University of Texas at El Paso

Digital Commons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

12-2015

A Systematic Derivation of Loop Specifications
Using Patterns

Aditi Barua

University of Texas at El Paso, abarua@miners.utep.edu

Yoonsik Cheon
University of Texas at El Paso, ycheon@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep

b Part of the Programming Languages and Compilers Commons, and the Software Engineering
Commons

Comments:
Technical Report: UTEP-CS-15-90

Recommended Citation
Barua, Aditi and Cheon, Yoonsik, "A Systematic Derivation of Loop Specifications Using Patterns” (2015). Departmental Technical

Reports (CS). Paper 988.
http://digitalcommons.utep.edu/cs_techrep/988

This Article is brought to you for free and open access by the Department of Computer Science at Digital Commons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of Digital Commons@UTEP. For more information, please contact

Iweber@utep.edu.

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/988?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

A Systematic Derivation of Loop Specifications
Using Patterns

Aditi Barua and Yoonsik Cheon

TR #15-90
December 2015

Keywords: formal proof, functional program verification, intendedhétion, program specification,
specification pattern, while statement

1998 CR Categories:D.2.4 [Software EngineerirjgRequirements/Specifications — languages; D.2.4
[Software EngineerifigSoftware/Program Verification — correctness proofs, farrmethods; D.3.3
[Programming Languagédanguage Constructs and Features — control structur8st fEogics and
Meanings of ProgranjsSpecifying and Verifying and Reasoning about Programs gicloof programs,
specification techniques.

Department of Computer Science

The University of Texas at El Paso
500 West University Avenue

El Paso, Texas 79968-0518, U.S.A.

A Systematic Derivation of Loop Specifications Using Paiser

Aditi Barua' and Yoonsik Cheott'

LCenter for Institutional Evaluation, Research and Plampifihe University of Texas at El Paso, El Paso, Texas
79968-0518, U.S.A.
2Department of Computer Science, The University of TexasRa$o, El Paso, Texas 79968-0518, U.S.A.

SUMMARY

Any non-trivial program contains loop control structuresls as while, for and do statements. A formal
correctness proof of code containing loop control striegus typically performed using an induction-based
technique, and oftentimes the most challenging step ofdurctive proof is formulating a correct induction
hypothesis. An incorrectly-formulated induction hypdtisewill surely lead to a failure of the proof. In this
paper we propose a systematic approach for formulating avidgl specifications of loop control structures
for formal analysis and verification of programs. We explain approach using while loops and a functional
program verification technique in which a program is views@anathematical function from one program
state to another. The most common use of loop control siregts to iterate over a certain sequence of
values and manipulate it, one value at a time. Many loopshéxbertain common flavors or patterns,
and similarly-structured loops have similarly-structlispecifications. Our approach is to categorize and
document the common flavors or usage patterns of loop casitratures as reusable specification patterns.
One key idea of our pattern specification is to promote mdafun of individual values to the whole
sequence iterated over by a loop. Our patterns are compuaitand can be organized into a pattern
hierarchy. A catalog of loop specification patterns can be@@lgesource for systematically formulating
and deriving specifications of loops. Indeed, our case sitndigates that our patterns are applicable to a
wide range of programs from systems programming to sciertifd business applications.

KEY WORDS: formal proof, functional program verificatiomténded function, program specification,
specification pattern, while statement.

1. INTRODUCTION

In the functional program verification method, a program immed as a mathematical function
from one program state to another, and a correctness proafpobgram is done by comparing
the function implemented by the program, calle¢ade function with its specification called
an intended functiorj7, 35, 36]. For the verification, each section of code is annotatedh i
intended function. If a section of code consists of only dengtatements or control structures
such as assignment statements, conditional statemedtseguences of simple statements, its code
function can be calculated directly from the code and thenpgared with the intended function.
However, if the code contains loop statements like whileest@nts, it may be impossible to
calculate its code function directly from the code, thupitsof should be done by using a technique
based on induction. Dealing with loops is the most difficudttpof program analysis as well as
formal verification R5]. Applying a proof-by-induction technique involves fortating an induction
hypothesis and proving its truth both for basis cases andciing steps. In general, proving
the induction hypothesis can be done systematically or eeem-automatically by symbolically

*Correspondence to: Yoonsik Cheon, Department of Computien&e, The University of Texas at El Paso, El Paso,
Texas 79968-0518, U.S.A.
TEmail: ycheon@utep.edu

2 A. BARUA AND Y. CHEON

executing statements and recording their side-effects tebke called arace tableto calculate
intended functions3bs, 36]. However, finding a correct induction hypothesis of a loopg-, a
candidate or likely intended function of a while loop—is nand it is the most difficult step of an
inductive proof B5]. This is because there is no simple rule or systematic walpmfiulating a
good intended function for a loop statement, and thus progrars rely on their intuitions, insights,
skills, and experiences. Nevertheless, it is crucial toeam with a good intended function for a
loop statement, for an incorrect induction hypothesis fails an inductive proof.

One possible way to help programmers find correct or liketgrided functions for loops is to
provide them with a catalog of sample, representative l@psg with their intended functions
[4]. The samples in the catalog provide patterns of loops alwitg their intended functions
that can be matched to and instantiated for particular oenaes of loops in one’s code. If a
particular loop matches a pattern in the catalog, its intenitinction is likely to have a similar
structure as that of the matching pattern. Our approach secan the observation that many
loops exhibit certain common flavors or patterns, and sifgilstructured loops have similarly-
structured intended functions. For any pattern-basedoapprto be useful in practice, however,
the choice and the variety of patterns are crucial. Therelss a conflicting requirement for
specification patterns. A good specification pattern shbelds general as possible to be widely
applicable and usable, but at the same time it should be atfispes possible to be meaningful
in deriving an accurate, detailed intended function whepliag and instantiated. Like software
design patterns that describe reusable design solutiorectoring problems in software design
[20], our loop specification patterns also provide other beséfitallowing one (a) to capture and
document program specification knowledge, (b) to suppadeaén program specification and boost
one’s confidence in the analysis and verification of prograand (c) to provide a vocabulary for
communicating formal program specifications and proofs.

We explain our pattern-based approach for systematicaliiyidg likely loop specifications for
functional verification of programs5[. A recent study shows that, among the three main loop
control structures (for, while, and do statements) in C, Caitd Java, the most frequently used
is the for statement3[7]. However, since the for statement can be viewed as a synajar of
the while statement, we use the while statement as a repatiserioop control structure to explain
our approach. In fact, the proof rule of the for statement &pecialization of that of the while
statement 35]. We identified and documented a number of specificatiorepadtto capture the
common use of while loops, and some of the patterns are dizatians or sub-patterns of other
more general oned]. The most common use of while loops is to iterate over a sesaquence of
values and manipulate it, one value at a time. One of the leasidf our loop pattern documentation
is to promote the manipulation of individual values to theolehsequence iterated over by a loop.
For this, we also invented a conceptual framework for aniadygvhile loops systematically. The
framework consists of four different, orthogonal analydiimensions, including one for analyzing
the manipulation of individual values iterated over by agpmaking our patterns compositional.
We used the framework to identify and classify different Hbops along with their intended
functions. The documented patterns are language-nenttzi they can be applied to a wide range
of programming languages, from imperative, proceduraleges to object-oriented languages. For
example, the patterns can be matched to while loops thatétewer different implementations of
index-based collections like arrays, strings, and seqegeras well as iterator-based collections like
linked lists and pointer or reference-based collectiora ddtuctures commonly found in popular
programming languages such as C, C++, and Java. The docenneatterns have skeletal loop
code, consisting of loop conditions and bodies, as well ekl intended functions. The cataloged
pattern can be used to derive intended functions of whilpdduy first matching the loops to loop
patterns and then instantiating the corresponding sketgtnded functions. Once candidate or
likely intended functions are formulated and written, tlogrectness of the loops can be proved
rigorously or formally using the functional program ver#imon technique in which a program is
viewed as a mathematical function from one program stataathar [/, 35, 36]. We also suggest a
step-by-step process for applying the cataloged patterderive intended functions systematically

DERIVATION OF LOOP SPECIFICATIONS 3

and semi-automatically. In a case study, we applied ouepwitto source code of several open-
source projects by examining and analyzing more than 100evibops. Our findings are very
promising in that our patterns are applicable to a wide rafigeograms from systems programming
to scientific and business applications, covering 96% opsoexamined. Even though we explain
our approach using functional program verification, weéadiits key ideas be equally applicable to
other program specification and verification techniques siscHoare-style axiomatic approaches.
The rest of this paper is organized as follows. In Sectiowe provide a brief overview
of functional program verification, including the notatiér writing intended functions, formal
correctness proof of while loops, and the challenge of figdikely intended functions for while
loops. In Sectior3 we explain our approach for documenting and catalogingepattof while
loops and their intended functions. We first describe a nemceptual framework for analyzing
while loops systematically. The framework is used to idgrdand classify different loop patterns.
We then describe in detail several representative loogipettdocumented using a format similar
to that of software design patterns. In Sectiowe suggest a step-by-step process for applying our
documented patterns. We show sample applications of twaral@acumented patterns by following
the suggested process. In Sect®rmve evaluate our approach and patterns and summarize our
findings along with lessons learned. In Sectiowe mention few broadly related work, including
loop invariants, and we conclude this paper with a conclydémark in Sectiof.

2. FUNCTIONAL PROGRAM VERIFICATION

In the late 70s, Harlan Mills and his colleagues at IBM depebb an approach to software
development name@leanroom Software Engineeririg@8, 30, 33], Its name was taken from the
electronics industry, where a physical clean room existaréwent introduction of defects during
hardware fabrication, and the method reflects the same eaispba defect prevention rather
than defect removal. Special methods are used at each dtdge software development—from
requirement specification and design to implementationavoid errors. In particular, it uses
specification and verification, where verification meansvip@ mathematically that a program
agrees with its specification. Cleanroom is a lightweightsemi-formal, method and tries to
verify the correctness of a program using a technique cdlledtional program verification
[7, 35, 36]. The technique requires a minimal mathematical backgidoy viewing a program
as a mathematical function from one program state to anathetiby using equational reasoning
based on sets and functions. The specification of a progried@nintended functiomlefines this
mapping of states by describing the expected final staterimstef an initial state35]. In essence,
the functional verification involves (a) calculating thenfion computed by code calledcade
functionand (b) comparing it with the intention of the code also writas a function, an intended
function. For this, the behavior of each section of code mudrented, as well as the behavior of the
whole program. The documented behavior is the specific&iarich the correctness of a program
is verified.

2.1. Programs As Functions

An execution of a program produces a side-effect on a progtata by changing the values of some
state variables such as program variables. In functiomagram verification, a program execution is

modeled as a mathematical function from one program staadther, where a program state is a
mapping from state variables to their values. For examplesicler the following code snippet that

swaps the values of two variablesandy.

X=X+Y;
y=X-Y;
X=X-Y,;

Its execution can be modeled as a mathematical function ghagn a program state, produces
a new state in which: andy are mapped to the initial values gfand x, respectively. The rest

4 A. BARUA AND Y. CHEON

of the state variables, if any, are mapped to their initidlieg; their values remain the same. This
is a more direct way of describing computations than therases used in Hoare-style axiomatic
verification, which state facts about values of variables.

A succinct notation, called eoncurrent assignmenis used to express these functions by only
stating changes in an input staB 35, 36]. A concurrent assignmentis written@s, xo, ..., z, :=
e1,es,...,e,] and states that eaely’'s new value is:;, evaluated concurrently in the initial state, i.e.,
the input state or the state just before executing the cdaeva&lue of a state variable that doesn'’t
appear in the left-hand side of a concurrent assignmentinsrttze same. For example, the function
that swaps two variables, andy, is written asz, y := y, «]. The concurrent assignment notation
can be used to express both the actual function computeddsstiars of code, a code function, and
one’s intention for the code, an intended function.

