
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

12-2015

A Systematic Derivation of Loop Specifications
Using Patterns
Aditi Barua
University of Texas at El Paso, abarua@miners.utep.edu

Yoonsik Cheon
University of Texas at El Paso, ycheon@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep

Part of the Programming Languages and Compilers Commons, and the Software Engineering
Commons
Comments:
Technical Report: UTEP-CS-15-90

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Barua, Aditi and Cheon, Yoonsik, "A Systematic Derivation of Loop Specifications Using Patterns" (2015). Departmental Technical
Reports (CS). Paper 988.
http://digitalcommons.utep.edu/cs_techrep/988

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/988?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

A Systematic Derivation of Loop Specifications
Using Patterns

Aditi Barua and Yoonsik Cheon

TR #15-90
December 2015

Keywords: formal proof, functional program verification, intended function, program specification,
specification pattern, while statement

1998 CR Categories:D.2.4 [Software Engineering] Requirements/Specifications — languages; D.2.4
[Software Engineering] Software/Program Verification — correctness proofs, formal methods; D.3.3
[Programming Languages] Language Constructs and Features — control structures; F.3.1 [Logics and
Meanings of Programs] Specifying and Verifying and Reasoning about Programs — logics of programs,
specification techniques.

Department of Computer Science
The University of Texas at El Paso

500 West University Avenue
El Paso, Texas 79968-0518, U.S.A.

A Systematic Derivation of Loop Specifications Using Patterns

Aditi Barua1 and Yoonsik Cheon2∗†

1Center for Institutional Evaluation, Research and Planning, The University of Texas at El Paso, El Paso, Texas
79968-0518, U.S.A.

2Department of Computer Science, The University of Texas at El Paso, El Paso, Texas 79968-0518, U.S.A.

SUMMARY

Any non-trivial program contains loop control structures such as while, for and do statements. A formal
correctness proof of code containing loop control structures is typically performed using an induction-based
technique, and oftentimes the most challenging step of an inductive proof is formulating a correct induction
hypothesis. An incorrectly-formulated induction hypothesis will surely lead to a failure of the proof. In this
paper we propose a systematic approach for formulating and driving specifications of loop control structures
for formal analysis and verification of programs. We explainour approach using while loops and a functional
program verification technique in which a program is viewed as a mathematical function from one program
state to another. The most common use of loop control structures is to iterate over a certain sequence of
values and manipulate it, one value at a time. Many loops exhibit certain common flavors or patterns,
and similarly-structured loops have similarly-structured specifications. Our approach is to categorize and
document the common flavors or usage patterns of loop controlstructures as reusable specification patterns.
One key idea of our pattern specification is to promote manipulation of individual values to the whole
sequence iterated over by a loop. Our patterns are compositional and can be organized into a pattern
hierarchy. A catalog of loop specification patterns can be a good resource for systematically formulating
and deriving specifications of loops. Indeed, our case studyindicates that our patterns are applicable to a
wide range of programs from systems programming to scientific and business applications.

KEY WORDS: formal proof, functional program verification, intended function, program specification,
specification pattern, while statement.

1. INTRODUCTION

In the functional program verification method, a program is viewed as a mathematical function
from one program state to another, and a correctness proof ofa program is done by comparing
the function implemented by the program, called acode function, with its specification called
an intended function[7, 35, 36]. For the verification, each section of code is annotated with its
intended function. If a section of code consists of only simple statements or control structures
such as assignment statements, conditional statements, and sequences of simple statements, its code
function can be calculated directly from the code and then compared with the intended function.
However, if the code contains loop statements like while statements, it may be impossible to
calculate its code function directly from the code, thus itsproof should be done by using a technique
based on induction. Dealing with loops is the most difficult part of program analysis as well as
formal verification [25]. Applying a proof-by-induction technique involves formulating an induction
hypothesis and proving its truth both for basis cases and inductive steps. In general, proving
the induction hypothesis can be done systematically or evensemi-automatically by symbolically

∗Correspondence to: Yoonsik Cheon, Department of Computer Science, The University of Texas at El Paso, El Paso,
Texas 79968-0518, U.S.A.
†Email: ycheon@utep.edu

2 A. BARUA AND Y. CHEON

executing statements and recording their side-effects in atable called atrace tableto calculate
intended functions [35, 36]. However, finding a correct induction hypothesis of a loop—e.g., a
candidate or likely intended function of a while loop—is not, and it is the most difficult step of an
inductive proof [35]. This is because there is no simple rule or systematic way offormulating a
good intended function for a loop statement, and thus programmers rely on their intuitions, insights,
skills, and experiences. Nevertheless, it is crucial to come up with a good intended function for a
loop statement, for an incorrect induction hypothesis willfails an inductive proof.

One possible way to help programmers find correct or likely intended functions for loops is to
provide them with a catalog of sample, representative loopsalong with their intended functions
[4]. The samples in the catalog provide patterns of loops alongwith their intended functions
that can be matched to and instantiated for particular occurrences of loops in one’s code. If a
particular loop matches a pattern in the catalog, its intended function is likely to have a similar
structure as that of the matching pattern. Our approach is based on the observation that many
loops exhibit certain common flavors or patterns, and similarly-structured loops have similarly-
structured intended functions. For any pattern-based approach to be useful in practice, however,
the choice and the variety of patterns are crucial. There is also a conflicting requirement for
specification patterns. A good specification pattern shouldbe as general as possible to be widely
applicable and usable, but at the same time it should be as specific as possible to be meaningful
in deriving an accurate, detailed intended function when applied and instantiated. Like software
design patterns that describe reusable design solutions torecurring problems in software design
[20], our loop specification patterns also provide other benefits by allowing one (a) to capture and
document program specification knowledge, (b) to support reuse in program specification and boost
one’s confidence in the analysis and verification of programs, and (c) to provide a vocabulary for
communicating formal program specifications and proofs.

We explain our pattern-based approach for systematically deriving likely loop specifications for
functional verification of programs [5]. A recent study shows that, among the three main loop
control structures (for, while, and do statements) in C, C++, and Java, the most frequently used
is the for statement [37]. However, since the for statement can be viewed as a syntactic sugar of
the while statement, we use the while statement as a representative loop control structure to explain
our approach. In fact, the proof rule of the for statement is aspecialization of that of the while
statement [35]. We identified and documented a number of specification patterns to capture the
common use of while loops, and some of the patterns are specializations or sub-patterns of other
more general ones [4]. The most common use of while loops is to iterate over a certain sequence of
values and manipulate it, one value at a time. One of the key ideas of our loop pattern documentation
is to promote the manipulation of individual values to the whole sequence iterated over by a loop.
For this, we also invented a conceptual framework for analyzing while loops systematically. The
framework consists of four different, orthogonal analysisdimensions, including one for analyzing
the manipulation of individual values iterated over by a loop, making our patterns compositional.
We used the framework to identify and classify different while loops along with their intended
functions. The documented patterns are language-neutral in that they can be applied to a wide range
of programming languages, from imperative, procedural languages to object-oriented languages. For
example, the patterns can be matched to while loops that iterate over different implementations of
index-based collections like arrays, strings, and sequences, as well as iterator-based collections like
linked lists and pointer or reference-based collection data structures commonly found in popular
programming languages such as C, C++, and Java. The documented patterns have skeletal loop
code, consisting of loop conditions and bodies, as well as skeletal intended functions. The cataloged
pattern can be used to derive intended functions of while loops by first matching the loops to loop
patterns and then instantiating the corresponding skeletal intended functions. Once candidate or
likely intended functions are formulated and written, the correctness of the loops can be proved
rigorously or formally using the functional program verification technique in which a program is
viewed as a mathematical function from one program state to another [7, 35, 36]. We also suggest a
step-by-step process for applying the cataloged patterns to derive intended functions systematically

DERIVATION OF LOOP SPECIFICATIONS 3

and semi-automatically. In a case study, we applied our patterns to source code of several open-
source projects by examining and analyzing more than 100 while loops. Our findings are very
promising in that our patterns are applicable to a wide rangeof programs from systems programming
to scientific and business applications, covering 96% of loops examined. Even though we explain
our approach using functional program verification, we believe its key ideas be equally applicable to
other program specification and verification techniques such as Hoare-style axiomatic approaches.

The rest of this paper is organized as follows. In Section2 we provide a brief overview
of functional program verification, including the notationfor writing intended functions, formal
correctness proof of while loops, and the challenge of finding likely intended functions for while
loops. In Section3 we explain our approach for documenting and cataloging patterns of while
loops and their intended functions. We first describe a new conceptual framework for analyzing
while loops systematically. The framework is used to identify and classify different loop patterns.
We then describe in detail several representative loop patterns documented using a format similar
to that of software design patterns. In Section4 we suggest a step-by-step process for applying our
documented patterns. We show sample applications of two of our documented patterns by following
the suggested process. In Section5 we evaluate our approach and patterns and summarize our
findings along with lessons learned. In Section6 we mention few broadly related work, including
loop invariants, and we conclude this paper with a concluding remark in Section7.

2. FUNCTIONAL PROGRAM VERIFICATION

In the late 70s, Harlan Mills and his colleagues at IBM developed an approach to software
development namedCleanroom Software Engineering[28, 30, 33], Its name was taken from the
electronics industry, where a physical clean room exists toprevent introduction of defects during
hardware fabrication, and the method reflects the same emphasis on defect prevention rather
than defect removal. Special methods are used at each stage of the software development—from
requirement specification and design to implementation—toavoid errors. In particular, it uses
specification and verification, where verification means proving mathematically that a program
agrees with its specification. Cleanroom is a lightweight, or semi-formal, method and tries to
verify the correctness of a program using a technique calledfunctional program verification
[7, 35, 36]. The technique requires a minimal mathematical background by viewing a program
as a mathematical function from one program state to anotherand by using equational reasoning
based on sets and functions. The specification of a program called anintended functiondefines this
mapping of states by describing the expected final state in terms of an initial state [35]. In essence,
the functional verification involves (a) calculating the function computed by code called acode
functionand (b) comparing it with the intention of the code also written as a function, an intended
function. For this, the behavior of each section of code is documented, as well as the behavior of the
whole program. The documented behavior is the specificationto which the correctness of a program
is verified.

2.1. Programs As Functions

An execution of a program produces a side-effect on a programstate by changing the values of some
state variables such as program variables. In functional program verification, a program execution is
modeled as a mathematical function from one program state toanother, where a program state is a
mapping from state variables to their values. For example, consider the following code snippet that
swaps the values of two variablesx andy.

x = x + y;
y = x − y;
x = x − y;

Its execution can be modeled as a mathematical function that, given a program state, produces
a new state in whichx andy are mapped to the initial values ofy andx, respectively. The rest

4 A. BARUA AND Y. CHEON

of the state variables, if any, are mapped to their initial values; their values remain the same. This
is a more direct way of describing computations than the assertions used in Hoare-style axiomatic
verification, which state facts about values of variables.

