_a(y_a) = k_a \cdot y_a^p + C_a \) for \(p = \beta + 1 \), \(k_a \equiv \frac{c_a}{\beta + 1} \), and for some constant \(C_a \). Since each function \(\psi_i(y_i) \) is even, we get \(\psi_i(y_i) = k_i \cdot |y_i|^p + C_i \).

So, the condition \(\sum_{i=1}^n \psi(y_i) \leq c \) takes the equivalent form

\[\sum_{i=1}^n k_i \cdot |y_i|^p \leq c_0 \equiv c - \sum_{i=1}^n C_i, \] (25)

i.e., the form of the super-ellipsoid. For this super-ellipsoid to be bounded, we need to have \(p > 0 \).

To complete the proof, it is sufficient to consider the case when \(\beta = -1 \).

In this case, integration leads to \(\psi_i(y_i) = k_i \cdot \ln(|y_i|) + C_i \), so the condition \(\sum_{i=1}^n \psi(y_i) \leq c \) takes the form \(\sum_{i=1}^n k_i \cdot \ln(|y_i|) \leq c_0 \equiv c - \sum_{i=1}^n C_i \).

Exponentiating both sides, we get an equivalent inequality \(\prod_{i=1}^n |y_i|^{k_i} \leq \exp(C) \), for which the corresponding set \(S_t \) is unbounded.

So, in the bounded cases, we always have a super-ellipsoid. The result is proven.
Acknowledgments

This work was supported in part by the National Science Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721, and by an award “UTEP and Prudential Actuarial Science Academy and Pipeline Initiative” from Prudential Foundation.

References