2.2. Correctness Verification

The verification method is quite different than the methodiwibmatic verification. It is based

on functional semantics and on the reduction of softwaréfigation to ordinary mathematical

reasoning about sets and functions as directly as pos3ib&correctness of code is verified by
comparing its code function to its intended function; vedfion means showing that the code
function computes the result predicted by the intendedtfoncA program, or a section of code,
with an intended functiorf is correct if it has a code functignsuch that:

e The domain of is a superset of the domain ¢f i.e., donfp) 2 dom(f). The program may
accept more values than what its specification says.

e For everyz in the domain off, p mapsz to the same value thgt maps to, i.e.p(z) =
f(z) for z € dom(f). For each value allowed by its specification, the progranukhproduce
the same value as stated in the specification

It is also said thap is arefinementof f, denoted byp C f. For correctness verification, an
intended function is written for each section of the code ¢ovbrified. For example, Listing
show an annotated code snippet that counts the number dieogilues contained in an array. An
indentation is used to indicate the region of code that aanuhtd function annotates. For example,
the intended functiorf, in line 1 describes the behavior of the whole code and sthtgghie final
value ofr is the number of positive values contained in the arrayhe intended functiong, and
f2inlines 2 and 6 specify the sections of code in lines 3—4 arid 7respectively. Irys, the word
anythingindicates that one doesn’t care about the final value of thp l@riablei. In this paper
we write intended functions semi-formally using Java egpiens and well-known mathematical
notations likeX. There is also a formal specification language for writingived functionsd].

Once each section of code is annotated with its intendediumdts correctness can be proved by
comparing its code function and intended function. A praaf be done in a modular way by using
the intended functions of lower level code in the proof oft@glevel code. For example, in order to
prove the correctness of the code shown above, one needsvi® (a)) the function composition of
f1 andfs is correct with respect tg, and (b) bothf; andf; are correctly implemented or refined by
their code. If a section of code consists of only assignmertguences, and branches, its correctness
proof is often straightforward, for its code function candaéculated directly from the code using
tools such agrace tabledacilitating symbolic execution of statements and funasid5, 36]. For
example, the code function for lines 3—4 is exactly the sasritssantended functionf;. However, a
correctness proof of a loop such as a while loop is generadiernmvolved because there is no direct
way of calculate its code function. It is done by using a p#ogfinduction technique3b, 36]. For
example, the correctness of code in lines 7—15 with respéts intended functiorf, requires three
sub-proofs: (a) termination of the loop, (b) a basis stepipgthat when the loop condition doesn’t
hold, an identity function (i.e., no state change) is cdrmith respect tof,, and (c) an induction
step proving that when the loop condition holds, functiomposition of 5 (intended function of
the loop body) and;, is correct with respect tg,. The basis and induction steps are for when the
loop makes no iteration and one or more iterations, respEgtiTherefore, verification of the above
code requires discharging the following four proof obligas.

DERIVATION OF LOOP SPECIFICATIONS 5

Listing 1. Code annotated with intended functions

1 M for[ri=Yj=0.a.1engtn—1(@[[] > 072 1:0)]
2 I fi:]r,1:=0,0]

3 r=0;

4 inti=0;

5

6 M forlr,i:=r+X;= aiengtn—1(@f] > 072 1:0), anything]
7 while (i < a.length)

8 I fs: [ri:=alil>02r+21:r, i+1]
9 r=all>02r+1:r]

10 if (afi] > k)

11 Ir:=r+1]

12 r++;

13 Ii=i+1]

14 i++;

15}

1. f1; f2 C fo, i.e., a proof thatf; followed by f; is a refinement off,, where the symbol;"
denotes the forward function composition.

2. Refinement of, i.e., correctness of;’s code.

3. Refinement of,, which requires the following three sub-proofs.

(a) Termination of the loop
(b) Basis step=(i < a.length) = I C f,, wherel denotes an identity function.
(c) Induction stepi < a.length = f3; fo C fao

4. Refinement offs, i.e., correctness of the loop body

Below we prove the correctness of the while loop by dischmaygs three proof obligations listed
above.

1. Termination of the loopThe intended function of loop bodys) state that is incremented by
1 on each iteration of the loop, and thuill eventually become equal ta.length at which
time the loop terminates. That ia,length - iis aloop variantwhose value is decreased on
each iteration of the loop, thereby ensuring its termimatio

2. Basis step—(i < a.length) = I C f,, where[is an identity function. If we assume(i <
a.length), we have the following.

fo = [ri=r+%mi aiength—1(alj] > 07 1:0), anything]
= [r,i:=r,anything] (. i > a.length)
3J [ryi:=r1]
= I

Therefore~(i < a.length) = I C fs.
3. Induction stepi < a.length = f3; fo C fo.

35 f2 yi=alll >0?7r+1:ri+1];

=1+ Xj=i alength—1(a[j] > 07 1:0),anything]

=(ali] >0?r+1:7)+ Xj=it1.alength—1(alj] > 07?1 :0), anything]

=7+ (afi] >071:0)4+ Xjmit1. alength—1(alj] > 07?1:0), anything]
(

L =71+ Xjmi alength—1(alj] > 07?7 1:0), anything]

NS

|
uﬁ.
i

=% X ==
-~

6 A. BARUA AND Y. CHEON

Thereforej < a.length = f3; fo C fo.

In functional program verification, a proof is often straiginward because one can calculate code
functions and compare them against intended functionbofitjh one needs to use such techniques
as case analysis and induction depending on the controtstas used as shown above in the proof
of a while loop, carrying out a proof itself is essentiallgttame as that of a block of sequential
statements. As shown above, unlike an axiomatic approashtibnal verification supports forward
reasoning, which is intuitive and natural in that it matchies way programmers reason about the
correctness of programs informally.

2.3. Intended Functions of While Loops

In order to apply functional programming verification etigely, it is crucial to formulate a correct
intended function for the section of code to be verified. # thtended function itself is incorrect,
the proof will fail even if the code is indeed correct. Thisparticularly true for proofs of loop
control structures such as while statements, as their praref done inductively and their intended
functions become induction hypotheses (see Se@i@n An inductive proof will fail with an
incorrect induction hypothesis.

However, formulating and writing a candidate or likely intked function for a while loop is
challenging. It is often the hardest part of formal prograsnification. There is no simple rule to
calculate it nor a systematic way of doing it. One difficuliythat a loop typically computes a more
general function than needed for a given te3k Section 4]. A while loop is seldom used by itself
in isolation but is preceded by an initialization, which étlger with the loop computes something
useful. For example, the while loop in lines 7-15 of Listthdoesn’t count the number of positive
values contained in the whole array It performs a more general function, counting the number
of positive values i starting from the index. When the loop variable is set to 0, however, it
does count the whole array. In a sense, a loop in isolatioardiogo a computation but completes it.
An initialization, e.g., setting to 0, determines where the computation starts. An intendlection
of a while loop should be written in such a way that it captutescompletion of a computation
regardless of where the computation starts. It should berr@atogeneralization of the intended
function for the code containing both the initializatiordathe loop, and at the same time it should
be specific enough to capture the accurate result of the ciarnqu

Formulating an intended function of a while loop requires@pammer’s insight, practice, skill,
and experience. The challenge of finding a likely intendettfion of a while loop is similar to
that of finding a likely loop invariant in an axiomatic appecbaA loop invariantis a property that
holds before and after each repetition of a loop and is eisgdat understanding the effect of a
loop and proving its propertie2®]. A loop invariant should be general enough to hold duringhea
iteration of the loop and specific enough to lead to a postitiondvhen the loop terminates. Many
researchers have studied the problem of finding loop intiand proposed various static and
dynamic techniques (see Secti®n

3. WHILE LOOP PATTERNS

One way to figure out a likely intended function of a while loigpto look at other loops that
have similar structures3p, Section 4.4]. If two loops have similar code structuresjrtintended
functions are likely to have similar structures as well. & wnow the intended function of one
loop, we may be able to adapt it to derive that of the otherid&ss many intended functions of
loop control structures exhibit certain common flavors a@reloteristics. To capitalize on this idea,
we can develop reusable patterns of while loops along witlr ihtended functions that can be
used as a valuable resource for formulating a candidat&kelylintended function of a loop. As
mentioned earlier, for the patterns to be useful in practice choice and the variety of patterns
are crucial. We need to identify and accumulate a number od gatterns to cover a wide range of
loops in different types of applications. A good specificafpattern should be as general as possible
to be widely applicable and usable, but at the same time itldhoe as specific as possible to be

DERIVATION OF LOOP SPECIFICATIONS 7

meaningful in deriving an accurate, detailed intended fionc In any pattern-based approach, it
is crucial to properly document patterrZJ]. Each pattern should be documented in such a way
that it is easy to determine its applicability, to instatgid in an application, and to derive a useful
intended function from it. Furthermore, patterns need tolassified, organized, and presented in a
pattern catalog such that they can be easily looked up anchexfor. In this section we describe
how we address these requirements and explain severasegpadve patterns that we documented
in our pattern catalog. Below we first describe a techniqa¢ We used to analyze while loops
systematically to identify recurring patterns.

3.1. Loop Analysis

The most common use of loops is to iterate over a certain seguef values and manipulate it,
one value at a time. For example, a study indicates that 60&op& written in C traverse arrays in
some fashion—45.2% for non-string arrays and 14.3% fongtairrays—and linked lists account
for 13.0% R5]. A loop has a chain of steps that are performed and then teghe@here are four
different types of steps or actions in the chain. The nexievéd obtained from the sequence being
iterated over, the obtained value is manipulated, and thepukation result is stored. A termination
condition is checked to determine repetition of the stdpsse steps are repeated unless (or until) a
certain termination condition holds. This observationiles an excellent conceptual framework
for analyzing loops systematicallgxamine each of these steps or actions separately and then
combine the result&ach step or action becomes a different, orthogonal dirmarisr analyzing a
loop. Thatis, aloop can be examined along the following thfferent analysis dimensions: (a) how

it acquires the values to manipulate, (b) what manipulatiperforms on the acquired values, (c)
where the manipulation result is stored, and (d) when itsitspteration. As an example, consider
the following while loop taken from the sample code presgémeSection2.2.

1 while (i < a.length){
2 if (@il > k)
3 r=r+1;
4 it
5}

The sequence iterated over by the loop is the elements ofthg@astarting from index to the
end in order, i.e.q[i..a.length — 1], and it is used as follows.

e Acquiring values: An index:] is used to access elements:idf:[¢] in line 2) and each element
is accessed in ordei+ in line 4).

e Manipulating values: if the current value is positive, cartg- + 1 (lines 2-3).

e Storing results: If the current value is positive, the mafation result is stored in a scalar
variabler (line 2). Assuming that is anincidental variableused only for iterating over the
sequence, there is only one non-local variable that may dated or changed.

e Determining termination: The loop terminates when thedéstent is accessed (line 1), i.e.,
when it completes iteration over all elementsicdtarting from index.

We applied this analysis framework to study a large numbertolie loops from several different
sources including a few well-known open-source projeae Sectiorb) and to identify common
patterns of while loops and their intended functions. Treamiework is also recommended for
analyzing a while loop to find a matching pattern in our pattatalog (see Sectiaf). We learned
that there is a wide range of possibilities along the foultymisdimensions, including several most
commonly-used ones described in Figlir& he acquisition dimension tells how the loop acquires
the next value of the sequence being iterated over. As shoy25], the sequence is frequently
stored explicitly in such structures as arrays, stringections, streams, and files, and its elements
are accessed by using indices or various forms of iterdtdssalso possible to create the elements
on-the-fly on a need basis instead of retrieving stored drfesmanipulation dimension determines
the functionality of a loop by telling how the acquired vadusge manipulated or what operations are

8 A. BARUA AND Y. CHEON

Manipulation
accumulating

| 2
. Input collection
\ searching /

indexed selecting
iterated global scalar

AN collecting all certain certain
created # of elements element condition
iterations accessed accessed met _| Termination

Figure 1. Dimensions of loop analysis

global collection

performed on them. It is often the most important analysisesfision, for it represents the purpose
of aloop. As expected, there are numerous manipulatiorsigesincluding several common types
such as accumulating, searching, counting, selecting,calidcting (see Section3.3-3.6). The
storing dimension tells where and how the results are stditeele are also a variety of possibilities
here, e.g., updating the input sequence and storing to bugpiables distinct from that of the
input sequence. For accumulation and searching, the ses@ltstored in scalar variables while for
selecting and collecting, they are stored in vector or ctit@ variables. The termination dimension
specifies the termination condition of a loop—a conditioat thtops the looping. It is the opposite
of the test condition that allows the loop to continue logpiA loop termination condition can
differ in many ways, e.g., when all elements are accessednwehcertain element is accessed,
and when a certain number of iterations has been completesl cdnditions may be written in
terms of indices, iterators, values of the input sequencé,athers. The four dimensions allow
one to analyze a loop in a modular, compositional fashiondayreéning each dimension separately
and composing the results. For example, the above whileibapomposition of an index-based
sequential acquisition, a counting manipulation, a scaléable storage or update, and termination
upon accessing all elements.