A succinct notation, called aconcurrent assignment, is used to express these functions by only
stating changes in an input state [3, 35, 36]. A concurrent assignment is written as[x1, x2, . . . , xn :=
e1, e2, . . . , en] and states that eachxi’s new value isei, evaluated concurrently in the initial state, i.e.,
the input state or the state just before executing the code. The value of a state variable that doesn’t
appear in the left-hand side of a concurrent assignment remains the same. For example, the function
that swaps two variables,x andy, is written as[x, y := y, x]. The concurrent assignment notation
can be used to express both the actual function computed by a section of code, a code function, and
one’s intention for the code, an intended function.

2.2. Correctness Verification

The verification method is quite different than the method ofaxiomatic verification. It is based
on functional semantics and on the reduction of software verification to ordinary mathematical
reasoning about sets and functions as directly as possible.The correctness of code is verified by
comparing its code function to its intended function; verification means showing that the code
function computes the result predicted by the intended function. A program, or a section of code,
with an intended functionf is correct if it has a code functionp such that:

• The domain ofp is a superset of the domain off , i.e., dom(p) ⊇ dom(f). The program may
accept more values than what its specification says.

• For everyx in the domain off , p mapsx to the same value thatf maps to, i.e.,p(x) ≡
f(x) for x ∈ dom(f). For each value allowed by its specification, the program should produce
the same value as stated in the specification

It is also said thatp is a refinementof f , denoted byp ⊑ f . For correctness verification, an
intended function is written for each section of the code to be verified. For example, Listing1
show an annotated code snippet that counts the number of positive values contained in an array. An
indentation is used to indicate the region of code that an intended function annotates. For example,
the intended functionf0 in line 1 describes the behavior of the whole code and states that the final
value ofr is the number of positive values contained in the arraya. The intended functionsf1 and
f2 in lines 2 and 6 specify the sections of code in lines 3–4 and 7–15, respectively. Inf3, the word
anythingindicates that one doesn’t care about the final value of the loop variablei. In this paper
we write intended functions semi-formally using Java expressions and well-known mathematical
notations likeΣ. There is also a formal specification language for writing intended functions [9].

Once each section of code is annotated with its intended function, its correctness can be proved by
comparing its code function and intended function. A proof can be done in a modular way by using
the intended functions of lower level code in the proof of higher level code. For example, in order to
prove the correctness of the code shown above, one needs to prove (a) the function composition of
f1 andf2 is correct with respect tof0 and (b) bothf1 andf2 are correctly implemented or refined by
their code. If a section of code consists of only assignments, sequences, and branches, its correctness
proof is often straightforward, for its code function can becalculated directly from the code using
tools such astrace tablesfacilitating symbolic execution of statements and functions [35, 36]. For
example, the code function for lines 3–4 is exactly the same as its intended function,f1. However, a
correctness proof of a loop such as a while loop is generally more involved because there is no direct
way of calculate its code function. It is done by using a proof-by-induction technique [35, 36]. For
example, the correctness of code in lines 7–15 with respect to its intended functionf2 requires three
sub-proofs: (a) termination of the loop, (b) a basis step proving that when the loop condition doesn’t
hold, an identity function (i.e., no state change) is correct with respect tof2, and (c) an induction
step proving that when the loop condition holds, function composition off3 (intended function of
the loop body) andf2 is correct with respect tof2. The basis and induction steps are for when the
loop makes no iteration and one or more iterations, respectively. Therefore, verification of the above
code requires discharging the following four proof obligations.

DERIVATION OF LOOP SPECIFICATIONS 5

Listing 1. Code annotated with intended functions

1 // f0: [r := Σj=0..a.length−1(a[i] > 0 ? 1 : 0)]
2 // f1: [r, i := 0, 0]
3 r = 0;
4 int i = 0;
5

6 // f2: [r, i := r + Σj=i..a.length−1(a[j] > 0 ? 1 : 0), anything]
7 while (i < a.length){
8 // f3: [r , i := a[i] > 0 ? r + 1 : r, i + 1]
9 // [r := a[i] > 0 ? r + 1 : r]

10 if (a[i] > k)
11 // [r := r + 1]
12 r++;
13 // [i := i + 1]
14 i++;
15 }

1. f1; f2 ⊑ f0, i.e., a proof thatf1 followed byf2 is a refinement off0, where the symbol “;”
denotes the forward function composition.

2. Refinement off1, i.e., correctness off1’s code.
3. Refinement off2, which requires the following three sub-proofs.

(a) Termination of the loop
(b) Basis step:¬(i < a.length) ⇒ I ⊑ f2, whereI denotes an identity function.
(c) Induction step:i < a.length ⇒ f3; f2 ⊑ f2

4. Refinement off3, i.e., correctness of the loop body

Below we prove the correctness of the while loop by discharging its three proof obligations listed
above.

1. Termination of the loop. The intended function of loop body (f3) state thati is incremented by
1 on each iteration of the loop, and thusi will eventually become equal toa.length, at which
time the loop terminates. That is,a.length - iis a loop variantwhose value is decreased on
each iteration of the loop, thereby ensuring its termination.

2. Basis step: ¬(i < a.length) ⇒ I ⊑ f2, whereI is an identity function. If we assume¬(i <
a.length), we have the following.

f2 = [r, i := r +Σj=i..a.length−1(a[j] > 0 ? 1 : 0), anything]

≡ [r, i := r, anything] (∵ i ≥ a.length)

⊒ [r, i := r, i]

≡ I

Therefore,¬(i < a.length) ⇒ I ⊑ f2.
3. Induction step: i < a.length ⇒ f3; f2 ⊑ f2.

f3; f2 = [r, i := a[i] > 0 ? r + 1 : r, i+ 1] ;

[r, i := r +Σj=i..a.length−1(a[j] > 0 ? 1 : 0), anything]

≡ [r, i := (a[i] > 0 ? r + 1 : r) + Σj=i+1..a.length−1(a[j] > 0 ? 1 : 0), anything]

≡ [r, i := r + (a[i] > 0 ? 1 : 0) + Σj=i+1..a.length−1(a[j] > 0 ? 1 : 0), anything]

≡ [r, i := r +Σj=i..a.length−1(a[j] > 0 ? 1 : 0), anything]

≡ f2

6 A. BARUA AND Y. CHEON

Therefore,i < a.length ⇒ f3; f2 ⊑ f2.

In functional program verification, a proof is often straightforward because one can calculate code
functions and compare them against intended functions. Although one needs to use such techniques
as case analysis and induction depending on the control structures used as shown above in the proof
of a while loop, carrying out a proof itself is essentially the same as that of a block of sequential
statements. As shown above, unlike an axiomatic approach, functional verification supports forward
reasoning, which is intuitive and natural in that it matchesthe way programmers reason about the
correctness of programs informally.

2.3. Intended Functions of While Loops

In order to apply functional programming verification effectively, it is crucial to formulate a correct
intended function for the section of code to be verified. If the intended function itself is incorrect,
the proof will fail even if the code is indeed correct. This isparticularly true for proofs of loop
control structures such as while statements, as their proofs are done inductively and their intended
functions become induction hypotheses (see Section2.2). An inductive proof will fail with an
incorrect induction hypothesis.

However, formulating and writing a candidate or likely intended function for a while loop is
challenging. It is often the hardest part of formal program verification. There is no simple rule to
calculate it nor a systematic way of doing it. One difficulty is that a loop typically computes a more
general function than needed for a given task [35, Section 4]. A while loop is seldom used by itself
in isolation but is preceded by an initialization, which together with the loop computes something
useful. For example, the while loop in lines 7–15 of Listing1 doesn’t count the number of positive
values contained in the whole arraya. It performs a more general function, counting the number
of positive values ina starting from the indexi. When the loop variablei is set to 0, however, it
does count the whole array. In a sense, a loop in isolation doesn’t do a computation but completes it.
An initialization, e.g., settingi to 0, determines where the computation starts. An intended function
of a while loop should be written in such a way that it capturesthe completion of a computation
regardless of where the computation starts. It should be a correct generalization of the intended
function for the code containing both the initialization and the loop, and at the same time it should
be specific enough to capture the accurate result of the computation.

Formulating an intended function of a while loop requires a programmer’s insight, practice, skill,
and experience. The challenge of finding a likely intended function of a while loop is similar to
that of finding a likely loop invariant in an axiomatic approach. A loop invariantis a property that
holds before and after each repetition of a loop and is essential for understanding the effect of a
loop and proving its properties [22]. A loop invariant should be general enough to hold during each
iteration of the loop and specific enough to lead to a postcondition when the loop terminates. Many
researchers have studied the problem of finding loop invariants and proposed various static and
dynamic techniques (see Section6).

3. WHILE LOOP PATTERNS

One way to figure out a likely intended function of a while loopis to look at other loops that
have similar structures [35, Section 4.4]. If two loops have similar code structures, their intended
functions are likely to have similar structures as well. If we know the intended function of one
loop, we may be able to adapt it to derive that of the other. Besides, many intended functions of
loop control structures exhibit certain common flavors or characteristics. To capitalize on this idea,
we can develop reusable patterns of while loops along with their intended functions that can be
used as a valuable resource for formulating a candidate or likely intended function of a loop. As
mentioned earlier, for the patterns to be useful in practice, the choice and the variety of patterns
are crucial. We need to identify and accumulate a number of good patterns to cover a wide range of
loops in different types of applications. A good specification pattern should be as general as possible
to be widely applicable and usable, but at the same time it should be as specific as possible to be

DERIVATION OF LOOP SPECIFICATIONS 7

meaningful in deriving an accurate, detailed intended function. In any pattern-based approach, it
is crucial to properly document patterns [20]. Each pattern should be documented in such a way
that it is easy to determine its applicability, to instantiate it in an application, and to derive a useful
intended function from it. Furthermore, patterns need to beclassified, organized, and presented in a
pattern catalog such that they can be easily looked up and matched for. In this section we describe
how we address these requirements and explain several representative patterns that we documented
in our pattern catalog. Below we first describe a technique that we used to analyze while loops
systematically to identify recurring patterns.

3.1. Loop Analysis

The most common use of loops is to iterate over a certain sequence of values and manipulate it,
one value at a time. For example, a study indicates that 60% ofloops written in C traverse arrays in
some fashion—45.2% for non-string arrays and 14.3% for string arrays—and linked lists account
for 13.0% [25]. A loop has a chain of steps that are performed and then repeated. There are four
different types of steps or actions in the chain. The next value is obtained from the sequence being
iterated over, the obtained value is manipulated, and the manipulation result is stored. A termination
condition is checked to determine repetition of the steps; these steps are repeated unless (or until) a
certain termination condition holds. This observation provides an excellent conceptual framework
for analyzing loops systematically:examine each of these steps or actions separately and then
combine the results.Each step or action becomes a different, orthogonal dimension for analyzing a
loop. That is, a loop can be examined along the following fourdifferent analysis dimensions: (a) how
it acquires the values to manipulate, (b) what manipulationit performs on the acquired values, (c)
where the manipulation result is stored, and (d) when it stops its iteration. As an example, consider
the following while loop taken from the sample code presented in Section2.2.

1 while (i < a.length){
2 if (a[i] > k)
3 r = r + 1;
4 i++;
5 }

The sequence iterated over by the loop is the elements of the array a starting from indexi to the
end in order, i.e.,a[i..a.length− 1], and it is used as follows.

• Acquiring values: An index (i) is used to access elements ofa (a[i] in line 2) and each element
is accessed in order (i++ in line 4).

• Manipulating values: if the current value is positive, computer + 1 (lines 2-3).
• Storing results: If the current value is positive, the manipulation result is stored in a scalar

variabler (line 2). Assuming thati is an incidental variableused only for iterating over the
sequence, there is only one non-local variable that may be updated or changed.

• Determining termination: The loop terminates when the lastelement is accessed (line 1), i.e.,
when it completes iteration over all elements ofa starting from indexi.

We applied this analysis framework to study a large number ofwhile loops from several different
sources including a few well-known open-source projects (see Section5) and to identify common
patterns of while loops and their intended functions. The framework is also recommended for
analyzing a while loop to find a matching pattern in our pattern catalog (see Section4). We learned
that there is a wide range of possibilities along the four analysis dimensions, including several most
commonly-used ones described in Figure1. The acquisition dimension tells how the loop acquires
the next value of the sequence being iterated over. As shown in [25], the sequence is frequently
stored explicitly in such structures as arrays, strings, collections, streams, and files, and its elements
are accessed by using indices or various forms of iterators.It is also possible to create the elements
on-the-fly on a need basis instead of retrieving stored ones.The manipulation dimension determines
the functionality of a loop by telling how the acquired values are manipulated or what operations are

8 A. BARUA AND Y. CHEON

Acquisition

Manipulation

Termination

Storage

indexed

iterated

created

accumulating

searching

selecting

collecting
global scalar

global collection

Input collection

all
elements
accessed

certain
element

accessed
of

iterations

certain
condition

met

Figure 1. Dimensions of loop analysis

performed on them. It is often the most important analysis dimension, for it represents the purpose
of a loop. As expected, there are numerous manipulations possible, including several common types
such as accumulating, searching, counting, selecting, andcollecting (see Sections3.3–3.6). The
storing dimension tells where and how the results are stored. There are also a variety of possibilities
here, e.g., updating the input sequence and storing to output variables distinct from that of the
input sequence. For accumulation and searching, the results are stored in scalar variables while for
selecting and collecting, they are stored in vector or collection variables. The termination dimension
specifies the termination condition of a loop—a condition that stops the looping. It is the opposite
of the test condition that allows the loop to continue looping. A loop termination condition can
differ in many ways, e.g., when all elements are accessed, when a certain element is accessed,
and when a certain number of iterations has been completed. The conditions may be written in
terms of indices, iterators, values of the input sequence, and others. The four dimensions allow
one to analyze a loop in a modular, compositional fashion by examining each dimension separately
and composing the results. For example, the above while loopis a composition of an index-based
sequential acquisition, a counting manipulation, a scalarvariable storage or update, and termination
upon accessing all elements.

3.2. Pattern Documentation

We examined a large number of while loops from several different sources including programming
textbooks, class assignments, our research projects, and open-source projects. We applied the
framework and technique described above to study, group, and classify them, and from this study we
identified a number of while loop patterns that are most commonly used and we documented them
in a pattern catalog [4]. Some patterns are specializations or sub-patterns of other more general
ones. The documented patterns are language-neutral in thatthey can be applied to a wide range of
programming languages, from imperative, procedural languages to object-oriented languages. The
patterns can be matched to while loops that iterate over different implementations of index-based
collections such as arrays, strings, and sequences as well as iterator-based collections such as linked
list and pointer or reference-based collection data structures commonly found in programming
languages such as C, C++, and Java.

One interesting decision was documenting a pattern based onthe behavior of a loop body, not its
source code structure or implementation. This makes a pattern not only language neutral but also
its application modular in that it can handle nested loops byfirst figuring out the intended function
of the inner loops. As shown below, each pattern consists of two structural elements: a skeletal
intended function (f1) from which a candidate or likely intended function of a matching while loop
can be derived and an intended function of the loop body (f2).

[f1]
while (E) {
[f2]
...

}

DERIVATION OF LOOP SPECIFICATIONS 9

Table I. Main patterns documented

Name Description
Accumulating Combine certain elements of a collection into a single value
Unconditionally Accumulating Accumulate all elements of a collection
Searching Find a certain element of a collection
Selecting Filter certain elements of a collection
Unconditionally Selecting Select all elements of a collection
Collecting Select and map certain elements of a collection
Unconditionally Collecting Collect all elements of a collection

The intended functionf1 captures the behavior of the whole loop in terms off2 that specifies the
behavior of the loop body. As mentioned earlier, the loop body is not given in skeletal code but is
abstracted to an intended function so that any code segment that correctly implements the intended
function can be matched to the pattern.

We documented our patterns using a format similar to that of software design patterns [20]. Each
pattern has a name, purpose, description, structure, example, application, variations, and related
patterns. Each pattern has a name to uniquely identify it. Then, its main purpose is described briefly,
including the kind of while loops that can be matched to the pattern. The description section provides
more detailed information about the pattern including its skeletal intended function. For example,
it provides descriptions of main elements of skeletal intended function such as result variables and
the sequence being iterated over by the loop, and explains indetail the structure of the pattern. The
application section suggests a general process for applying the described pattern. It also shows a
sample application of the pattern to illustrate in a step-by-step fashion how the pattern can be used.
The variations and related patterns section lists variations possible for the described pattern, and
some of the variations are named and catalogued separately as related patterns.

In our pattern catalog we used the manipulation dimension asthe primary dimension for naming
patterns, for it shows the purposes of loops—i.e., the behavior of loops. We documented seven
major patterns along with numerous variations (see TableI) [4]. As can be guessed from the table,
some patterns are specializations of others (see Section3.7). The reason that we documented them
as separate patterns is because they have appeared frequently in the code that we studied. In the
following subsections we describe several representativepatterns in detail.

3.3. Accumulating Pattern

One common use of while loops is to combine certain elements of a collection into a single
value by applying various binary operators such as addition, multiplication, and concatenation. The
Accumulating pattern provides a skeleton intended function for these while loops. The type of the
accumulated value is often the same as that of the elements ofthe collection being accumulated.

3.3.1. NotationA while loop that matches the Accumulating pattern iteratesover a collection of
values, regardless of whether the values are read from data structures or generated on the fly. As
described in Section3.1, there are many different ways of storing and accessing the collection to be
iterated over by a loop. To specify a pattern in a language-neutral and representation-independent
way, we need to abstract away from these specific implementation details. Since its elements are
accessed in a certain order by a loop, the collection can be viewed logically as a sequence and its
elements can be denoted by specifying their positions in thesequence. The specifics of accessing
elements are also abstracted to an abstract iterator. If needed, the sequence and its iterator can
be defined formally as model variables [8]. Below we use the following notation to express and
manipulate the collection being iterated over by a loop.

• 〈〉: an empty sequence

10 A. BARUA AND Y. CHEON

• e ⊢ s: concatenation of an elemente and a sequences
• i: an abstraction of an iterator to access a sequence
• E(i): an expression written in terms of the abstract iteratori. It represents an advancement of

the iteratori to the next element, e.g.,i+ 1 for an index-based collection like an array and
i.next() for an iterator-based collection.

• s@i: i-th element of a sequences, wherei is an abstract iterator fors.

3.3.2. PatternAs mentioned earlier, a pattern is specified by a pair of intended functions, one
for the loop body and the other for the whole loop. The Accumulating pattern is specified by
referring to four different values or elements,r representing the accumulated value,s denoting
the collection whose elements are accumulated,i denoting an abstract iterator fors, and⋄ denoting
an accumulation operator.

f1: [r, i := ~⋄(r, s@i..), anything]
while (C) {
f2: [r, i := P (s@i) ? (r ⋄ s@i) : r, E(i)]

}

Let’s first examine the intended function of the loop body (f2). The loop body may change two
state variables,r andi. The variabler stores the accumulated value, andi is an abstraction of the
iterator to access the elements ofs. The new value ofr is defined by using a conditional expression
of the formE1 ?E2 : E3, denoting eitherE2 orE3 depending on the value of a Boolean expression
E1. The value ofr is defined in terms of the following expression and operator.

• P (x): a predicate defined on the elements of the sequences. It specifies the criterion for
selecting the elements to be accumulated and is a function ofthe signatureT → Boolean,
whereT is the element type ofs. For each elementx of s, it tells whetherx is to be
accumulated.

• ⋄: a binary operator of the signatureT × T → T , whereT is the element type ofs†. It’s an
accumulation operator such as addition, multiplication, and string concatenation to combine
the elements ofs.

The intended function states that the current element of thesequences (i.e.,s@i) is accumulated
in r using the accumulation operator (⋄) only if it satisfies the selection criterion (P (s@i)). The new
value ofi isE(i), denoting an advancement of the iteratori to the next element ofs.

Let’s next look at the intended function of the whole loop (f1). It is defined by promoting the
accumulation operator (⋄) to the whole sequences, denoted by~⋄. The final value ofr is defined in
terms of the following expression and operator.

• s@i..: a subsequence ofs starting ati, consisting of elements selected using the advancement
expressionE(i). It is a sequence consisting of elementss@i, s@E(i), s@E(E(i)),
s@E(E(E(i))), etc, and denotes the elements ofs that are accessed by the loop. The last
element is determined by the loop termination conditionC; if the condition fails at the first
iteration, the sequence is empty. The sequence is defined recursively.

s@i.. ,

{

s@i ⊢ s@E(i).. if i denotes a valid position ofs
〈〉 otherwise

Remember that〈〉 denotes an empty sequence and⊢ denotes concatenation of an element and
a sequence.

• ~⋄: a promotion of a binary operator⋄ to a sequence. It is a function of the signature
T × Seq(T) → T , where T is the argument and result type of⋄ andSeq(T) is a sequence

†The most general signature of an accumulator isR× T → R, whereR is the result (accumulated value) type, allowing
the accumulated value to be of different type (see Section3.3.4).

DERIVATION OF LOOP SPECIFICATIONS 11

of T . It accumulates the elements of a given sequence and a given seed value using a binary
operator⋄, and is defined recursively as follows.

~⋄(v, 〈〉) , v

~⋄(v, h ⊢ t) , P (h) ? ~⋄(v ⋄ h, t) : ~⋄(v, t)

If the given sequence is empty, it returns the seed value. If the sequence is not empty and the
first element (h) satisfies the selection criterion (P), the seed value (v) and the first element (h)
are combined using the accumulation operator (⋄) and the function is recursively applied to
the rest of the sequence. If the first element doesn’t satisfythe selection criterion, it is ignored
and the function is recursively applied to the rest of the sequence.

The intended function states that the final value ofr is ~⋄(r, s@i..), accumulation, using the⋄
operator, of those elements ofs at positionsi, E(i), E(E(i)), and so on that satisfy the selection
criterionP .