3.2. Pattern Documentation

We examined a large number of while loops from several dgiffesources including programming
textbooks, class assignments, our research projects, p@ksource projects. We applied the
framework and technique described above to study, groujglassify them, and from this study we
identified a number of while loop patterns that are most comiynosed and we documented them
in a pattern catalogd]. Some patterns are specializations or sub-patterns @i attore general
ones. The documented patterns are language-neutral iththatan be applied to a wide range of
programming languages, from imperative, procedural laggs to object-oriented languages. The
patterns can be matched to while loops that iterate ovegrdift implementations of index-based
collections such as arrays, strings, and sequences assieiaor-based collections such as linked
list and pointer or reference-based collection data sirest commonly found in programming
languages such as C, C++, and Java.

One interesting decision was documenting a pattern bas#tedsehavior of a loop body, not its
source code structure or implementation. This makes arpatta only language neutral but also
its application modular in that it can handle nested loop&rsyfiguring out the intended function
of the inner loops. As shown below, each pattern consistsvofdtructural elements: a skeletal
intended function ;) from which a candidate or likely intended function of a niag) while loop
can be derived and an intended function of the loop bgdy (

[f1]
while (E) {

[f2]
}...

DERIVATION OF LOOP SPECIFICATIONS 9

Table I. Main patterns documented

Name Description

Accumulating Combine certain elements of a collection into a single value
Unconditionally Accumulating Accumulate all elements of a collection

Searching Find a certain element of a collection

Selecting Filter certain elements of a collection

Unconditionally Selecting Select all elements of a collection

Collecting Select and map certain elements of a collection
Unconditionally Collecting Collect all elements of a collection

The intended functiorf;, captures the behavior of the whole loop in termgpthat specifies the
behavior of the loop body. As mentioned earlier, the loopybischot given in skeletal code but is
abstracted to an intended function so that any code segimntdrrectly implements the intended
function can be matched to the pattern.

We documented our patterns using a format similar to thadifvsre design pattern&(]. Each
pattern has a name, purpose, description, structure, dgaagplication, variations, and related
patterns. Each pattern has a name to uniquely identify &nTts main purpose is described briefly,
including the kind of while loops that can be matched to thégpa. The description section provides
more detailed information about the pattern including kslstal intended function. For example,
it provides descriptions of main elements of skeletal ideghfunction such as result variables and
the sequence being iterated over by the loop, and explaihstail the structure of the pattern. The
application section suggests a general process for agptiie described pattern. It also shows a
sample application of the pattern to illustrate in a stepst®p fashion how the pattern can be used.
The variations and related patterns section lists vanatjpossible for the described pattern, and
some of the variations are named and catalogued separatediated patterns.

In our pattern catalog we used the manipulation dimensigheprimary dimension for naming
patterns, for it shows the purposes of loops—i.e., the hiehaf loops. We documented seven
major patterns along with numerous variations (see TBl4. As can be guessed from the table,
some patterns are specializations of others (see SexfihrThe reason that we documented them
as separate patterns is because they have appeared fredquéhé code that we studied. In the
following subsections we describe several representpttterns in detail.

3.3. Accumulating Pattern

One common use of while loops is to combine certain elemeh& collection into a single
value by applying various binary operators such as additraritiplication, and concatenation. The
Accumulating pattern provides a skeleton intended funchiw these while loops. The type of the
accumulated value is often the same as that of the elemetits obllection being accumulated.

3.3.1. NotationA while loop that matches the Accumulating pattern iteratesr a collection of
values, regardless of whether the values are read from ttatdwes or generated on the fly. As
described in Sectiof.1, there are many different ways of storing and accessingdhection to be
iterated over by a loop. To specify a pattern in a languaggrakand representation-independent
way, we need to abstract away from these specific implementdetails. Since its elements are
accessed in a certain order by a loop, the collection candweed logically as a sequence and its
elements can be denoted by specifying their positions irséiggience. The specifics of accessing
elements are also abstracted to an abstract iterator. Hededghe sequence and its iterator can
be defined formally as model variabled.[Below we use the following notation to express and
manipulate the collection being iterated over by a loop.

e (): an empty sequence

10 A. BARUA AND Y. CHEON

e ¢ s: concatenation of an elemenaind a sequence

e i: an abstraction of an iterator to access a sequence

e [(i): an expression written in terms of the abstract iterattirrepresents an advancement of
the iteratori; to the next element, e.g.;+ 1 for an index-based collection like an array and
i.next() for an iterator-based collection.

e s@i: i-th element of a sequensewherei is an abstract iterator for.

3.3.2. PatternAs mentioned earlier, a pattern is specified by a pair of uéenfunctions, one
for the loop body and the other for the whole loop. The Accuating pattern is specified by
referring to four different values or elemenisyepresenting the accumulated valdedenoting
the collection whose elements are accumulaté@noting an abstract iterator ferand< denoting
an accumulation operator.

fii[r, i :=3(r, sQ4..), anything]
while (C) {
}fg: [r,i:= P(sQi) ? (ros@i):r, E(i)]

Let's first examine the intended function of the loop bodg)(The loop body may change two
state variables; andi. The variabler stores the accumulated value, and an abstraction of the
iterator to access the elementssofrhe new value of is defined by using a conditional expression
of the formFE; ? E : E3, denoting eitheF, or E3 depending on the value of a Boolean expression
E1. The value of- is defined in terms of the following expression and operator.

e P(x): a predicate defined on the elements of the sequenttespecifies the criterion for
selecting the elements to be accumulated and is a functioimeo$ignaturel” — Boolean,
where T is the element type of. For each element of s, it tells whetherz is to be
accumulated.

e o: a binary operator of the signatufex T — T, whereT is the element type of'. It's an
accumulation operator such as addition, multiplicatiord atring concatenation to combine
the elements of.

The intended function states that the current element cfelqeence (i.e., s@Qi) is accumulated
in r using the accumulation operatej Enly if it satisfies the selection criterio®(s@3)). The new
value ofi is E(i), denoting an advancement of the iterattw the next element of.

Let’s next look at the intended function of the whole logp)(It is defined by promoting the
accumulation operaton) to the whole sequence denoted by. The final value of- is defined in
terms of the following expression and operator.

e s@ji..; a subsequence ofstarting ati, consisting of elements selected using the advancement
expressionE(i). It is a sequence consisting of element®i, sQFE(i), sQFE(E(i)),
sQFE(FE(E(i))), etc, and denotes the elementssahat are accessed by the loop. The last
element is determined by the loop termination conditignf the condition fails at the first
iteration, the sequence is empty. The sequence is definecsiesy.

Qi & s@Qi + s@QFE(i).. if < denotes a valid position af
SR () otherwise

Remember that) denotes an empty sequence &mdenotes concatenation of an element and
a sequence.

e 3. a promotion of a binary operatar to a sequence. It is a function of the signature
T x Seq(T) — T, where T is the argument and result typecofind Seq(T) is a sequence

TThe most general signature of an accumulatdz is 7' — R, whereR is the result (accumulated value) type, allowing
the accumulated value to be of different type (see Se&idr).

DERIVATION OF LOOP SPECIFICATIONS 11

of T. It accumulates the elements of a given sequence and a gieenvalue using a binary
operator, and is defined recursively as follows.

(v, () £ v
S(w,h+1t) 2 P(h)?3(voh,t): 3(v,t)

If the given sequence is empty, it returns the seed valubeléequence is not empty and the
first elementf) satisfies the selection criterioR), the seed value § and the first elementj
are combined using the accumulation operatprafd the function is recursively applied to
the rest of the sequence. If the first element doesn't satigfgelection criterion, it is ignored
and the function is recursively applied to the rest of thausege.

The intended function states that the final value-a$ (r, s@i..), accumulation, using the
operator, of those elements oft positionsi, E(i), E(E(i)), and so on that satisfy the selection
criterion P.

3.3.3. ExampleThe while loop below adds all positive elements of an adratarting atindex and
stores the result teum. In Section4.1, it will be shown how its intended function can be derived
by applying the Accumulating pattern.

I [sum, i:=sum +3,=; q.1ength—1 (@fj] > 0 ? a[j] : 0), anything]
while (i < a.length){
/[[sum,i :=a[i]>07?al]:0,i+1]

if (afi] > 0){
sum =sum + a[if;
i}++;

}

3.3.4. Variations and Related Patteri$ere is a huge number of variations possible for the
Accumulating pattern. Each axis of the four-dimensionaplanalysis described in Sectidril can
produce many variations, e.g., indexing vs. iterator fergbquisition dimension. Below we describe
several noticeable variations that are not mentioned inléseription of the four-dimensional loop
analysis in Sectiof8. L

e Selection: The intended function of the loop body has a géfem of [r, i := P(e) ? (r o ¢)

. r, E(1)]. One possible variation is the case where the condiftas always true; there is
no constraint and thus all elements are accumulated. Inifamtcurs so frequently that we
defined it as a separate pattern named Unconditionally Aatating [4]. Another possible
variation is the case where the conditifnis written in terms of the iterator itself, not the
current element. An example is to accumulate every othemeé of a collectionP (i) = i %
2==0.

e Accumulator: An accumulation operator is a binary operatmh as addition, multiplication,
and string concatenation. Often, its two arguments are @fsme type, meaning that the
accumulated value is of the same type as the element typeeo$dgfuence. In general,
however, an accumulator can be of the signatiret T'— R, where R is the result
(accumulated value) type arid is the element type. It is also possible to have more than
one accumulator, e.g., accumulating elements differefgfyending on certain conditions.

e Manipulation: The elements of a sequence are often tramsfdror manipulated prior to
accumulation. To incorporate this into the pattern, therided function of the loop body
can be refined to:r] i := P(e) ? (roMf(e)) : r, E(i)]. An elemente is first transformed
by applying a functionM: T — S, that maps an element to another value, and then the
accumulator: R x S — R combines the transformed value. An example is to countigesit
values contained in an array, in which cages a constant function that always returns 1.

12 A. BARUA AND Y. CHEON

e Acquisition: Beside various ways of acquiring elementsdbsd in Sectior8.1, a loop can
accumulate elements of more than one sequence using eitfingla iterator or multiple
iterators. An example is to accumulate elements of two idiffearrays using a single iterator,
e.g., I, i :=r +ali] +b[¢], i + 1] or using two iterators, e.g.s[7, j :=r +a[i] + bj],i + 1,5
+1].

e Storage: It is possible for a loop to produce more than oneraatated value; it can have
multiple result variables. An example is to sum all positkdues as well as all negative
values of an array; the loop body will have an intended fuomctf the form pos, neg, i :=
pos + (afi] > 0 ?a[i] : 0), neg + (ai] < 0 ?a[i] : 0),4 + 1].

3.4. Searching Pattern

A while loop is frequently used to find an element in a collectie.g., a largest value of an array.
This pattern provides a skeleton intended function forehehkile loops that search for a particular
element in a collection. The result of such a loop is typicétle element found, however other
results are possible, e.g., the position or index of the efefound and a flag indicating whether an
elementis found or not. As in the Accumulating pattern, titended function of the loop is defined
by promoting the function of the loop body to a sequence.

fii[r, i :=3(r, sQi..), anything]
while (C) {
farlr,i = P(r,s@Qi) ? M (sQi) : 7, E(i)]

}

As specified infs, the loop body may change two state variablemydi. The variable- stores the
search result, and as explained previoussyan abstraction of the iterator to access the elements of
the sequence. The new value of is defined in terms of a predicateand a function\/.

e P(r,e): a predicate defined on a pair of the result value and an eleofi¢ine sequence. It
specifies the search criterion for elements contained and is a function of the signature
R x T — Boolean, whereR andT are the result type and the element type,akspectively.

e M (e): a manipulation function of the signatufe— R, whereT is the element type anf is
the result type, that transforms or maps an element to thdtrésequently it is an identity
function. However, the result value doesn’t have to be tieeneht found; it can be a flag
indicating the presence of an element in the sequence, vehichbe modeled by a constant
function M that always returns true. Another common use of the maripualéunction is to
obtain only a certain part of a composite value, e.g., ordgyrthme of an employee.