3.3.3. ExampleThe while loop below adds all positive elements of an arraya starting at indexi and
stores the result tosum. In Section4.1, it will be shown how its intended function can be derived
by applying the Accumulating pattern.

// [sum, i := sum +Σj=i..a.length−1 (a[j] > 0 ? a[j] : 0), anything]
while (i < a.length){

// [sum, i := a[i]> 0 ? a[i] : 0, i + 1]
if (a[i] > 0) {

sum = sum + a[i];
}
i++;

}

3.3.4. Variations and Related PatternsThere is a huge number of variations possible for the
Accumulating pattern. Each axis of the four-dimensional loop analysis described in Section3.1can
produce many variations, e.g., indexing vs. iterator for the acquisition dimension. Below we describe
several noticeable variations that are not mentioned in thedescription of the four-dimensional loop
analysis in Section3.1.

• Selection: The intended function of the loop body has a general form of [r, i := P (e) ? (r ⋄ e)
: r, E(i)]. One possible variation is the case where the conditionP is always true; there is
no constraint and thus all elements are accumulated. In fact, it occurs so frequently that we
defined it as a separate pattern named Unconditionally Accumulating [4]. Another possible
variation is the case where the conditionP is written in terms of the iterator itself, not the
current element. An example is to accumulate every other element of a collection,P (i), i %
2 == 0.

• Accumulator: An accumulation operator is a binary operatorsuch as addition, multiplication,
and string concatenation. Often, its two arguments are of the same type, meaning that the
accumulated value is of the same type as the element type of the sequence. In general,
however, an accumulator can be of the signatureR× T → R, where R is the result
(accumulated value) type andT is the element type. It is also possible to have more than
one accumulator, e.g., accumulating elements differentlydepending on certain conditions.

• Manipulation: The elements of a sequence are often transformed or manipulated prior to
accumulation. To incorporate this into the pattern, the intended function of the loop body
can be refined to: [r, i := P (e) ? (r ⋄M(e)) : r, E(i)]. An elemente is first transformed
by applying a functionM : T → S, that maps an element to another value, and then the
accumulator⋄: R × S → R combines the transformed value. An example is to count positive
values contained in an array, in which caseM is a constant function that always returns 1.

12 A. BARUA AND Y. CHEON

• Acquisition: Beside various ways of acquiring elements described in Section3.1, a loop can
accumulate elements of more than one sequence using either asingle iterator or multiple
iterators. An example is to accumulate elements of two different arrays using a single iterator,
e.g., [r, i := r + a[i] + b[i], i + 1] or using two iterators, e.g., [r, i, j := r + a[i] + b[j], i + 1, j
+ 1].

• Storage: It is possible for a loop to produce more than one accumulated value; it can have
multiple result variables. An example is to sum all positivevalues as well as all negative
values of an array; the loop body will have an intended function of the form [pos, neg, i :=
pos + (a[i] > 0 ?a[i] : 0),neg + (a[i] < 0 ?a[i] : 0), i + 1].

3.4. Searching Pattern

A while loop is frequently used to find an element in a collection, e.g., a largest value of an array.
This pattern provides a skeleton intended function for those while loops that search for a particular
element in a collection. The result of such a loop is typically the element found, however other
results are possible, e.g., the position or index of the element found and a flag indicating whether an
element is found or not. As in the Accumulating pattern, the intended function of the loop is defined
by promoting the function of the loop body to a sequence.

f1: [r, i := ~⋄(r, s@i..), anything]
while (C) {
f2: [r, i := P (r, s@i) ?M(s@i) : r, E(i)]
...

}

As specified inf2, the loop body may change two state variables,r andi. The variabler stores the
search result, and as explained previouslyi is an abstraction of the iterator to access the elements of
the sequences. The new value ofr is defined in terms of a predicateP and a functionM .

• P (r, e): a predicate defined on a pair of the result value and an element of the sequences. It
specifies the search criterion for elements contained ins, and is a function of the signature
R× T → Boolean, whereR andT are the result type and the element type ofs, respectively.

• M(e): a manipulation function of the signatureT → R, whereT is the element type andR is
the result type, that transforms or maps an element to the result. Frequently it is an identity
function. However, the result value doesn’t have to be the element found; it can be a flag
indicating the presence of an element in the sequence, whichcan be modeled by a constant
functionM that always returns true. Another common use of the manipulation function is to
obtain only a certain part of a composite value, e.g., only the name of an employee.

The new value ofr is the current element ofs (s@i) transformed byM (M(s@i)) if the current
element satisfies the search criterion (P (r, s@i)); otherwise,r remains the same. The new value of
i isE(i), denoting an advancement of the iteratori to the next element.

As in the Accumulating pattern, the intended function of thewhole loop (f1) is defined by
promoting the function of the loop body to the whole sequence. Specifically, the manipulation
functionM is promoted to a sequence, denoted by~⋄, a function of the signatureR × Seq(T) → R,
whereR is the result type,T is the element type of the sequences, andSeq(T) is a sequence of type
T . It calculates the result from a given sequence using the manipulation functionM and is defined
recursively.

~⋄(r, 〈〉) , r

~⋄(r, h ⊢ t) , P (r, h) ? ~⋄(M(h), t) : ~⋄(r, t)

If the given sequence is empty, it returns the given result value (r). If the sequence is not empty and
the first element (h) and the given result value satisfies the search criterion (P), the first element
is transformed usingM and the function is recursively applied to the rest of the sequence. If the
first element doesn’t satisfy the search criterion, it is ignored and the function is recursively applied

DERIVATION OF LOOP SPECIFICATIONS 13

to the rest of the sequence. In summary, the intended function f1 states that the final value ofr is
~⋄(r, s@i..), a transformed value of the elements ofs at positionsi, E(i), E(E(i)), and so on that
satisfy the search criterionP .

An example loop that matches the Searching pattern is shown below. It finds a maximum value
of an arraya starting at indexi and stores it inr.

// [r, i := ~max(r, a, i), anything]
// where ~max(r, a, i), i > a.length− 1 ? r : ~max(max(r, a[i]), a, i+1)
while (i < a.length){

// [r, i := a[i] > r ? a[i] : r, i + 1]
if (a[i] > r) {

r = a[i];
}
i++;

}

There are many variations possible for the Searching pattern. In fact, most of the variations
mentioned for the Accumulating patterns are also applicable to the Searching patterns, e.g.,
unconditional selection, various manipulations, multiple acquisitions, and multiple results.
However, most interesting variations of the Searching pattern are about the termination of the search.
When searching an element in a collection, there are severaldifferent ways of terminating the search,
e.g., terminating as soon as an element is found or continuing to the last element of the collection.
The first case is for finding the first occurrence of a matching element and the second for finding the
last occurrence. In the pattern specification, this is somewhat implicitly modeled by the sequence
“s@i..”. If needed, however, we can model the termination choice explicitly. For example, the first
case can be modeled by the following definition of~⋄.

~⋄(e, 〈〉) , e

~⋄(e, h ⊢ t) , P (e, h) ? M(h) : ~⋄(e, t)

3.5. Selecting Pattern

This pattern provides a skeleton intended function for those while loops that select some elements
of a collection and store the selected elements in the same ora different collection (see Figure2).
The element type of the result collection is the same as that of the input collection.

v0 v3 v4 v5 v6 v7 v8v1 v2

v0 v2 v3 v6

v9

v7

j

if P(v)

otherwise

i

in

out

v

v

Figure 2. Selecting pattern

3.5.1. NotationThe sequence notation introduced earlier is extended to specify the Selecting
pattern. A collection iterated by a loop is viewed logicallyas a sequence, and a sequence is now
modeled as a partial function from indices to elements. For example, a string sequences consisting
of two elements, say “Hello” and “World”, is now viewed as a partial function from integers to
strings,〈0 7→ “Hello”, 1 7→ “World” 〉. We use the following notation to express and manipulate a
sequence as a partial function.

• s@i: i-th element of a sequences, wherei an abstract iterator fors denoting an index; it’s
short fors(i).

14 A. BARUA AND Y. CHEON

• s@I: a subsequence of a sequences, consisting of elements at positions specified by an
ordered index setI. It is a sequence consisting of elements projected by the index setI,
e.g.,〈0 7→ 10, 1 7→ 20, 2 7→ 30〉@{0, 2} ≡ 〈0 7→ 10, 2 7→ 30〉

• dom: domain of a sequence, e.g.,dom 〈0 7→ 10, 1 7→ 20〉 ≡ {0, 1}. The result is an ordered
set.

• ran: range of a sequence, e.g.,ran 〈0 7→ 10, 1 7→ 20〉 ≡ {10, 20}. The result is an ordered
bag.

• ⊎: function overriding. The expressionf1 ⊎ f2 maps everything in the domain off2 the same
value asf2 does, and everything else in the domain off1 to the same value asf1 does,
e.g., 〈0 7→ 10, 1 7→ 20〉 ⊎ 〈1 7→ 30, 2 7→ 40〉 ≡ 〈0 7→ 10, 1 7→ 30, 2 7→ 40〉. If the domains of
two functions are disjoint, it is the union of the two functions.

3.5.2. PatternThe pattern is specified by referring to the input and the result collections (in and
out) along with their iterators (i andj) and the criterion for selecting elements (P) (see below).
The iterators are used to access and store the elements of collections. The variablein denotes the
collection whose elements are to be selected. Since its elements are accessed in a certain order in
a loop, it is viewed logically as a sequence, and its elementsare denoted by their positions in the
sequence. For this, an abstract variablei—an abstraction of the iterator to access the elements of the
collection—is introduced, and the notationin@i is used to denote thei-th element of the sequence
in. Similarly variablesout andj are used to denote the result sequence and its iterator, respectively.

f1: [out@D, i, j := R, anything, anything]
whereD andR are domain and range of~⋄(in, out, i, j, 〈〉)

while (C) {
f2: [out@j, i, j := P (in@i) ? in@i : out@j, E1(i), P (in@i) ?E2(j) : j]
...

}

The intended function of the loop body (f2) states that the loop body may change three state
variables,out, i andj. The variableout contains the selected elements, andi andj are abstractions
of the iterators to access the elements ofin andout. P is a predicate defined on the elements of the
sequencein. It’s a function of the signatureT → Boolean, whereT is the element type ofin, and
specifies the selection criterion. IfP (x) is true for an elementx of in, x should be selected. The new
value ofout@j is the current element ofin (i.e., in@i) if the current element satisfies the selection
criterion (P (in@i)); otherwise, it’s the same as the old value. The iteratorsi andj advance to the
next elements, however, forj only if s@i is selected. Operationally, the intended function states
that if the element inin at positioni satisfies the conditionP , it will be stored inout at positionj;
otherwise, the element ofout at positionj remains the same.

Now let’s examine the intended function of the whole loop (f1). The loop selects the elements
of in that satisfy the selection conditionP and stores the selected elements inout. The intended
functionf1 specifies this behavior by promoting the selection and storing of individual elements to
the whole sequences, as denoted by~⋄. Remember that the notationout@D denotes a subsequence
of out indexed by an ordered index setD, whereD is the domain of~⋄. The function~⋄ determines
the elements (ofin) to be selected along with their new indices (inout). It is defined by promoting
the intended function of the loop body specified at the element level to a sequence and is defined
recursively as follows.