The new value of is the current element &f (s@¢) transformed by\/ (M (s@Qi)) if the current
element satisfies the search criterid?(«, s@i)); otherwise; remains the same. The new value of
1is E(i), denoting an advancement of the iterattw the next element.

As in the Accumulating pattern, the intended function of thieole loop (f1) is defined by
promoting the function of the loop body to the whole sequeiBecifically, the manipulation
function M is promoted to a sequence, denotedpg function of the signatur® x Seq(T) — R,
whereR is the result typeT is the element type of the sequencandSeq(T) is a sequence of type
T. It calculates the result from a given sequence using thepukation functionM and is defined
recursively.

8(r,() £

S(r,h b+ t) 2 P(r,h) ? 3(M(h),t) : 3(r,t)

If the given sequence is empty, it returns the given resiiltev). If the sequence is not empty and
the first element/) and the given result value satisfies the search critednthe first element
is transformed using/ and the function is recursively applied to the rest of theusege. If the
first element doesn’t satisfy the search criterion, it iiggd and the function is recursively applied

DERIVATION OF LOOP SPECIFICATIONS 13

to the rest of the sequence. In summary, the intended fung¢tistates that the final value ofis
3(r,s@i..), a transformed value of the elementssadit positionsi, E(i), E(E(i)), and so on that
satisfy the search criterioR.

An example loop that matches the Searching pattern is shedawblt finds a maximum value
of an arraya starting at index and stores it inr.

/[[r, i := max(r, a, i), anything]
Il wheremax(r, a,)2 i > a.length— 1 ? r :max(max(r, a[i]), a, i+1)
while (i < a.length){

[r,i :=afi] >r?a[i]:r,i+1]

if (afi] >r){
r=al;

}

i++;

}

There are many variations possible for the Searching pattarfact, most of the variations
mentioned for the Accumulating patterns are also apple&abl the Searching patterns, e.g.,
unconditional selection, various manipulations, mudtiphcquisitions, and multiple results.
However, most interesting variations of the Searchinggpatire about the termination of the search.
When searching an elementin a collection, there are sadiffiexient ways of terminating the search,
e.g., terminating as soon as an element is found or congrtoithe last element of the collection.
The first case is for finding the first occurrence of a matchiament and the second for finding the
last occurrence. In the pattern specification, this is sama¢wnplicitly modeled by the sequence
“s@i..". If needed, however, we can model the termination choigieiXly. For example, the first
case can be modeled by the following definitiorsof

S(e,h = t) = P(e,h) ? M(h) : 3(e, t)

3.5. Selecting Pattern

This pattern provides a skeleton intended function for¢hwehile loops that select some elements
of a collection and store the selected elements in the saraalifierent collection (see Figui®.
The element type of the result collection is the same as fttheanput collection.

in | Vg v1|v2|v3|v4|v5|v6|v7|v8|vg‘

if P(v)
otherwise

y
o (vl vofwefw| | [[[|
j

Figure 2. Selecting pattern

3.5.1. NotationThe sequence notation introduced earlier is extended toifgpthe Selecting
pattern. A collection iterated by a loop is viewed logically a sequence, and a sequence is how
modeled as a partial function from indices to elements. kKan®le, a string sequenseonsisting

of two elements, say “Hello” and “World”, is now viewed as artpa function from integers to
strings,(0 — “Hello”, 1 — “World”). We use the following notation to express and manipulate a
sequence as a partial function.

e s@i: i-th element of a sequenee wherei an abstract iterator fog denoting an index; it's
short fors(z).

14 A. BARUA AND Y. CHEON

e sQJ: a subsequence of a sequengeconsisting of elements at positions specified by an
ordered index sef. It is a sequence consisting of elements projected by thexiset/,
e.g.,(0 — 10,1 — 20,2 + 30)@{0,2} = (0 ~ 10,2 > 30)

e dom: domain of a sequence, e.dgm (0 — 10,1 — 20) = {0,1}. The result is an ordered
set.

e ran: range of a sequence, e.gan (0 — 10,1 — 20) = {10,20}. The result is an ordered
bag.

e : function overriding. The expressigh W f» maps everything in the domain ¢f the same
value asf, does, and everything else in the domainfpfto the same value ag does,
e.g., (01— 10,1+ 20) W (1 > 30,2 > 40) = (0 > 10,1 > 30,2 — 40). If the domains of
two functions are disjoint, it is the union of the two funct®

3.5.2. PatternThe pattern is specified by referring to the input and theltesliections ¢» and

out) along with their iteratorsi(and j) and the criterion for selecting elementB)((see below).
The iterators are used to access and store the elementdagftionls. The variablén denotes the
collection whose elements are to be selected. Since itseglsnare accessed in a certain order in
a loop, it is viewed logically as a sequence, and its elemametglenoted by their positions in the
sequence. For this, an abstract variablean abstraction of the iterator to access the elements of the
collection—is introduced, and the notationQ; is used to denote thieth element of the sequence
in. Similarly variablesut andj are used to denote the result sequence and its iteratogctesgy.

f1:[out@D, 4, j := R, anything, anything]
whereD and R are domain and range &fin, out, i, j, ())
while (C) {
fai [out@jy, i, j := P(in@i) ?inQi : out@Qj, E1(7), P(in@i) ? Es(j) : 4]

}

The intended function of the loop body,] states that the loop body may change three state
variablesput, i andj. The variableout contains the selected elements, aathd; are abstractions
of the iterators to access the elementgoéndout. P is a predicate defined on the elements of the
sequencen. It's a function of the signaturé — Boolean, whereT is the element type af., and
specifies the selection criterion.®f(z) is true for an element of in, 2 should be selected. The new
value ofout@j is the current element af. (i.e., in@1) if the current element satisfies the selection
criterion (P(in@1)); otherwise, it's the same as the old value. The iterat@isd j advance to the
next elements, however, fgronly if sQi is selected. Operationally, the intended function states
that if the element inn at positioni satisfies the conditio®, it will be stored inout at positiony;
otherwise, the element of;t at position; remains the same.

Now let's examine the intended function of the whole logp)(The loop selects the elements
of in that satisfy the selection conditid? and stores the selected elementsin. The intended
function f; specifies this behavior by promoting the selection andrggouf individual elements to
the whole sequences, as denoted®biRemember that the notatient@D denotes a subsequence
of out indexed by an ordered index sBt whereD is the domain of. The function determines
the elements (ofn) to be selected along with their new indices ¢it). It is defined by promoting
the intended function of the loop body specified at the eld@rewel to a sequence and is defined
recursively as follows.

S(in,out,i,j,r) =

T if =C(in, out, i, j)
3(in, out, E1(i), E3(j),r W (j — in@3d)) if C(in,out,i,j) A P(inQi)
3(in,out, E1(i), j,r) otherwise

The last argument] is an accumulator storing the index-value pairs of thecsetbelements. The
conditionC is the loop termination condition and may be written in tewhsn, out, : andj. The
three cases represent (1) when all iterations are compl@pdhen the current element is selected

DERIVATION OF LOOP SPECIFICATIONS 15

as it satisfies the selection criterion, and (3) when theeciirelement is not selected as it doesn't
satisfy the selection criterion. The symbol denotes function overloading. With this definition,
3(in, out, 1, j, ()) denotes the selected elements as a partial function froiceatb values.

3.5.3. ExampleThe while loop below copies all positive elements of an arrayarting at index
to b starting at indey.

I [b[j..j+n—1], i,] := J[i..a.length-1], anything, anything]
x where n is the number of positive values in array a startingdex i and & is defined below.

« 3(() £ 0
¥ S(hEt)=h>0?hE3(t):3(t)
while (i < a.length){
/b[),i,j:=ai] >0? afi]:b[],i+1, ali]>0?j+1 : |]
if (afi] >0){
b[j] = afil;
j++
)
i++;

}

3.5.4. Variations and Related Patterhske previous two patterns there are many variations
possible for the Selecting pattern. Most of the variatioesitioned for the Accumulating pattern are
also applicable to this pattern, including various maragohs, multiple acquisitions and multiple
results. Below we describe several noticeable variatigpecific to the Selecting pattern.

e Selection: The intended function of the Selecting patt@sdgeneral form dbut@j, i, j :=
P(in@i) ? inQi : out@Qy, F4 (i), Eo(j,in@7)], and one variation is the case where the
selection condition” is always true; that is, all elements are selected. Sincedurs so
frequently we documented it as a separate pattern namedditicmally Selecting4].

e Transformation: The selected elements may be transformfededthey are collected. In fact,
it is so common that it was documented and cataloged as aasepattern named Collecting
pattern (see SectioB.6). The Selecting pattern is a specialization of the Coltecfattern
where the transformation is an identity function.

e Storage: Instead of storing the selected elements to anotliection, it is possible to store
them to the input collection, e.g., shifting elemelats — 1], := a[i], i + 1].

3.6. Collecting Pattern

A while loop is often used to collect certain elements of demion. It picks elements that satisfy
a certain condition, transform them, and stores the resuttee same or a different collection. The
Collecting pattern captures this use of while loops. It ieaeyalization of the Selecting pattern (see
Section3.5), and the element type of the result collection may be difiefrom that of the input
collection.

3.6.1. PatternAs in the Selecting pattern, the intended function of thelsodefined by referring
to the input and the result collections: (andout) along with their iteratorsi(andj), the element
selection criterion P), and the function to transform the selected elemenfs. (In fact, the
specification of this pattern is almost identical to thatef Selecting pattern, and the only difference
is the introduction of a transformation function denoted\iby

fi:[out@D, 4, j := R, anything, anything]
whereD andR are domain and range &fin, out, i, j, ())
while (C) {
fa: [out@jy, i, j = P(in@i) ? M (in@i) : out@Qj, Ei), P(in@i) ? Ea(j) : j]

16 A. BARUA AND Y. CHEON

The intended function of the loop body,] states that the loop body may change three state
variablesput, : andj. The variableout contains the collected elements, arahd; are abstractions
of the iterators to access the elementgoéndout. P is a predicate defined on the elements of the
sequencen. It's a function of the signaturé@ — Boolean, whereT is the element type af:, and
specifies the selection criterion. H(x) is true for an element of in, 2 should be collected\/ is
a function defined on the elements of the sequénaeith a signaturel” — R, whereT andR are
the element type ofn andout, respectively, It maps or transforms the selected elentemisssibly
different values. The new value ofit@j is the current element @f. (i.e., in@7) transformed using
M if the current element satisfies the selection criteriBi(@:)); otherwise, it's the same as the
old value. The iteratorsand; advance to the next elements, however,jfonly if sQs is collected.
Operationally, the intended function states that if thenept inin at position satisfies the condition
P, it will be stored inout at position; after transformed using/; otherwise, the element of:t at
position; remains the same.

As expected, the intended function of the whole logp (s defined by promoting the selection,
transformation and storing of individual elements to theolehsequences, as denoteddyThe
functiond gives the transformed values of the elements{(dfto be collected along with their new
indices (inout), and its definition is identical to that of the Selectingtpat except for the use of a
transformation functiod/.

3(in,out,i, j,r) =

r if =C(in,out,i,j)
3(in,out, E1(i), E2(j),r W (j — M (inQ7))) if C(in,out,i,j) A P(inQi)
3(in,out, E1(i), j,r) otherwise

With the above definitiong(in, out, i, j, ()) denotes the collected elements as a partial function
from indices to values, whose range)(becomes the new value ofit@QD.

3.6.2. ExampleThe while loop below collects all positive elements of aragur starting at index
1 by multiplying 2 to them and storing the results in an artagtarting at index. In Section4.2
we will show how the intended function of a similar loop candegived by applying the Collecting
pattern.

[* [b[j..j+n—1], i,] := J[i..a.length-1], anything, anything]
x where n is the number of positive values in array a startingdex i ands is defined below.