~⋄(in, out, i, j, r) ,
r if ¬C(in, out, i, j)
~⋄(in, out, E1(i), E2(j), r ⊎ 〈j 7→ in@i〉) if C(in, out, i, j) ∧ P (in@i)
~⋄(in, out, E1(i), j, r) otherwise

The last argument (r) is an accumulator storing the index-value pairs of the selected elements. The
conditionC is the loop termination condition and may be written in termsof in, out, i andj. The
three cases represent (1) when all iterations are completed, (2) when the current element is selected

DERIVATION OF LOOP SPECIFICATIONS 15

as it satisfies the selection criterion, and (3) when the current element is not selected as it doesn’t
satisfy the selection criterion. The⊎ symbol denotes function overloading. With this definition,
~⋄(in, out, i, j, 〈〉) denotes the selected elements as a partial function from indices to values.

3.5.3. ExampleThe while loop below copies all positive elements of an arraya starting at indexi
to b starting at indexj.

/∗ [b[j..j+n−1], i, j := ~⋄[i..a.length−1], anything, anything]
∗ where n is the number of positive values in array a starting atindex i and~⋄ is defined below.
∗ ~⋄(〈〉) , 〈〉

∗ ~⋄(h ⊢ t) , h > 0 ? h ⊢ ~⋄(t) : ~⋄(t) ∗/
while (i < a.length){
// [b[j], i, j := a[i] > 0 ? a[i] : b[j], i + 1, a[i] > 0 ? j + 1 : j]
if (a[i] > 0) {

b[j] = a[i];
j++;

}
i++;

}

3.5.4. Variations and Related PatternsLike previous two patterns there are many variations
possible for the Selecting pattern. Most of the variations mentioned for the Accumulating pattern are
also applicable to this pattern, including various manipulations, multiple acquisitions and multiple
results. Below we describe several noticeable variations,specific to the Selecting pattern.

• Selection: The intended function of the Selecting pattern has a general form of[out@j, i, j :=
P (in@i) ? in@i : out@j, E1(i), E2(j, in@i)], and one variation is the case where the
selection conditionP is always true; that is, all elements are selected. Since it occurs so
frequently we documented it as a separate pattern named Unconditionally Selecting [4].

• Transformation: The selected elements may be transformed before they are collected. In fact,
it is so common that it was documented and cataloged as a separate pattern named Collecting
pattern (see Section3.6). The Selecting pattern is a specialization of the Collecting pattern
where the transformation is an identity function.

• Storage: Instead of storing the selected elements to another collection, it is possible to store
them to the input collection, e.g., shifting elements[a[i− 1], i := a[i], i+ 1].

3.6. Collecting Pattern

A while loop is often used to collect certain elements of a collection. It picks elements that satisfy
a certain condition, transform them, and stores the resultsin the same or a different collection. The
Collecting pattern captures this use of while loops. It is a generalization of the Selecting pattern (see
Section3.5), and the element type of the result collection may be different from that of the input
collection.

3.6.1. PatternAs in the Selecting pattern, the intended function of the loop is defined by referring
to the input and the result collections (in andout) along with their iterators (i andj), the element
selection criterion (P), and the function to transform the selected elements (M). In fact, the
specification of this pattern is almost identical to that of the Selecting pattern, and the only difference
is the introduction of a transformation function denoted byM .

f1: [out@D, i, j := R, anything, anything]
whereD andR are domain and range of~⋄(in, out, i, j, 〈〉)

while (C) {
f2: [out@j, i, j := P (in@i) ?M(in@i) : out@j, E(i), P (in@i) ?E2(j) : j]
...

16 A. BARUA AND Y. CHEON

}

The intended function of the loop body (f2) states that the loop body may change three state
variables,out, i andj. The variableout contains the collected elements, andi andj are abstractions
of the iterators to access the elements ofin andout. P is a predicate defined on the elements of the
sequencein. It’s a function of the signatureT → Boolean, whereT is the element type ofin, and
specifies the selection criterion. IfP (x) is true for an elementx of in, x should be collected.M is
a function defined on the elements of the sequencein with a signatureT → R, whereT andR are
the element type ofin andout, respectively, It maps or transforms the selected elementsto possibly
different values. The new value ofout@j is the current element ofin (i.e., in@i) transformed using
M if the current element satisfies the selection criterion (P (in@i)); otherwise, it’s the same as the
old value. The iteratorsi andj advance to the next elements, however, forj only if s@i is collected.
Operationally, the intended function states that if the element inin at positioni satisfies the condition
P , it will be stored inout at positionj after transformed usingM ; otherwise, the element ofout at
positionj remains the same.

As expected, the intended function of the whole loop (f1) is defined by promoting the selection,
transformation and storing of individual elements to the whole sequences, as denoted by~⋄. The
function~⋄ gives the transformed values of the elements (ofin) to be collected along with their new
indices (inout), and its definition is identical to that of the Selecting pattern except for the use of a
transformation functionM .

~⋄(in, out, i, j, r) ,
r if ¬C(in, out, i, j)
~⋄(in, out, E1(i), E2(j), r ⊎ 〈j 7→ M(in@i)〉) if C(in, out, i, j) ∧ P (in@i)
~⋄(in, out, E1(i), j, r) otherwise

With the above definition,~⋄(in, out, i, j, 〈〉) denotes the collected elements as a partial function
from indices to values, whose range (R) becomes the new value ofout@D.

3.6.2. ExampleThe while loop below collects all positive elements of an array a starting at index
i by multiplying 2 to them and storing the results in an arrayb starting at indexj. In Section4.2
we will show how the intended function of a similar loop can bederived by applying the Collecting
pattern.

/∗ [b[j..j+n−1], i, j := ~⋄[i..a.length−1], anything, anything]
∗ where n is the number of positive values in array a starting atindex i and~⋄ is defined below.
∗ ~⋄(〈〉) , 〈〉

∗ ~⋄(h ⊢ t) , h > 0 ? h ∗ 2 ⊢ ~⋄(t) : ~⋄(t) ∗/
while (i < a.length){
// [b[j], i, j := a[i] > 0 ? a[i]∗2 : b[j], i + 1, a[i] > 0 ? j + 1 : j]
if (a[i] > 0) {

b[j] = a[i] ∗ 2;
j++;

}
i++;

}

3.6.3. Variations and Related PatternsAll the variations of the Selecting pattern are also applicable
to the Collecting pattern, for the Selecting pattern is a specialization of the Collection pattern
in which the transformation function is an identity function. As in the Selecting pattern, if the
collecting condition is always true, all elements are collected, and this is documented and cataloged
as a separate pattern named Unconditionally Collecting. There is a wide range of transformations
possible, e.g., collecting indices of the elements not the elements themselves, and due to the
transformation, many interesting variations are possiblealong the storage dimension. For example,
a loop may have more than one result collection, e.g., element-wise sum and product of two

DERIVATION OF LOOP SPECIFICATIONS 17

arrays which can be accomplished by a loop body with an intended function[sum[i], prod[i], i :=
a[i] + b[i], a[i] ∗ b[i], i+ 1].

3.7. Discussion

The most common use of loop control structures is to iterate over a certain sequence of values
and manipulate the values of the sequence, regardless of whether the values are retrieved from
data structures or created on-the-fly. A loop pattern is defined in terms of the manipulation of
individual values specified by the intended function of the loop body. In particular, the manipulation
of individual values is promoted to the whole sequence to specify the intended function of the whole
loop. Therefore, depending on how we define the manipulationof individual values, we can have
a wide variety of patterns possibly at many different levelsof abstraction. At the highest level of
abstraction, the intended function of the loop body may be written as[r, i := F (~v), E(~v)], whereF
andE calculate new values ofr andi, respectively, in terms of the initial values of variables~v that
may includer, i, and of course the sequence being iterated over, and the intended function of the
whole loop can be defined by promoting or extendingF to the whole sequence. For example, if the
intended function of a loop body is[r := r + (a[i] ∗ 2)], F is defined asF (r, a, i) , r + (a[i] ∗ 2).
At the next level of abstraction, the functionF can be further decomposed intoS(M(~v), ~v), where
M is an abstraction of the individual value manipulation andS is a storage function. This level
of abstraction corresponds to the way we examine a loop alongthe four analysis dimensions.
For the same intended function[r := r + (a[i] ∗ 2)], F is now refined toS(r,M(a, i)), where
M(a, i) , a[i] ∗ 2 andS(r, x) , r + x. Each ofM , F , andE can be further decomposed or refined,
say to introduce a condition to model a conditional manipulation, storage, or advancement as done
in some of our patterns.

Unconditionally
Accumulating

Unconditionally
Selecting

Collecting

Searching

Counting

Unconditionally
Counting

Accumulating

Unconditionally
Collecting

Selecting

Iterating

Unconditionally
Iterating

Figure 3. Pattern hierarchy

There is one nice consequence of decomposing value manipulations and defining patterns by
promoting individual value manipulations to sequences. Patterns can be classified into a pattern
hierarchy (see Figure3). There exists at the root of the hierarchy a pattern whose loop body has
an intended function[r, i := F (~v), E(~v)]. It’s sort of a universal pattern applicable to any loop
that iterates over a sequence of values, but it’s less usefulin practice because it’s so abstract;
it doesn’t provide much help in understanding a loop or guiding derivation of a detailed, likely
intended function of the loop. A generalized pattern is applicable to a wide range of loops,
but its specification is more abstract and thus provides lesshelp in deriving a detailed intended
function from its application. A specialized pattern, on the other hand, is more specific with limited
applicability but provides more help in deriving a detailedintended function. The pattern hierarchy
is extensible in that one can easily define and add a new pattern by refining or specializing the value
manipulation function of an existing pattern. For example,we can introduce a new sub-pattern of
Accumulating, named Counting, to count the number of elements of a collection that meet a certain
condition (see Figure3). For this, the function of Accumulating,P (s@i) ? (r ⋄ s@i) : r, is refined

18 A. BARUA AND Y. CHEON

to P (s@i) ? (r + 1) : r‡. The pattern hierarchy can also be used to find matching patterns for a
loop by starting from more general patterns moving down to more specific ones.

Our patterns are compositional in two different senses. A pattern can be decomposed along
the four, orthogonal dimensions of the loop analysis: valueacquisition, value manipulation, loop
termination, and result storage (see Section3.1). Even though our patterns are named along the
value manipulation dimension, each dimension contributesto the definition of a pattern and, in fact,
produces new patterns or variations, typically more specific ones, e.g., Index-based Accumulating.
As a consequence, a new pattern can be assembled by selectingan appropriate combination of values
from the four analysis dimensions, one from each dimension (see Section4.1). A loop can change
more than one non-local variable, and our patterns can be used to derive an intended function of
such a loop. An appropriate pattern is applied for each result variable to determine its final value,
and all the variables along with their final values are listedtogether in an intended function to come
up with an intended function of the whole loop (see Section4.2 for an example).

4. APPLICATION OF PATTERNS

In this section we first suggest a general process for applying all documented patterns and their
variations. We then apply two of our patterns to sample code.The following four steps are
recommended for applying a pattern to derive an intended function of a while loop.

1. Formulate an intended function of the loop body.
2. Find a matching pattern from the pattern catalog.
3. Unify intended functions of the code and the pattern.
4. Instantiate the intended function of the pattern.

The first step is to formulate and specify the behavior of the loop body, for a pattern is specified
in terms of the intended function of the loop body, not its code structure. If the code of the loop
body doesn’t contain any nested loops, its code function maybe systematically calculated using
techniques like trace tables [35, 36]. Essentially, one will need to identify and list all the state
variables that are mutated by the code and specify their new values typically in terms of their old
values. If the loop body contains other loops, however, the intended functions of the nested loops can
be found first by applying the patterns from the pattern catalog. In any case, the intended function
or code function of the loop body should document all the sideeffects produced by the loop body,
i.e., state changes caused by a single iteration of the loop.Note that it is possible for a loop to have
more than one input collection or output variable (see below).

Once the behavior of the loop body is formulated and specifiedin an intended function, the next
step is to match the loop to one of the patterns documented in the catalog. For this, it is suggested
to examine the loop along the four analysis dimensions described in Section3.1: (a) how it acquires
the values to manipulate, (b) what operation or manipulation it performs on the acquired values,
(c) where and how the manipulated value is stored, and (d) when it terminates the iteration. Most
of the analysis, especially acquisition, manipulation, and storage are likely to have been performed
already and documented in the intended function of the loop body. The loop body will have an
intended function of the following general form:

[s1, s2, · · · , sn := M1(e, s1),M2(e, s2), . . . ,Mn(e, sn)]

wheresi is a state variable whose value may be changed in the loop body, e is the current element
of the collection being iterated over,Mi is a manipulation function defining the new value ofsi
usually in terms of its old value and the current element of the collection. The state variablesi is
either a result variable or an iterator, and the current element e is typically given in terms of an
iterator. If a loop has more than one result variable, one needs to find a pattern and apply it for

‡It is also possible to refine the function of Searching,P (r, s@i) ?M(s@i) : r, toP (s@i) ? (r + 1) : r.

DERIVATION OF LOOP SPECIFICATIONS 19

each result variable; it is also possible for a loop to have more than one input collection. To find a
matching pattern, compare the manipulation function,Mi, with those of the patterns in the catalog.
For example,Mi can be matched to the Accumulating pattern if it has the formP (e) ? e ⋄ si : si,
wheresi is a result variable,P is a predicate defined on the elements of an input collection,⋄ is a
binary (accumulation) function defined on a tuple of the result and an element of the input collection
(see Section3.3 for the Accumulating pattern).

Once a matching pattern is found, the next step is to define a mapping or correspondence between
variables, symbols, and expressions appearing in the intended functions of the loop body of the code
and the matched pattern. This mapping will allow one to derive an intended function of the code
from the skeletal intended function given by the pattern.

The last step is to derive an intended function of the code by instantiating the skeletal intended
function of the pattern. For this, one needs to replace variables, symbols, and expressions appearing
in the skeletal intended function with the corresponding ones of the code, given by the binding
defined in the previous step.

4.1. Accumulating Pattern

In this subsection we illustrate in detail an application ofthe Accumulating pattern using the
example loop shown in Section3.3, which is copied below.

while (i < a.length){
if (a[i] > 0) {

sum = sum + a[i];
}
i++;

}

We first formulate the intended function of the loop body. Thecode function of the loop body can
be written straightforwardly;a[i] is added tosum only if it is positive, andi is always incremented
by 1. Thus, its code function is:[sum, i := a[i] > 0 ? sum+ a[i] : sum, i+ 1].

We next find a matching pattern. The loop body of the Accumulating pattern has an intended
function of the form[r, i := P (s@i) ? s@i ⋄ r : r, E(i)], wherer is a result variable,i is an iterator,
P is a predicate defined on the elements of an input collection,⋄ is a binary (accumulation)
function defined on a tuple of the result and an element of the input collection (see Section3.3
for the Accumulating pattern). The structures of both functions are identical. The intended function
of the loop body matches that of the Accumulating pattern with the binding{r 7→ sum, i 7→
i, e 7→ a[i], P (e) 7→ e > 0, e ⋄ r 7→ r + e, E(i) 7→ i + 1}. It is also easy to see that the loop has
the following characteristics; decision trees such as the ones shown in Figure4 can be useful in
identifying loop characteristics.

• Acquisition: index-based (i, a[i]) and sequential (i+ 1)
• Manipulation: addition (+)
• Storage: scalar variable update (sum)
• Termination: when all elements are accessed (i < a.length)

We unify intended functions of the code and the matching pattern. We map terms such as
variables, symbols and expressions from the matching pattern to those of code, and the result is
summarized in TableII .

Finally, we can now instantiate the skeletal intended function of the pattern using the binding
defined in the previous step (see TableII).

[r, i := (r, s@i..), anything] ≡ [sum, i := ~⋄(sum, a[i..a.length− 1]), anything]

where is~⋄ also instantiated as follows.

~⋄(v, 〈〉) , v

~⋄(v, h ⊢ t) , v > 0 ? ~⋄(v + h, t) : ~⋄(v, t)

20 A. BARUA AND Y. CHEON

Acquisition Manipulation

Termination Storage

created

indexed iterated

accumulating
searching selecting

collecting

conditional
unconditional

global

scalar collection

Input collection
elements accessed

of iterations

…

all
certain

…

retrieved

Figure 4. Decision trees for analyzing a loop

Table II. Mapping of terms

Pattern Code
Intended function Term Term Intended function

s a

r sum

[r, i := P (s@i) ? i i [sum, i := a[i] > 0 ?
(r ⋄ s@i) : r, E(i)] P (x) x > 0 sum+ a[i] : sum, i+ 1]

x@i x[i]
[r, i := ~⋄(r, s@i..), anything] x ⋄ y x+ y

E(x) x+ 1
x@i.. x[i..a.length− 1]

Note that~⋄ denotes the sum of all positive elements of the given array plus the given value, and thus
it can be rewritten using a more familiar mathematical notation: ~⋄(sum, a[i..a.length]) ≡ sum+
Σj=i..a.length−1(a[j] > 0 ? a[j] : 0). Therefore, the derived intended function can be rewrittenas:

[r, i := sum+Σj=i..a.length−1(a[j] > 0 ? a[j] : 0), anything]

which matches the intention of the loop, i.e., calculating the sum of all positive numbers stored in
the arraya starting at indexi.

4.2. Collecting Pattern

In this subsection we will analyze a code snippet taken from aBattleship game server written in
Java. Battleship is a guessing game played by two players on grids, usually10× 10, of squares (see
Figure5). Each player has a fleet of ships and each ship occupies a number of consecutive squares
on the grid, arranged either horizontally or vertically.

The code shown in Listing2 is excerpted from a method that processes a ships deployment
message sent by a Battleship client, requesting to place a player’s ships on the opponent’s board.
The body of a deployment message is a string of the formn1, s1, x1, y1, b1, ..., nm, sm, xm, ym, bm,
whereni is the name of a ship,si is its size,xi andyi are the coordinate of the starting square,
bi is its direction, true for horizontal and false for vertical. An example deployment message is:
“Aircraft carrier, 5, 10, 1, false, Battleship, 4, 2, 1, true, Frigate, 3, 2, 3, false, Submarine, 3, 3, 9,
true, Minesweeper, 2, 4, 10, true”. The loop takes the body ofa deployment message, given as a
string tokenizer namedtokensof type StringTokenizer, and processes it by placing ships at specified
squares on a Battleship board namedboard (see Figure6).

Let’s analyze the loop in isolation and derive its intended function. The loop has an input variable,
tokens, and two output variables,board andnoError. The variabletokens is an input collection,

DERIVATION OF LOOP SPECIFICATIONS 21

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Figure 5. Battleship board

Listing 2. Code from a Battleship game server

1 StringTokenizer tokens =newStringTokenizer(msgBody, ‘‘,’’);
2 booleannoError =true;
3 while (noError && tokens.hasMoreTokens()){
4 try {
5 String name = tokens.nextToken();
6 int size = Integer.parseInt(tokens.nextToken());
7 int x = Integer.parseInt(tokens.nextToken());
8 int y = Integer.parseInt(tokens.nextToken());
9 booleandir = Boolean.parseBoolean(tokens.nextToken());

10 Battleship ship =newBattleship(name, size);
11 noError = board.placeShip(ship, x, y, dir)
12 } catch (Exception e){
13 noError =false;
14 }
15 }

n1 y1 d1 n2 s2 x2 y2s1 x1 d2tokens

board

Figure 6. Behavior of the loop

however, it can also be regarded as an output variable if one cares about its final value; its state can
be changed by a built-in iterator (nextT oken). We will abstract from this specific implementation
detail and use a pseudo variablei to denote its iterator as we did in our patterns documentation. To
find a matching pattern, we first need to formulate the intended function of the loop body. Note that
the loop body make a call to theplaceShip(ship, x, y, dir) method defined in the Board class. We
need to know its behavior, ideally documented in an intendedfunction. Let’s assume its behavior is

22 A. BARUA AND Y. CHEON

specified as follows.

[result, this := placeable(this, ship, x, y, dir),

placeable(this, ship, x, y, dir) ? this⊕ (ship, dir) : this]

where pseudo variablesresult and this represents the return value and the receiver, and
placeable(b, s, x, y, d) is a predicate telling whether a ships can be placed at a position(x, y) of
a boardb horizontally or vertically (d). A ship can be placed on a board if it doesn’t overlap with
other ships. The⊕ operator models placement of a ship on a board; the result is the same as the given
board except that the specified squares are now occupied by the given ship. We now can formulate
the intended function of the loop body consisting of atry-catch statement. We will consider the
try clause first. All the variables except fornoError andboard are local variables and invisible
in the final state, and thus they shouldn’t appear in the intended function of thetry clause shown
below.

[noError, board, i := spl, spl ? board⊕ (s, x, y, d) : board, i+ 5]

wherespl , placeable(board, s, x, y, d), s, new Battleship(n, l), n, tokens@i, l , tokens@(i+
1), x, tokens@(i+ 2)τ , y , tokens@(i+ 3)τ , andd, tokens@(i+ 4)τ . For stringv, we use the
notationvτ to model parsingv to the value of an appropriate type (int or boolean). The intended
function essentially states that tokens fromtokens are transformed to appropriate values (int,
boolean, and Battleship) and the results are stored inboard. The intended function of thecatch
clause is[noError := false]. We combine both functions to come up with an intended function of
the loop body.