« 3(()) =)
x S(hEt)=h>0?h*2F3(t):3(t)
while (i < a.length){
B[, j:=af] >07? afi]«2:b[j],i+1, ali]>0?j+1 :]]
if (@fi] >0){
b[j] = a[i] = 2;
jt+;
;
i++;

}

3.6.3. Variations and Related Patterdsl the variations of the Selecting pattern are also appliea

to the Collecting pattern, for the Selecting pattern is acigheation of the Collection pattern
in which the transformation function is an identity functioAs in the Selecting pattern, if the
collecting condition is always true, all elements are aite, and this is documented and cataloged
as a separate pattern named Unconditionally Collectingrdis a wide range of transformations
possible, e.g., collecting indices of the elements not tleenents themselves, and due to the
transformation, many interesting variations are possiliag the storage dimension. For example,
a loop may have more than one result collection, e.g., elemime sum and product of two

DERIVATION OF LOOP SPECIFICATIONS 17

arrays which can be accomplished by a loop body with an ie@ridnction[sum/[i], prod|i],i :=
ali) + b, ali] * bli], i + 1].

3.7. Discussion

The most common use of loop control structures is to itergss a certain sequence of values
and manipulate the values of the sequence, regardless dhevhibe values are retrieved from
data structures or created on-the-fly. A loop pattern is ddfim terms of the manipulation of
individual values specified by the intended function of thad body. In particular, the manipulation
of individual values is promoted to the whole sequence toi§pthe intended function of the whole
loop. Therefore, depending on how we define the manipulatfandividual values, we can have
a wide variety of patterns possibly at many different lewasibstraction. At the highest level of
abstraction, the intended function of the loop body may higew asr, i := F(v), E(v)], whereF
and E calculate new values afand:, respectively, in terms of the initial values of variablethat
may includer, i, and of course the sequence being iterated over, and theleddgunction of the
whole loop can be defined by promoting or extendint the whole sequence. For example, if the
intended function of a loop body {8 := r + (a[i] * 2)], F is defined ag(r, a,i) = r + (a[i] * 2).

At the next level of abstraction, the functidghcan be further decomposed int§M/ (v),), where

M is an abstraction of the individual value manipulation &h@ a storage function. This level
of abstraction corresponds to the way we examine a loop alle@dour analysis dimensions.
For the same intended functidn := r + (a[i] * 2)], F' is now refined toS(r, M(a,i)), where

M (a,i) = ali] * 2andS(r,z) 2 r + z. Each ofM, F, andE can be further decomposed or refined,
say to introduce a condition to model a conditional manipoila storage, or advancement as done
in some of our patterns.

Iterating

Unconditionally
Iterating

Counting

Accumulating

Unconditionally
Accumulating

Collecting

Selecting Unconditionally

Collecting

Unconditionally
Counting

Unconditionally
Selecting

Figure 3. Pattern hierarchy

There is one nice consequence of decomposing value matigmdaand defining patterns by
promoting individual value manipulations to sequencesteR@s can be classified into a pattern
hierarchy (see Figur8). There exists at the root of the hierarchy a pattern whosp dy has
an intended functionr,: := F(¢), E(7)]. It's sort of a universal pattern applicable to any loop
that iterates over a sequence of values, but it's less ugefptactice because it's so abstract;
it doesn’t provide much help in understanding a loop or qugdilerivation of a detailed, likely
intended function of the loop. A generalized pattern is eaple to a wide range of loops,
but its specification is more abstract and thus provideshe$s in deriving a detailed intended
function from its application. A specialized pattern, oa tither hand, is more specific with limited
applicability but provides more help in deriving a detailetended function. The pattern hierarchy
is extensible in that one can easily define and add a new pétyeefining or specializing the value
manipulation function of an existing pattern. For example,can introduce a new sub-pattern of
Accumulating, named Counting, to count the number of elémefa collection that meet a certain
condition (see Figur8). For this, the function of Accumulatind(sQz) ? (r ¢ sQi) : r,is refined

18 A. BARUA AND Y. CHEON

to P(s@i) ? (r+1) : r*. The pattern hierarchy can also be used to find matchingrpatfer a
loop by starting from more general patterns moving down toenspecific ones.

Our patterns are compositional in two different senses. #iepa can be decomposed along
the four, orthogonal dimensions of the loop analysis: vaoguisition, value manipulation, loop
termination, and result storage (see Secfial). Even though our patterns are named along the
value manipulation dimension, each dimension contribigtéise definition of a pattern and, in fact,
produces new patterns or variations, typically more speoifies, e.g., Index-based Accumulating.
As a consequence, a new pattern can be assembled by setettipgropriate combination of values
from the four analysis dimensions, one from each dimensiea Gectiod.1). A loop can change
more than one non-local variable, and our patterns can ket tosderive an intended function of
such a loop. An appropriate pattern is applied for each resuiable to determine its final value,
and all the variables along with their final values are ligtegether in an intended function to come
up with an intended function of the whole loop (see Sectigfor an example).

4. APPLICATION OF PATTERNS

In this section we first suggest a general process for applgihdocumented patterns and their
variations. We then apply two of our patterns to sample cdde following four steps are
recommended for applying a pattern to derive an intendectiumof a while loop.

1. Formulate an intended function of the loop body.

2. Find a matching pattern from the pattern catalog.

3. Unify intended functions of the code and the pattern.
4. Instantiate the intended function of the pattern.

The first step is to formulate and specify the behavior of tteplbody, for a pattern is specified
in terms of the intended function of the loop body, not its €atkucture. If the code of the loop
body doesn’t contain any nested loops, its code function beagystematically calculated using
techniques like trace table8q, 36]. Essentially, one will need to identify and list all the teta
variables that are mutated by the code and specify their rdues typically in terms of their old
values. If the loop body contains other loops, however,iended functions of the nested loops can
be found first by applying the patterns from the pattern ogtain any case, the intended function
or code function of the loop body should document all the siffiects produced by the loop body,
i.e., state changes caused by a single iteration of the Moie that it is possible for a loop to have
more than one input collection or output variable (see bglow

Once the behavior of the loop body is formulated and spedifiesh intended function, the next
step is to match the loop to one of the patterns documentdtinatalog. For this, it is suggested
to examine the loop along the four analysis dimensions destin Sectior8.1: (a) how it acquires
the values to manipulate, (b) what operation or maniputaitigperforms on the acquired values,
(c) where and how the manipulated value is stored, and (dpwthiterminates the iteration. Most
of the analysis, especially acquisition, manipulatiorg atorage are likely to have been performed
already and documented in the intended function of the lamgyybThe loop body will have an
intended function of the following general form:

(51,82, -, 8y = Mi(e,s1), Ma(e, s2),..., My(e,sn)]

wheres; is a state variable whose value may be changed in the loop baglthe current element
of the collection being iterated ovel/; is a manipulation function defining the new valuespf
usually in terms of its old value and the current element efdbllection. The state variablg is
either a result variable or an iterator, and the current efgm is typically given in terms of an
iterator. If a loop has more than one result variable, onelsi¢e find a pattern and apply it for

*lt is also possible to refine the function of SearchiRgy, s@i) ? M (sQi) : r,t0 P(s@34) ? (r 4+ 1) : 7.

DERIVATION OF LOOP SPECIFICATIONS 19

each result variable; it is also possible for a loop to haveentivan one input collection. To find a
matching pattern, compare the manipulation functiafy, with those of the patterns in the catalog.
For example); can be matched to the Accumulating pattern if it has the fé@) ? e o s; : s;,
wheres; is a result variableP is a predicate defined on the elements of an input collectioma
binary (accumulation) function defined on a tuple of the itesud an element of the input collection
(see Sectio3.3for the Accumulating pattern).

Once a matching pattern is found, the next step is to defingppimg.or correspondence between
variables, symbols, and expressions appearing in thedatefunctions of the loop body of the code
and the matched pattern. This mapping will allow one to @ean intended function of the code
from the skeletal intended function given by the pattern.

The last step is to derive an intended function of the codenbtantiating the skeletal intended
function of the pattern. For this, one needs to replace bkasa symbols, and expressions appearing
in the skeletal intended function with the correspondingsof the code, given by the binding
defined in the previous step.

4.1. Accumulating Pattern

In this subsection we illustrate in detail an applicationtleé Accumulating pattern using the
example loop shown in Sectiéh3, which is copied below.

while (i < a.length){

if (ali] > 0){
sum =sum + ali];
i}++;
}

We first formulate the intended function of the loop body. €hde function of the loop body can
be written straightforwardlyg[:] is added tosum only if it is positive, andi is always incremented
by 1. Thus, its code function i§um, i := a[i] > 0 ? sum + ali] : sum,i + 1].

We next find a matching pattern. The loop body of the Accunmdapattern has an intended
function of the form[r, i := P(s@Qi) ? sQi o r : r, E(:)], wherer is a result variable, is an iterator,
P is a predicate defined on the elements of an input collectiois, a binary (accumulation)
function defined on a tuple of the result and an element of npeticollection (see Sectioh3
for the Accumulating pattern). The structures of both fioret are identical. The intended function
of the loop body matches that of the Accumulating patterrhwite binding{r — sum,i+—
i,e — ali],P(e) —e>0,eor—r+e E(i) =i+ 1}. It is also easy to see that the loop has
the following characteristics; decision trees such as tiesshown in Figuréd can be useful in
identifying loop characteristics.

Acquisition: index-based (a[i]) and sequential (+ 1)
Manipulation: addition{)

Storage: scalar variable update:{)

Termination: when all elements are accessed {.length)

We unify intended functions of the code and the matchingepattWe map terms such as
variables, symbols and expressions from the matchingrpatitethose of code, and the result is
summarized in Tablé.

Finally, we can now instantiate the skeletal intended fiomcof the pattern using the binding
defined in the previous step (see Talle

[ryi:= (r,sQi..), anything] = [sum, i := 3(sum, ali..a.length — 1]), anything]
where iss also instantiated as follows.

(v, () £ v
S(v,h-t) 2 v >07?3w+h,t):3(v,t)

20 A. BARUA AND Y. CHEON

Manipulation

accumulating collecting
searching selecting

retrieved created

conditional

indexed iterated I
- ~ unconditional \\'

elements accessed

d
all/,<“ # of itegl[ions \A()
.‘/ Cegam \o

-

Storage

i

global .
Input collection

scalar collection

Figure 4. Decision trees for analyzing a loop

Table 1I. Mapping of terms

Pattern Code
Intended function Term Term Intended function
B a
r sum
[r,i:= P(s@Qi) ? i i [sum,i:=ali] >07
(rosQi):r, E(i)] P(z) x>0 sum + ali] : sum, i+ 1]
x@i x[i]
[r,i:=3(r, sQi..),anything] | zoy x+y
E(x) r+1
@j.. | zfi..a.length — 1]

Note thats denotes the sum of all positive elements of the given arnay thle given value, and thus
it can be rewritten using a more familiar mathematical notats(sum, afi..a.length]) = sum +
i aiength—1(alj] > 0?7 alj] : 0). Therefore, the derived intended function can be rewriign

[r,i:= sum + Xj=;_a.iength—1(a[j] > 07 a[j] : 0), anything]

which matches the intention of the loop, i.e., calculatimg $um of all positive numbers stored in
the arraya starting at index.

4.2. Collecting Pattern

In this subsection we will analyze a code snippet taken froBatleship game server written in
Java. Battleship is a guessing game played by two playersids, gsuallyl0 x 10, of squares (see
Figureb). Each player has a fleet of ships and each ship occupies aemuwhtonsecutive squares
on the grid, arranged either horizontally or vertically.

The code shown in Listin@ is excerpted from a method that processes a ships deployment
message sent by a Battleship client, requesting to placayeid ships on the opponent’s board.
The body of a deployment message is a string of the form ., z1, y1, b1, ..., T, Sms Ty Yims Oy
wheren; is the name of a ships; is its size,z; andy; are the coordinate of the starting square,
b; is its direction, true for horizontal and false for verticAin example deployment message is:
“Aircraft carrier, 5, 10, 1, false, Battleship, 4, 2, 1, trkgigate, 3, 2, 3, false, Submarine, 3, 3, 9,
true, Minesweeper, 2, 4, 10, true”. The loop takes the body déployment message, given as a
string tokenizer nameiikensof type StringTokenizer, and processes it by placing shippecified
squares on a Battleship board nanbeard (see Figure).