[tokensOk ∧ placeable(this, ship, x, y, dir)→

noError, board, i := true, board⊕ (s, x, y, d), i+ 5

| otherwise → result, i := false, i+ δ]

(1)

where tokensOk is a predicate indicating the existence of four more tokens and their well-
formedness (no parsing error).δ is an offset in the range of 0 and 4; it is the offset of the first
token that is not well-formed, the offset of the last token ifthere exists less than 4 tokens intokens,
or 4 otherwise. Note that we use aconditional concurrent assignment, a concurrent assignment that
may have an optional condition or guard followed by an→ symbol [35, 36]. It specifies a partial
function that is defined only when the condition holds.

Before we match the above intended function to a pattern, let’s examine the loop along the four
different analysis dimensions. We can easily see the following characteristics.

• Acquisition: built-in iterator of StringTokenizer (nextT oken())
• Manipulation: transformation to battleships forboard and to true/false fornoError

• Storing: scalar (noError) and collection (board)
• Termination: when all elements are accessed (hasMoreTokens()) or upon an error

As shown above, the code mutates two state variables,board andresult, and each can be matched
to a different pattern to find its final value. Let’s first consider the main state variableboard. From
the intended function1 above, we can extract those parts that are concerned with theside-effect on
board.

[board := tokensOk ∧ placeable(board, s, x, y, d) ? board⊕ (s, x, y, d) : board]

Structurally it can be matched to both the Accumulating and the Collecting patterns. It depends
on one’s view of a board, a single entity (accumulation) or anaggregation (collection) of ships.
Since we have already shown an application of the Accumulating pattern in the previous subsection,
we will match it to the Collecting pattern. In fact, this is a sensible decision, for we can rewrite
the intended function as[board@(x, y) := tokensOk... ? (s, d) : board@(x, y)] using an indexing

DERIVATION OF LOOP SPECIFICATIONS 23

notation; a board is viewed abstractly as a map from x-y coordinates to ship-direction pairs. When
it is convenient, we will use this indexing notation and the map view below. The intended function
of the Collecting pattern is[out@D := R], whereD and R are the domain and the range of
~⋄(in, out, i, j, 〈〉), and~⋄ is defined as follows (see Section3.6).

~⋄(in, out, i, j, r) ,
r if ¬C(in, out, i, j)
~⋄(in, out, E1(i), E2(j), r ⊎ 〈j 7→ M(in@i)〉) if C(in, out, i, j) ∧ P (in@i)
~⋄(in, out, E1(i), j, r) otherwise

Remember thati andj are abstract iterators forin andout, respectively. The pattern’s intended
function can be instantiated to[board@D := R], whereD andR are the domain and the range of
~⋄(tokens, board, i, 〈〉) and~⋄ is defined below. Note that the iteratorj is dropped because it is unified
to (x, y) calculated on the fly.

~⋄(tokens, board, i, r) ,
r if ¬(tokensOk ∧ placeable(board, s, x, y, d))
~⋄(tokens, board, i+ 5, r ⊎ 〈(x, y) 7→ (s, d)〉) otherwise

wheres, x, y, d are defined as before; they are parsed fromtokens using the iteratori. Note that
recursion terminates if current tokens are not well formed or the parsed ship can’t be placed on the
board.

We next consider theresult variable, whose final value can be specified as[result :=
tokensOk ∧ placeable(this, s, x, y, d)], extracted from the intended function1 above. The intended
function can be matched to the Searching and the Accumulating patterns, e.g., searching for
an erroneous situation or accumulating boolean values. In either case, the pattern’s intended
function can be straightforwardly instantiated to[result := ~⋄(tokens, board, i)], where~⋄ is defined
recursively as follows; we overload the~⋄ symbol for calculating values ofboard andresult.

~⋄(tokens, board, i) ,
true if i is invalid (i.e., no more token)
false if ¬(tokensOk ∧ placeable(board, s, x, y, d))
~⋄(tokens, board⊕ (s, x, y, d), i + 5) otherwise

The last step is to combine the two intended functions, and wehave [board@D, result, i :=
R,~⋄(tokens, board, i), anything], where D and R are the domain and the range of
~⋄(tokens, board, i, 〈〉). If one cares about the final value oftokens, then the final value ofi can
be defined precisely by overloading~⋄ as done forresult.

5. EVALUATION

We performed a case study to evaluate our patterns, in particular, to determine their applicability
in real applications. We applied our patterns to source codeof several open source projects
available from the Apache Software Foundation (http://www.apache.org). We picked several target
applications for our study to address the great diversity insoftware applications, e.g., systems
programming, business applications, scientific applications, and Web software. We restricted the
implementation languages to Java and C, two of the programming languages that we are most
familiar with and that are also the most popular in practice.Listed below are the target applications
picked up for our case study.

• Chukwa 0.5: An open source data collection system for monitoring large distributed systems
including a toolkit for for displaying, monitoring and analyzing the collected data [16]. It is
written in Java and JavaScript.

• Commons Math 3.3: A library of lightweight, self-containedmathematics and statistics
components addressing the most common practical problems not immediately available in
the Java programming language [17].

24 A. BARUA AND Y. CHEON

• HTTP Server 2.0.65: A popular, open-source HTTP server written in C [13].
• Jmeter 2.11: An application designed to test and measure performance of Web applications

[14]. It is written in Java.
• Syncope 1.2.0-M1: a framework and system for managing digital identities in database

applications and enterprise environments, implemented inJava EE [15].

We found total 2180 while loops in the source code of these applications, and among these we
pick 126 loops for our study (see TableIII). From each application we first selected randomly source
code files containing while loops and then picked one arbitrary loop from each selected file.

Table III. Number of loops

Sources Samples
Loops Files Loops/Files

Chukwa 173 60 24
HTTP 1300 250 13
Jmeter 335 158 25
Math 348 164 55
Syncope 24 16 9
Total 2180 648 126

The initial plan for our study was to derive the intended functions of all the selected loops by
following the step-by-step processes described in the applicable patterns, working one loop at a time.
However, we soon learned that many loops have similar flavorsor structures, and the processes of
deriving their intended functions are almost identical. Thus, for groups of similar loops we applied
our patterns only to one or two representative loops, and forthe rest of loops we just identified
unless there are any interesting aspects on the pattern applications.

Table IV summarizes the coverage of our patterns measured in the number of loops that were
successfully matched to our patterns and thus whose intended functions were derived, or likely to
be derivable, from the patterns. The column labeled “Mul” shows the number of loops that were
matched to more than one pattern, i.e., loops that have more than one primary output variable, and
the “Not” column shows loops that couldn’t be matched to any of our patterns (see below for details).
The result is very promising in that 96% of loops were matchedto our patterns, meaning that their
intended functions were, or could be, derived using the patterns. It’s also interesting to learn that
the distributions of matching patterns vary among applications (see Figure7), but on average the
Collecting pattern occurs most commonly at 36%.

Table IV. Statistics of matching patterns

Acc (%) Sea (%) Sel (%) Col (%) Mul (%) Not (%) Total
Chukwa 4 (17) 1 (4) 6 (25) 9 (38) 4 (17) 0 (0) 24
HTTP 4 (31) 2 (15) 2 (15) 5 (38) 0 (0) 0 (0) 13
Jmeter 3 (12) 1 (4) 11 (44) 3 (12) 4 (16) 3 (12) 25
Math 11 (20) 18 (33) 8 (15) 13 (24) 3 (5) 2 (4) 55
Syncope 2 (22) 1 (11) 0 (0) 6 (67) 0 (0) 0 (0) 9

Total
24 (19) 23 (18) 27 (21) 36 (29) 11 (9)

5 (4) 126
121 (96)

Below we describe some of observations, findings, and lessons learned from our case study
along with other interesting topics of discussion. There are several loops that didn’t match
any of our patterns. These are loops mainly written for non-functional behavior. In Jmeter, for

DERIVATION OF LOOP SPECIFICATIONS 25

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Chukwa HTTP Jmeter Math Syncope

Acc Sea Sel Col Mul

0

5

10

15

20

25

30

35

Acc Sea Sel Col Mul Not

Figure 7. Percentage of matching patterns: overall (left) and individual applications (right)

example, we found several loops written for clock, timing, and concurrency using methods like
System.currentTimeMillis() and Thread.sleep(). They don’t match any of our patterns, for our
patterns are for functional aspects of sequential programs. The two loops from the Commons Math
package are concerned about GUI operations calling GUI methods such as repaint(). In theory it’s
possible to model them as state changes, but in practice there is no benefit of doing so, for there is a
better way of modeling user interfaces.

As a study has shown, the most common use of loops is to iterateover a certain sequence of values,
stored explicitly in data structures such as arrays [25]. We learned that such loops are relatively easy
to analyze in order to find matching patterns. More difficult ones are those that generate values on the
fly. In Commons Math, loops are mostly used for performing mathematical calculations involving
all sorts of numerical operations. A significant number of loops iterate on numbers determined on
the fly, not over a stored sequence of numbers, and often it’s not straightforward to figure out the
sequence of numbers being iterated over. However, once the imaginary sequences of numbers are
identified and defined correctly, the applications of patterns are often straightforward. For example,
the following loop from the Commons Math package takes two numbersa andb, and repeats the
loop body an indefinite number of times.

while (a != b){
final int delta = a− b;
b = Math.min(a, b);
a = Math.abs(delta);
a≫= Integer.numberOfTrailingZeros(a);

}

The next values ofa and b are determined on the fly, i.e.,min(a, b) and |a− b|≫, wherex≫

denotes a right shifting ofx by the number of trailing zero bits. Abstractly, the loop canbe thought
of taking two sequence of numbers, say~a and~b, determined by the initial values ofa andb, and
iterate over them. Ifa andb are initially 10 and 7, then~a and~b will be 〈10, 3, 1, 1〉 and〈7, 7, 3, 1〉.
And the final values of botha andb will be 1, for the loop searches for a pair-wise equivalent value,
which is always the last element in the sequence.

There were cases that we have to change loop code a bit to applyour patterns. In Jmeter, for
example, there are lots of while loops that call test oracle methods such as assertEquals() that may
throw an exception and thus terminate a loop abruptly. Operationally they are similar to loops that
contain an exit type of control statements such asbreakand return statements. To match such a
while loop to one of our patterns, we first had to rewrite the loop code slightly. As an example,
consider the following while loop take from Jmeter.

while ((sampler = controller.next()) !=null) {
assertEquals(order[counter++], sampler.getName());

}

26 A. BARUA AND Y. CHEON

It can be rewritten to the following by introducing a flag, saytestOk, indicating a test success or
failure.

while (testOk && (sampler = controller.next()) !=null) {
try {

assertEquals(order[counter++], sampler.getName());
} catch (AssertionError e){

testOk =false;
}

}

Once it’s rewritten to get rid of an abrupt termination, we can write the intended function of its
loop body and then match it to the Searching pattern. This particular loop is also interesting in that
it takes two input sequences, one iterated with an index and the other with an iterator, and the values
are transformed fromsamplers to names.

It wasn’t uncommon to find loops that have multiple output variables, especially secondary, flag
types of variables. The final values of some of the output variables are calculated differently using
different manipulation functions; a common code pattern ofthe loop body is to use if-then-else
statements to calculate results differently or store them in different state variables. For example,
there was a loop that essentially copies values from one collection to another but also counts the
number of values copied. We were able to handle such loops by matching them to multiple patterns,
one for each output variable, as recommended by the pattern catalog and shown in the example in
Section4.2.