Let’s analyze the loop in isolation and derive its intendatttion. The loop has an input variable,
tokens, and two output variable$pard andnoError. The variablegokens is an input collection,

DERIVATION OF LOOP SPECIFICATIONS 21

© 00 N O o A~ W N E O

Figure 5. Battleship board

Listing 2. Code from a Battleship game server

StringTokenizer tokens rew StringTokenizer(msgBody, “,"”);

1

2 booleannoError =true;

3 while (noError && tokens.hasMoreTokens())

4 try {

5 String name = tokens.nextToken();

6 int size = Integer.parselnt(tokens.nextToken());
7 int X = Integer.parselnt(tokens.nextToken());

8 int y = Integer.parselnt(tokens.nextToken());

9 booleandir = Boolean.parseBoolean(tokens.nextToken());
10 Battleship ship snew Battleship(name, size);

11 noError = board.placeShip(ship, X, y, dir)

12 } catch (Exception e)

13 noError =false

14 }

15}

\
1

G

A"
e -4 -—mm-=-

board K >

Figure 6. Behavior of the loop

however, it can also be regarded as an output variable if ares@bout its final value; its state can
be changed by a built-in iteratondxtToken). We will abstract from this specific implementation
detail and use a pseudo variabl® denote its iterator as we did in our patterns documemtalio
find a matching pattern, we first need to formulate the intdrfdection of the loop body. Note that
the loop body make a call to théaceShip(ship, x,y, dir) method defined in the Board class. We
need to know its behavior, ideally documented in an interidection. Let’'s assume its behavior is

22 A. BARUA AND Y. CHEON

specified as follows.

result, this := placeable(this, ship, x,y, dir),
It,thi l ble(this, shi di
placeable(this, ship, x,y, dir) ? this & (ship, dir) : this]

where pseudo variablegesult and this represents the return value and the receiver, and
placeable(b, s, z,y,d) is a predicate telling whether a shipcan be placed at a positidn, y) of

a boardb horizontally or vertically). A ship can be placed on a board if it doesn’t overlap with
other ships. They operator models placement of a ship on a board; the reshk same as the given
board except that the specified squares are now occupieclgntbn ship. We now can formulate
the intended function of the loop body consisting afray-cat ch statement. We will consider the

t ry clause first. All the variables except fabError andboard are local variables and invisible

in the final state, and thus they shouldn’t appear in the dedrfunction of the ry clause shown
below.

[noError, board,i := spl, spl ? board ® (s,x,y,d) : board, i+ 5]

wherespl £ placeable(board, s, x,y, d), s = new Battleshipn, 1), n = tokensQi, | = tokensQ(i 4

1), z £ tokensQ(i + 2)7, y = tokens@(i + 3)7, andd = tokensQ(i + 4)7. For stringv, we use the
notationv™ to model parsing to the value of an appropriate type (int or boolean). Thenidéel
function essentially states that tokens frankens are transformed to appropriate values (int,
boolean, and Battleship) and the results are storéddnd. The intended function of theat ch
clause ignoError := false]. We combine both functions to come up with an intended fomatif
the loop body.

[tokensOFk A placeable(this, ship, x,y, dir) —
noError,board, i := true,board & (s, x,y,d), i +5 (1)

| otherwise — result,i:= false,i+ J]

where tokensOk is a predicate indicating the existence of four more tokemd their well-
formedness (no parsing errob).is an offset in the range of 0 and 4; it is the offset of the first
token that is not well-formed, the offset of the last toketihdre exists less than 4 tokensikens,
or 4 otherwise. Note that we useanditional concurrent assignmetat concurrent assignment that
may have an optional condition or guard followed by-ansymbol [35, 36]. It specifies a partial
function that is defined only when the condition holds.

Before we match the above intended function to a patters,dgamine the loop along the four
different analysis dimensions. We can easily see the fatigwharacteristics.

Acquisition: built-in iterator of StringTokenizenéxtT oken())

Manipulation: transformation to battleships teiurd and to true/false fonoError
Storing: scalari{oError) and collection §oard)

Termination: when all elements are accessed {/oreT okens()) or upon an error

As shown above, the code mutates two state varialesd andresult, and each can be matched
to a different pattern to find its final value. Let’s first catesi the main state variableard. From
the intended functiod above, we can extract those parts that are concerned witlideeffect on
board.

[board := tokensOk A placeable(board, s, x,y,d) ? board @ (s,xz,y,d) : board)

Structurally it can be matched to both the Accumulating dred Collecting patterns. It depends
on one’s view of a board, a single entity (accumulation) oraggregation (collection) of ships.
Since we have already shown an application of the Accunmgatattern in the previous subsection,
we will match it to the Collecting pattern. In fact, this is ensible decision, for we can rewrite
the intended function a®oardQ(z,y) := tokensOk... 7 (s,d) : board@(x,y)] using an indexing

DERIVATION OF LOOP SPECIFICATIONS 23

notation; a board is viewed abstractly as a map from x-y doatds to ship-direction pairs. When
it is convenient, we will use this indexing notation and thepwiew below. The intended function
of the Collecting pattern isout@D := R], where D and R are the domain and the range of
3(in,out, 1, j, (), and< is defined as follows (see Secti8rb).

S(in,out, i, j,r) =

T if =C(in, out, i, j)
3(in,out, E1(i), E2(j),r W (j — M (inQ7))) if C(in,out,i,j) A P(inQi)
3(in, out, E1(i), 7,1) otherwise

Remember that and; are abstract iterators fén andout, respectively. The pattern’s intended
function can be instantiated {oard@D := R|, whereD and R are the domain and the range of
3(tokens, board, i, ()) andd is defined below. Note that the iteratois dropped because it is unified
to (z,y) calculated on the fly.

S(tokens, board,i,r) =

r if =(tokensOk A placeable(board, s, x,y,d))
3(tokens,board,i + 5,r W ((z,y) — (s,d))) otherwise

wheres, z, y, d are defined as before; they are parsed frokens using the iteratoi. Note that
recursion terminates if current tokens are not well formethe parsed ship can't be placed on the
board.

We next consider theresult variable, whose final value can be specified [assult :=
tokensOk A placeable(this, s, z,y, d)], extracted from the intended functidérabove. The intended
function can be matched to the Searching and the Accumglataiterns, e.g., searching for
an erroneous situation or accumulating boolean values.itherecase, the pattern’s intended
function can be straightforwardly instantiatedtesult := (tokens, board, i)], wheres is defined
recursively as follows; we overload tResymbol for calculating values ébard andresult.

S(tokens, board, i) =

true if 7 is invalid (i.e., no more token)
false if ~(tokensOk A placeable(board, s, z,y,d))
3(tokens, board & (s, x,y,d),i+5) otherwise

The last step is to combine the two intended functions, ancha&e [boardQD, result,i :=
R, 3(tokens, board, i), anything], where D and R are the domain and the range of
3(tokens, board, i, ()). If one cares about the final value @fkens, then the final value of can
be defined precisely by overloadidgs done foresult.

5. EVALUATION

We performed a case study to evaluate our patterns, in pkmti¢o determine their applicability
in real applications. We applied our patterns to source aoideeveral open source projects
available from the Apache Software Foundation (http://wap&che.org). We picked several target
applications for our study to address the great diversitgaftiware applications, e.g., systems
programming, business applications, scientific applicesj and Web software. We restricted the
implementation languages to Java and C, two of the progragainguages that we are most
familiar with and that are also the most popular in practiégsted below are the target applications
picked up for our case study.

e Chukwa 0.5: An open source data collection system for mdnidarge distributed systems
including a toolkit for for displaying, monitoring and againg the collected datdlf]. It is
written in Java and JavaScript.

e Commons Math 3.3: A library of lightweight, self-containedathematics and statistics
components addressing the most common practical problemsnmediately available in
the Java programming languadée’].

24 A. BARUA AND Y. CHEON

e HTTP Server 2.0.65: A popular, open-source HTTP servetawin C [L3].

e Jmeter 2.11: An application designed to test and measuferpance of Web applications
[14]. It is written in Java.

e Syncope 1.2.0-M1: a framework and system for managing aligitentities in database
applications and enterprise environments, implementddva EE 15].

We found total 2180 while loops in the source code of thesdiegijpns, and among these we
pick 126 loops for our study (see Table). From each application we first selected randomly source
code files containing while loops and then picked one amyif@op from each selected file.

Table Ill. Number of loops

Sources Samples
Loops Files| Loops/Files
Chukwa 173 60 24
HTTP 1300 250 13
Jmeter 335 158 25
Math 348 164 55
Syncope 24 16 9
Total 2180 648 126

The initial plan for our study was to derive the intended fiots of all the selected loops by
following the step-by-step processes described in theagipé patterns, working one loop at a time.
However, we soon learned that many loops have similar flamossructures, and the processes of
deriving their intended functions are almost identicalu3hfor groups of similar loops we applied
our patterns only to one or two representative loops, andherest of loops we just identified
unless there are any interesting aspects on the pattericaipgphs.

TablelV summarizes the coverage of our patterns measured in theemnuwhkoops that were
successfully matched to our patterns and thus whose indefadetions were derived, or likely to
be derivable, from the patterns. The column labeled “MulBwh the number of loops that were
matched to more than one pattern, i.e., loops that have rharedne primary output variable, and
the “Not” column shows loops that couldn’t be matched to afrguw patterns (see below for details).
The result is very promising in that 96% of loops were matdimeaur patterns, meaning that their
intended functions were, or could be, derived using theepadt It's also interesting to learn that
the distributions of matching patterns vary among appbeet (see Figur€), but on average the
Collecting pattern occurs most commonly at 36%.

Table 1V. Statistics of matching patterns

Acc (%) Sea (%) Sel(%) Col (%) Mul (%) Not (%) | Total
Chukwa 4(17) 1(4) 6(25) 9(38) 4 (17 0(0) 24

HTTP 4(31) 2(15) 2(15) 5(38) 00) 0()| 13
Jmeter | 3(12) 1(4) 11(44) 3(12) 4(16) 3(12)| 25
Math 11(20) 18(33) 8(15) 13(24) 3 2@)| 55

Syncope| 2(22) 1(11) 0(0) 6 (67) 0(0 (0) 9
24 (19) 23(18) 27(21) 36(29) 11 (9)
121 (96) 5(4)| 126

Total

Below we describe some of observations, findings, and lestarned from our case study
along with other interesting topics of discussion. There several loops that didn't match
any of our patterns. These are loops mainly written for namzfional behavior. In Jmeter, for

DERIVATION OF LOOP SPECIFICATIONS 25

35 mAcc mSea mSel mCol = Mul

25

30 100%
90%
80%
20 70%
60%
15 50%
40%
10 30%
5 I 20% . l
10%
0 . 0% -
Acc Sea Sel Col Mul Not

Chukwa HTTP Jmeter Math Syncope

Figure 7. Percentage of matching patterns: overall (left) iadividual applications (right)

example, we found several loops written for clock, timingdaoncurrency using methods like
System.currentTimeMillis() and Thread.sleep(). They 'domatch any of our patterns, for our
patterns are for functional aspects of sequential prograimstwo loops from the Commons Math
package are concerned about GUI operations calling GUladstluch as repaint(). In theory it's
possible to model them as state changes, but in practice iheo benefit of doing so, for there is a
better way of modeling user interfaces.

As a study has shown, the most common use of loops is to itevate certain sequence of values,
stored explicitly in data structures such as arr@g$. We learned that such loops are relatively easy
to analyze in order to find matching patterns. More difficakés are those that generate values on the
fly. In Commons Math, loops are mostly used for performingheatatical calculations involving
all sorts of numerical operations. A significant number afde iterate on numbers determined on
the fly, not over a stored sequence of numbers, and oftendt'stnaightforward to figure out the
sequence of numbers being iterated over. However, oncertaginary sequences of numbers are
identified and defined correctly, the applications of patere often straightforward. For example,
the following loop from the Commons Math package takes twminerse andb, and repeats the
loop body an indefinite number of times.

while (a = b){
final int delta=a— b;
b = Math.min(a, b);
a = Math.abs(delta);
a>>= Integer.numberOfTrailingZeros(a);

}

The next values of. andb are determined on the fly, i.enin(a,b) and|a — b|>, wherez>
denotes a right shifting of by the number of trailing zero bits. Abstractly, the loop ¢enthought
of taking two sequence of numbers, sagndb, determined by the initial values efandb, and
iterate over them. I andb are initially 10 and 7, the@ andb will be (10,3,1,1) and(7,7,3,1).
And the final values of both andb will be 1, for the loop searches for a pair-wise equivaletiea
which is always the last element in the sequence.

There were cases that we have to change loop code a bit to applyatterns. In Jmeter, for
example, there are lots of while loops that call test orac¢hmds such as assertEquals() that may
throw an exception and thus terminate a loop abruptly. Qipevally they are similar to loops that
contain an exit type of control statements suctbesak and return statements. To match such a
while loop to one of our patterns, we first had to rewrite thepl@ode slightly. As an example,
consider the following while loop take from Jmeter.

while ((sampler = controller.next()) aull) {
asserteEquals(order[counter++], sampler.getName());

}

26 A. BARUA AND Y. CHEON

It can be rewritten to the following by introducing a flag, saytOk, indicating a test success or
failure.

while (testOk && (sampler = controller.next()) 'mull) {
try {
assertEquals(order[counter++], sampler.getName());
} catch (AssertionError e)
testOk =falsg

}
}

Once it’s rewritten to get rid of an abrupt termination, we eaite the intended function of its
loop body and then match it to the Searching pattern. Thisqodar loop is also interesting in that
it takes two input sequences, one iterated with an indextandther with an iterator, and the values
are transformed fromamplers to names.

It wasn’'t uncommon to find loops that have multiple outpuiafles, especially secondary, flag
types of variables. The final values of some of the outputtdess are calculated differently using
different manipulation functions; a common code patterrihef loop body is to use if-then-else
statements to calculate results differently or store therdifferent state variables. For example,
there was a loop that essentially copies values from oneaah to another but also counts the
number of values copied. We were able to handle such loopsatghimg them to multiple patterns,
one for each output variable, as recommended by the pataiog and shown in the example in
Sectiord.2.

As in the example in SectioA.2 we quickly learned that a loop can be matched to different
patterns depending on our view on the granularity of data.Sgdme data can be viewed as a scalar,
composite, or collection; this is especially true for ermapted data with a set of well-defined APls.
For example, we found the following loop in our case studyerghbothmantissa andexponent
are int variables.

while ((mantissa & 0x0010000000000000L) =={0)
exponent—;
mantissgs>= 1;

}

Are values collected intowantissa or are they accumulated? It really depends on our intenfion o
the code and our view efantissa’s value. If an int value is viewed as a sequence of bits, iects
constant bits (1's); otherwise, it accumulates values bytiplying by 2. Note that the selected
pattern will also determine the form or structure of thedsdiintended function, e.g., manipulating
mantissa’s value as bits or an int value. Another deciding factor wide the easiness of applying
the matching pattern and deriving an intended function fitom

Our case study showed the value of defining a pattern in tefrifeeantended functions of the
loop body, not its code structure. Many loops have sevetatdependent state variables, local or
global, that are used to perform complex computations aoré she results in intermediate states.
Although we may need to trace these intermediate state elsangcalculate the code or intended
function of the loop body, we don't need to worry about themewimatching the loops to patterns
and applying the matching patterns to derive intended fonst All we care about is the state
changes from the initial state to the final state as statedddanntended functions. The real benefit
is the modularity that it supports. The derivation of an mated function is still valid—and thus
the derived intended function is correct—when the loop bedieplaced with another code that
is correct with respect to the intended function of the orddiloop body. In our case study, for
example, it was common for loops to have nested loops. WHdifitgted out the intended functions
of nested loops by applying our patterns. Then, the derirezhded functions of the nested loops
were used in calculating those of the loop bodies of the dotgrs, enabling applications of our
patterns for the outer loops in a modular fashion.

An interesting lesson we learned is the important of abstia@nd the notation to express it.
One of the most difficult steps of applying our patterns isdarfulate and write the intended

DERIVATION OF LOOP SPECIFICATIONS 27

function of a loop body. The difficulty is due to not only thengplexity of the computation itself
but also expressing it in a way suitable for manipulationfdat, sometimes the complexity of
deriving a detailed, rigorously written intended functioha loop depends heavily on expressing
the computation of the loop body at an appropriate abstrad¢ivel using an appropriate notation.
Writing intended functions at the right abstraction levesdifficult and requires skills and
experiences; derivations of intended functions themsataa often be done mechanically.

One weakness of our evaluation is missing measurementseoqudlity of derived intended
functions, e.g., whether they are readable, understaedabld usable in formal treatments of
programs. However, we would like to note that more than haample while loops matched
closely with our patterns and didn’t seem to require mucbreif deriving their intended functions
from the matching patterns. Nevertheless, our study shbatsour patterns are helpful in finding
the intended functions of while loops. As we became more [famwith the use of the patterns,
we also became to guess and determine the intention of lagfer land more easily, even without
applying the patterns explicitly. In a sense, the patterogiged us with a mental framework or tool
for examining and analyzing the loops, and the use of patiemproved our insights and analytical
skills. We also found a few common patterns of while loopswspecific purposes, e.g., traversing
trees for various reasons. It would be interesting to stukgtiver they deserve to be documented as
sorts of domain and language-specific specializations opatierns. They capture knowledge in a
specific domain, but their usefulness will be determinedairi py their generality and variability in
order to be instantiated for various loops in the domain.

6. RELATED WORK

No published research work was found on deriving intendedtfans of loop control structures
systematically. It's perhaps partly because Cleanrogme-§tinctional program verification is not
well-known. The only closely related work is Stavely’s irdn how to write intended functions
for while loops in isolation, without their initializatiof35, Section 4.4]. His hints include such
suggestions as studying the sequence of values stored gnapmovariables as a loop iterates,
generalizing the intended functions of an initialized lpapd adapting the intended function of
a similar loop. In a way our patterns are a generalization@mlification of the last suggestion,
adapting the intended function of a similar loop. A loop sfieation pattern is an abstraction of a
collection of similar loops that can be reused by being aethpt instantiated to a specific situation
or loop.

Below we mention few recent, noticeable work in three arefbroadly related research:
loop invariants, property specification patterns, and @eode analysis. The amount of research
work done on a similar problem in Hoare logic—finding loopanants—is huge, spreading over
several decades. There exists a rich set of techniques alsd itecluding both static and dynamic
approaches based on execution traces, preconditionsppd#ions, theorem proving, etc (S€e]
Section 5]) and34, Section 7]). In an axiomatic approach, loop invarianty @acardinal role in
the proofs of loop control structures, for full verificatigenerally requires equipping each loop
with a loop invariant. They are also the biggest challendelt@utomation of formal analysis and
verification of programs because they cannot be computedghrsimple rules. Finding a sound and
useful loop invariant usually requires a programmer’s iiriign relying on skills and experiences.
Furia et al classified loop invariants over a range of fund#aleand important algorithms,
including searching, sorting, and arithmetit§][They identified two different dimensions for their
classification: the role of the invariant with respect toplstcondition (essential and bounding) and
the transformation technique that yields the invarianinfrine postcondition (constant relaxation,
uncoupling, term dropping, aging, and backward substit)19]. Their classification can be very
useful in understanding the loop invariant of an algoritimawever unlike our work it doesn't
provide a reusable pattern that can be instantiated toelarivinvariant for a loop. An alternative
to requiring a programmer to formulate a loop invariant istaomatically infer one from code.
Aponte et al presented an approach for automatically géngrboop invariants over non-nested
loops manipulating array2]. In their approach, the loop body is first translated intodiGonal

28 A. BARUA AND Y. CHEON

concurrent assignments (similar to Dijkstra’s guarded mamds), which are then matched to code
patterns through static analysis. Each code pattern isiated with alocal invariant an invariant
that refers only to variables modified locally. Local inearis are composed to produce an inductive
invariant of the complete loop. They defined five categorfe®de patterns corresponding to simple
but frequently used loops over scalar and array variablesh) s search, scalar update, scalar
integration, array mapping, and array exchange. Theiepatare very specific and specified in
terms of code structures so that corresponding local iamgsican be defined. The role of a local
invariant is similar to that of the intended function of trep body in our approach; both are
strengthened or promoted to cover the complete loop. Faddieyer suggested to use not just the
code of a loop but its postcondition as the basis for invaiigrence, for an invariant of a loop is a
weakened form of its postconditiod9]. Their algorithm mutates a postcondition using various
heuristics to find a loop invariant. Leino and Logozzo ddsati a technique for automatically
generating an essential ingredient of proof, loop invdasiaand refine them on deman?fd]. The
idea is that when an automatic theorem prover fails a proaf wdrification condition, an abstract
interpreter is invoked on the loops along with the prograames to find stronger loop invariants that
will allow the theorem prover to make more progress towardoaf It allows a gradual increase
in the level of precision used by the abstract interpretértans generation of loop invariants that
are specific to a subset of a program’s executions. Recelithes shown that it is possible to infer
assertions such as class invariants automatically frorgram executions. Ernst et al developed a
system called Daikon that can dynamically detect a likebgpam invariant, a property that holds
at a certain point or points in a prograrhl| 12, 31]. The system runs a program, observes the
values that the program computes to find properties that weeeover the observed executions.
Interestingly, however, Polikarpova et al showed thatdditdle Daikon can be used to strengthen
programmer-written assertions, but cannot infer all dses that programmers writ&8%).

Since the software design pattern becomes popular andywideld, similar ideas begin to be
applied to formal requirement specifications of softwarstams. In particular, motivated by the
inability, for non-experts, to express their requiremargsg the property specification languages
supported by formal verification tools, many researcheve fpgoposed or developed specification
pattern systems to facilitate the construction of formatcsfications [, 10, 21, 24]. However,
unlike our patterns for source code level specificatioresetpatterns are mostly described in some
forms of temporal logic for specifying various types of gystlevel properties by translating or
writing formal specifications from informal or natural lamage descriptions. The pioneering work
on applying the idea of software design patterns to format#jgations is that of Dwyer et al
[10]. They developed a set of property specification patternéiride-state verification like model
checking. A property specification pattern is a generalidescription of a commonly occurring
requirement on the permissible state or event sequencedimitexstate model of a system. It
describes the essential structure of some aspect of a sydtetmvior and provides expressions
of this behavior in a range of common formalisms, includingutified regular expressions and
various temporal logics such as linear temporal logic (LBIod computation tree logic (CTL).
Mondragon et al introduced composition propositions tovalmultiple events or conditions in
specification patternp]. Konrad and Cheng defined real-time specification pattasnwell as a
structured English grammar to facilitate the understagadifithe meaning of a specificatiog4).
They developed a stepwise process and a tool suite for dgrwid instantiating system properties in
terms of their natural language representati@$. [Bid et al. also proposed specification patterns
to express real-time requirements for reactive systethsThere are also specification patterns
formulated in a probabilistic temporal logic for probasiic verification techniques to ensure
software quality requirement&7].

The work on source code analysis is interesting, for some bwadapted to improve our
approach, e.g., to partially automate the derivation ofithended functions. The automated and
semi-automated analysis of source code has been a topisezroh for more than several decades
[6]. A static loop analysis is a source code analysis techriigusutomatically extracting, finding or
deriving a wide range of useful information about loop, sashoop iteration counts, code execution
frequencies, infeasible paths, and loop bounds. The dkmfermation can be used for various

DERIVATION OF LOOP SPECIFICATIONS 29

purposes such as loop optimizations and worst-case eradirtie estimation. Several techniques
have been proposed for fully automating static analysioops at source code level, including
pattern-based approach, source code annotation, datarfdysés, abstract interpretation, program
slicing, and invariant analysis (e.g24, 27]). We believe that some of the derived information
from loop analysis be useful in our approach, e.g., data flealyais can provide data dependency
information that can be utilized to define the basic strieguof the expressions appearing in
intended functions.

7. CONCLUSION

We presented specification patterns to address the probleiormulating candidate or likely
specifications of loop control structures for formal anaysd verification of programs. Any non-
trivial program contains loop control structures such adeylffior, and do statements, and formal
verification of the program requires to equip each loop witlaadidate specification. In functional
program verification, a candidate specification for a loognsntended function that expresses the
final values of variables as a function of initial values; mtended function documents the net effect
of a section of code on data from entry and exit. A candidatenised function for a loop plays
a crucial role in formal verification of the loop because ittmes an induction hypothesis in an
inductive proof of the loop. However, formulating a likelyténded function of a loop is one of the
biggest challenges in a correctness proof of the loop, modifing on one’s skills and experiences,
for there is no simple rule to compute it.

Fortunately, many intended functions of loops exhibit@@rcommon flavors or characteristics.
Knowing these flavors or characteristics could therefoowigle help in formulating likely intended
functions of loops. Inspired by the work on software desigttgyns, we identified these common
flavors of intended functions and documented them as rezisgieicification patterns, from which
intended functions of loops can be derived systematidatigps are most commonly used to iterate
over a certain sequence of values and manipulate it, typicaé value at a time. One distinguishing
feature of our patterns is to promote the intended functfaheloop body, manipulating individual
values, to the whole sequence iterated over by a loop to diffammtended function of the whole
loop. Our patterns include Accumulating, Searching, Selg@and Collecting along with numerous
variations.

Our specification patterns are compositional and hiereathiA pattern can be decomposed
along the four, orthogonal dimensions of loop analysisugalcquisition, value manipulation, loop
termination, and result storage. As a consequence, a négripaan be assembled by selecting an
appropriate combination of the values from these dimessiOnr patterns can also be classified into
a pattern hierarchy. A generalized pattern is applicabéewtide range of loops, but its specification
is more abstract and thus provides less help in deriving ailddtintended function from its
application. A specialized pattern, on the other hand, isenapecific with limited applicability
but provides more help in deriving a detailed intended fiomctThe pattern hierarchy is extensible
in that one can easily introduce a new pattern by refining ecigfizing the value manipulation
function of an existing pattern. The pattern hierarchyvaimne to match patterns, starting from
more general patterns and moving down to more specific oneas& study indicates that our
patterns are applicable to a wide range of programs fromesysprogramming to scientific and
business applications.

There are several contributions of our work. The four, agthtal loop analysis dimensions
provide an excellent conceptual framework for examinirapk systematically. They can be used
not only for general understanding of loops but also for cosipg new patterns and finding
matching patterns for loops. Our pattern catalog providegtaof reusable loop specifications
that can be matched to and instantiated to derive intendectifuns of loops systematically.
Unlike previous work on specification patterns, our pateane for deriving source code-level
specifications for formal analysis and verification of pags; they provide a solution to the
problem of formulating candidate or likely specificatiorfsl@op control structures for various
formal treatments of code containing loops. Another unigss of our work is the idea of promoting

30

A. BARUA AND Y. CHEON

the manipulation of individual elements to the whole seg@eeto define a pattern, resulting in a
uniform pattern structure and facilitating an easy intritchn of new patterns.

ACKNOWLEDGEMENT

This work was supported in part by NSF grant DUE-0837567. Apinion, findings, and conclusions or
recommendations expressed in this paper are those of thera@nd do not necessarily reflect the views of
NSF.

10.

11.

12.

13.
14.
15.
16.
17.
18.
19.
20.

21.

22.

23.

24.

REFERENCES

. Nouha Abid, Silvano Dal Zilio, and Didier Le Botlan. Reahe specification patterns and tools. Formal

Methods for Industrial Critical Systemgolume 7437 of_ecture Notes in Computer Scienpages 1-15. Springer
Berlin Heidelberg, 2012. DOI: 10.1007/978-3-642-32469-7

. Virginia Aponte, Pierre Courtieu, Yannick Moy, and Marango. Maximal and compositional pattern-based loop

invariants. InFM 2012: Formal Methodsvolume 7436 ofLecture Notes in Computer Sciengeges 37-51.
Springer Berlin Heidelberg, 2012. DOI: 10.1007/978-3-32759-97.

. Ralph-Johan Back and Joakim von WrigtRefinement Calculus: A Systematic IntroductidBraduate Texts in

Computer Science. Springer-Verlag, 1998.

. Aditi Barua and Yoonsik Cheon. A catalog of while loop dfieation patterns. Technical Report 14-65,

Department of Computer Science, The University of Texasl&aso, 500 West University Ave., El Paso, TX,
79968, September 2014.

. Aditi Barua and Yoonsik Cheon. Finding specifications dfiles statements using patterns. New Trends in

Networking, Computing, E-learning, Systems Scienceskagiheering volume 312 olecture Notes in Electrical
Engineering pages 581-588. Springer International Publishing, 2@®!: DOI 10.1007/978-3-319-06764-35.

. David Binkley. Source code analysis: A road map.2007 Future of Software EngineeringOSE '07, pages

104-119, Washington, DC, USA, 2007. IEEE Computer SociB@!: 10.1109/FOSE.2007.27.

. Yoonsik Cheon. Functional specification and verificatbbrobject-oriented programs. Technical Report 10-23,

Department of Computer Science, The University of Texasl&&dso, 500 West University Ave., El Paso, TX,
79968, August 2010.

. Yoonsik Cheon, Gary T. Leavens, Murali Sitaraman, angt&e Edwards. Model variables: Cleanly supporting

abstraction in design by contractSoftware: Practice and Experience35(6):583-599, May 2005. DOI:
10.1002/spe.649.

. Yoonsik Cheon, Cesar Yeep, and Melisa Vela. The Cleanlimguage for functional program verification.

International Journal of Software Engineering(1):47—68, January 2012.

Matthew B. Dwyer, George S. Avrunin, and James C. CarbPtioperty specification patterns for finite-state
verification. InProceedings of the Second Workshop on Formal Methods iw&eftPractice FMSP '98, pages
7-15, New York, NY, USA, 1998. ACM. DOI: 10.1145/298595.298.

M.D. Ernst, J. Cockrell, William G. Griswold, and D. Naik Dynamically discovering likely program invariants
to support program evolutionlEEE Transactions on Software Engineerjii&y(2):99-123, February 2001. DOI:
10.1145/302405.302467.

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, StepMaCamant, Carlos Pacheco, Matthew S. Tschantz, and
Chen Xiao. The Daikon system for dynamic detection of likielyariants. Science of Computer Programming
69(1-3):35-45, 2007. DOI: 10.1016/j.scico.2007.01.015.

Apache Software Foundation. Apache HTTP Server Profgtps://httpd.apache.org. Accessed: 2015-12-18.
Apache Software Foundation. Apache Jmeter. http&té§napache.org. Accessed: 2015-12-18.

Apache Software Foundation. Apache Syncope. httpsdépe.apache.org. Accessed: 2015-12-18.

Apache Software Foundation. Chukwa. https://chukpeatie.org. Accessed: 2015-12-18.

Apache Software Foundation. Commons Math: The Apachen@mns Mathematics Library. https://commons.
apache.org/proper/commons-math. Accessed: 2015-12-18.

Carlo A. Furia, Bertrand Meyer, and Sergey Velder. Lomaiiants: Analysis, classification, and exampla&€M
Computing Survey€6(3):34:1-34:51, January 2014. DOI: 10.1145/2506375.

Carlo Alberto Furia and Bertrand Meyer. Inferring loopdriants using postconditions. Fields of Logic and
Computationpages 277-300. Springer-Verlag, Berlin, Heidelberg02020I: 10.1007/978-3-642-15025-85.
Erich Gamma, Richard Helm, Ralph Johnson, and JohnidiissDesign Patterns: Elements of Reusable Object-
Oriented Software Addison-Wesley, Reading, Mass., 1995.

Lars Grunske. Specification patterns for probabiligtiality properties. IProceedings of the 30th International
Conference on Software EngineerinlCSE '08, pages 31-40, New York, NY, USA, 2008. ACM. DOI:
10.1145/1368088.1368094.

C. A. R. Hoare. An axiomatic basis for computer prograngni Communications of the ACM.2(10):576—
580,583, October 1969.

Sascha Konrad and Betty H. C. Cheng. Facilitating thetcoction of specification pattern-based properties. In
Proceedings of the 13th IEEE International Conference oguRements EngineerindRE '05, pages 329-338.
IEEE Computer Society, 2005. DOI: 10.1109/RE.2005.29.

Sascha Konrad and Betty H. C. Cheng. Real-time spedaificpatterns. IrProceedings of the 27th International
Conference on Software EngineeringcSE '05, pages 372—-381, New York, NY, USA, 2005. ACM. DOI:
10.1145/1062455.1062526.

25.
26.

27.

28.

29.

30.
31.

32.

33.

34.

35.
36.

37.

DERIVATION OF LOOP SPECIFICATIONS 31

Eric Larson. Program analysis too loopy? set the loojeadET Software 7(3):131-149, June 2013. DOI:
10.1049/iet-sen.2012.0048.

K. Rustan M. Leino and Francesco Logozzo. Loop invasiamt demand. IProceedings of the Third Asian
Conference on Programming Languages and Syst&R&AS’05, pages 119-134, Berlin, Heidelberg, 2005.
Springer-Verlag. DOI: 10.1007/11575467

Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and Pitarwedel. A fast and precise static loop analysis based
on abstract interpretation, program slicing and polytopmlefts. InProceedings of the 7th Annual IEEE/ACM
International Symposium on Code Generation and Optinoza@GO '09, pages 136-146, Washington, DC, USA,
2009. IEEE Computer Society. DOI: 10.1109/CG0.2009.17.

Harlan D. Mills, Michael Dyer, and Richard Linger. Cleaom software engineerindEEE Software4(5):19-25,
September 1987. DOI: doi:10.1109/MS.1987.231413.

Oscar Mondragon, Ann Q. Gates, and Steven Roach. PrdSppport for elicitation and formal specification of
software properties. IRV 2003, Run-time Verification (Satellite Workshop of C/8),’0clume 89 ofElectronic
Notes in Theoretical Computer Scienpages 67—88. Elsevier, 2003. DOI: doi:10.1016/S1571H@8581043-0.
Robert Oshana. Tailoring Cleanroom for industrial u#eEE Software 15(6):46-55, November 1998. DOI:
10.1109/52.730840.

Jeff H. Perkins and Michael D. Ernst. Efficient increna¢atgorithms for dynamic detection of likely invariants |
Proceedings of the 12th ACM SIGSOFT Twelfth Internatioyahi@sium on Foundations of Software Enginegring
SIGSOFT '04/FSE-12, pages 23-32, New York, NY, USA, 2004VACL0.1145/1041685.1029901.

Nadia Polikarpova, llinca Ciupa, and Bertrand Meyer. @mparative study of programmer-written and
automatically inferred contracts. Froceedings of the Eighteenth International Symposiumajdtware Testing
and AnalysisISSTA '09, pages 93-104, New York, NY, USA, 2009. ACM. DOU.1145/1572272.1572284.
Stacy J. Prowell, Carmen J. Trammell, Richard C. Linged Jesse H. PooreCleanroom Software Engineering
Addison Wesley, February 1999.

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, AlkenAiPercy Liang, and Aditya V. Nori. A data driven
approach for algebraic loop invariants. Rroceedings of the 22nd European Conference on Programming
Languages and SystenisSOP’13, pages 574-592, Berlin, Heidelberg, 2013. Serivgrlag. DOI: 10.1007/978-
3-642-37036-631.

Allan M. Stavely. Toward Zero Defect ProgrammingAddison-Wesley, 1999.

Marvin V. Zelkowitz. A functional correctness model ebgram verification.Computey 23(11):30-39, November
1990. DOI: 10.1109/2.60878.

Xiaoyan Zhu, E. James Whitehead, Caitlin Sadowski, aimh&® Song. An analysis of programming language
statement frequency in C, C++, and Java source cdslgftware: Practice and Experiencd5(11):1479-1495,
2015. DOI: 10.1002/spe.2298.

	University of Texas at El Paso
	DigitalCommons@UTEP
	12-2015

	A Systematic Derivation of Loop Specifications Using Patterns
	Aditi Barua
	Yoonsik Cheon
	Recommended Citation

	1 Introduction
	2 Functional Program Verification
	2.1 Programs As Functions
	2.2 Correctness Verification
	2.3 Intended Functions of While Loops

	3 While Loop Patterns
	3.1 Loop Analysis
	3.2 Pattern Documentation
	3.3 Accumulating Pattern
	3.3.1 Notation
	3.3.2 Pattern
	3.3.3 Example
	3.3.4 Variations and Related Patterns

	3.4 Searching Pattern
	3.5 Selecting Pattern
	3.5.1 Notation
	3.5.2 Pattern
	3.5.3 Example
	3.5.4 Variations and Related Patterns

	3.6 Collecting Pattern
	3.6.1 Pattern
	3.6.2 Example
	3.6.3 Variations and Related Patterns

	3.7 Discussion

	4 Application of Patterns
	4.1 Accumulating Pattern
	4.2 Collecting Pattern

	5 Evaluation
	6 Related Work
	7 Conclusion