As in the example in Section4.2 we quickly learned that a loop can be matched to different
patterns depending on our view on the granularity of data. The same data can be viewed as a scalar,
composite, or collection; this is especially true for encapsulated data with a set of well-defined APIs.
For example, we found the following loop in our case study, where bothmantissa andexponent
are int variables.

while ((mantissa & 0x0010000000000000L) == 0){
exponent−−;
mantissa≫= 1;

}

Are values collected intomantissa or are they accumulated? It really depends on our intention of
the code and our view ofmantissa’s value. If an int value is viewed as a sequence of bits, it collects
constant bits (1’s); otherwise, it accumulates values by multiplying by 2. Note that the selected
pattern will also determine the form or structure of the derived intended function, e.g., manipulating
mantissa’s value as bits or an int value. Another deciding factor would be the easiness of applying
the matching pattern and deriving an intended function fromit.

Our case study showed the value of defining a pattern in terms of the intended functions of the
loop body, not its code structure. Many loops have several interdependent state variables, local or
global, that are used to perform complex computations and store the results in intermediate states.
Although we may need to trace these intermediate state changes to calculate the code or intended
function of the loop body, we don’t need to worry about them when matching the loops to patterns
and applying the matching patterns to derive intended functions. All we care about is the state
changes from the initial state to the final state as stated in the intended functions. The real benefit
is the modularity that it supports. The derivation of an intended function is still valid—and thus
the derived intended function is correct—when the loop bodyis replaced with another code that
is correct with respect to the intended function of the original loop body. In our case study, for
example, it was common for loops to have nested loops. We firstfigured out the intended functions
of nested loops by applying our patterns. Then, the derived intended functions of the nested loops
were used in calculating those of the loop bodies of the outerloops, enabling applications of our
patterns for the outer loops in a modular fashion.

An interesting lesson we learned is the important of abstraction and the notation to express it.
One of the most difficult steps of applying our patterns is to formulate and write the intended

DERIVATION OF LOOP SPECIFICATIONS 27

function of a loop body. The difficulty is due to not only the complexity of the computation itself
but also expressing it in a way suitable for manipulation. Infact, sometimes the complexity of
deriving a detailed, rigorously written intended functionof a loop depends heavily on expressing
the computation of the loop body at an appropriate abstraction level using an appropriate notation.
Writing intended functions at the right abstraction levelsis difficult and requires skills and
experiences; derivations of intended functions themselves can often be done mechanically.

One weakness of our evaluation is missing measurements on the quality of derived intended
functions, e.g., whether they are readable, understandable, and usable in formal treatments of
programs. However, we would like to note that more than half of sample while loops matched
closely with our patterns and didn’t seem to require much effort in deriving their intended functions
from the matching patterns. Nevertheless, our study shows that our patterns are helpful in finding
the intended functions of while loops. As we became more familiar with the use of the patterns,
we also became to guess and determine the intention of loops better and more easily, even without
applying the patterns explicitly. In a sense, the patterns provided us with a mental framework or tool
for examining and analyzing the loops, and the use of patterns improved our insights and analytical
skills. We also found a few common patterns of while loops with specific purposes, e.g., traversing
trees for various reasons. It would be interesting to study whether they deserve to be documented as
sorts of domain and language-specific specializations of our patterns. They capture knowledge in a
specific domain, but their usefulness will be determined in part by their generality and variability in
order to be instantiated for various loops in the domain.

6. RELATED WORK

No published research work was found on deriving intended functions of loop control structures
systematically. It’s perhaps partly because Cleanroom-style functional program verification is not
well-known. The only closely related work is Stavely’s hints on how to write intended functions
for while loops in isolation, without their initialization[35, Section 4.4]. His hints include such
suggestions as studying the sequence of values stored in program variables as a loop iterates,
generalizing the intended functions of an initialized loop, and adapting the intended function of
a similar loop. In a way our patterns are a generalization andcodification of the last suggestion,
adapting the intended function of a similar loop. A loop specification pattern is an abstraction of a
collection of similar loops that can be reused by being adapted or instantiated to a specific situation
or loop.

Below we mention few recent, noticeable work in three areas of broadly related research:
loop invariants, property specification patterns, and source code analysis. The amount of research
work done on a similar problem in Hoare logic—finding loop invariants—is huge, spreading over
several decades. There exists a rich set of techniques and tools, including both static and dynamic
approaches based on execution traces, preconditions, postconditions, theorem proving, etc (see [18,
Section 5]) and [34, Section 7]). In an axiomatic approach, loop invariants play a cardinal role in
the proofs of loop control structures, for full verificationgenerally requires equipping each loop
with a loop invariant. They are also the biggest challenge tofull automation of formal analysis and
verification of programs because they cannot be computed through simple rules. Finding a sound and
useful loop invariant usually requires a programmer’s invention relying on skills and experiences.
Furia et al classified loop invariants over a range of fundamental and important algorithms,
including searching, sorting, and arithmetics [18]. They identified two different dimensions for their
classification: the role of the invariant with respect to thepostcondition (essential and bounding) and
the transformation technique that yields the invariant from the postcondition (constant relaxation,
uncoupling, term dropping, aging, and backward substitution) [19]. Their classification can be very
useful in understanding the loop invariant of an algorithm,however unlike our work it doesn’t
provide a reusable pattern that can be instantiated to derive an invariant for a loop. An alternative
to requiring a programmer to formulate a loop invariant is toautomatically infer one from code.
Aponte et al presented an approach for automatically generating loop invariants over non-nested
loops manipulating arrays [2]. In their approach, the loop body is first translated into conditional

28 A. BARUA AND Y. CHEON

concurrent assignments (similar to Dijkstra’s guarded commands), which are then matched to code
patterns through static analysis. Each code pattern is associated with alocal invariant, an invariant
that refers only to variables modified locally. Local invariants are composed to produce an inductive
invariant of the complete loop. They defined five categories of code patterns corresponding to simple
but frequently used loops over scalar and array variables, such as search, scalar update, scalar
integration, array mapping, and array exchange. Their patterns are very specific and specified in
terms of code structures so that corresponding local invariants can be defined. The role of a local
invariant is similar to that of the intended function of the loop body in our approach; both are
strengthened or promoted to cover the complete loop. Furia and Meyer suggested to use not just the
code of a loop but its postcondition as the basis for invariant inference, for an invariant of a loop is a
weakened form of its postcondition [19]. Their algorithm mutates a postcondition using various
heuristics to find a loop invariant. Leino and Logozzo described a technique for automatically
generating an essential ingredient of proof, loop invariants, and refine them on demand [26]. The
idea is that when an automatic theorem prover fails a proof ofa verification condition, an abstract
interpreter is invoked on the loops along with the program traces to find stronger loop invariants that
will allow the theorem prover to make more progress toward a proof. It allows a gradual increase
in the level of precision used by the abstract interpreter and thus generation of loop invariants that
are specific to a subset of a program’s executions. Recent work has shown that it is possible to infer
assertions such as class invariants automatically from program executions. Ernst et al developed a
system called Daikon that can dynamically detect a likely program invariant, a property that holds
at a certain point or points in a program [11, 12, 31]. The system runs a program, observes the
values that the program computes to find properties that weretrue over the observed executions.
Interestingly, however, Polikarpova et al showed that tools like Daikon can be used to strengthen
programmer-written assertions, but cannot infer all assertions that programmers write [32].

Since the software design pattern becomes popular and widely used, similar ideas begin to be
applied to formal requirement specifications of software systems. In particular, motivated by the
inability, for non-experts, to express their requirementsusing the property specification languages
supported by formal verification tools, many researchers have proposed or developed specification
pattern systems to facilitate the construction of formal specifications [1, 10, 21, 24]. However,
unlike our patterns for source code level specifications, these patterns are mostly described in some
forms of temporal logic for specifying various types of system level properties by translating or
writing formal specifications from informal or natural language descriptions. The pioneering work
on applying the idea of software design patterns to formal specifications is that of Dwyer et al
[10]. They developed a set of property specification patterns for finite-state verification like model
checking. A property specification pattern is a generalizeddescription of a commonly occurring
requirement on the permissible state or event sequences in afinite-state model of a system. It
describes the essential structure of some aspect of a system’s behavior and provides expressions
of this behavior in a range of common formalisms, including quantified regular expressions and
various temporal logics such as linear temporal logic (LTL)and computation tree logic (CTL).
Mondragon et al introduced composition propositions to allow multiple events or conditions in
specification patterns [29]. Konrad and Cheng defined real-time specification patternsas well as a
structured English grammar to facilitate the understanding of the meaning of a specification [24].
They developed a stepwise process and a tool suite for deriving and instantiating system properties in
terms of their natural language representations [23]. Bid et al. also proposed specification patterns
to express real-time requirements for reactive systems [1]. There are also specification patterns
formulated in a probabilistic temporal logic for probabilistic verification techniques to ensure
software quality requirements [21].

The work on source code analysis is interesting, for some maybe adapted to improve our
approach, e.g., to partially automate the derivation of theintended functions. The automated and
semi-automated analysis of source code has been a topic of research for more than several decades
[6]. A static loop analysis is a source code analysis techniquefor automatically extracting, finding or
deriving a wide range of useful information about loop, suchas loop iteration counts, code execution
frequencies, infeasible paths, and loop bounds. The derived information can be used for various

DERIVATION OF LOOP SPECIFICATIONS 29

purposes such as loop optimizations and worst-case execution time estimation. Several techniques
have been proposed for fully automating static analysis of loops at source code level, including
pattern-based approach, source code annotation, data flow analysis, abstract interpretation, program
slicing, and invariant analysis (e.g., [25, 27]). We believe that some of the derived information
from loop analysis be useful in our approach, e.g., data flow analysis can provide data dependency
information that can be utilized to define the basic structures of the expressions appearing in
intended functions.

7. CONCLUSION

We presented specification patterns to address the problem of formulating candidate or likely
specifications of loop control structures for formal analysis and verification of programs. Any non-
trivial program contains loop control structures such as while, for, and do statements, and formal
verification of the program requires to equip each loop with acandidate specification. In functional
program verification, a candidate specification for a loop isan intended function that expresses the
final values of variables as a function of initial values; an intended function documents the net effect
of a section of code on data from entry and exit. A candidate intended function for a loop plays
a crucial role in formal verification of the loop because it becomes an induction hypothesis in an
inductive proof of the loop. However, formulating a likely intended function of a loop is one of the
biggest challenges in a correctness proof of the loop, mostly relying on one’s skills and experiences,
for there is no simple rule to compute it.

Fortunately, many intended functions of loops exhibit certain common flavors or characteristics.
Knowing these flavors or characteristics could therefore provide help in formulating likely intended
functions of loops. Inspired by the work on software design patterns, we identified these common
flavors of intended functions and documented them as reusable specification patterns, from which
intended functions of loops can be derived systematically.Loops are most commonly used to iterate
over a certain sequence of values and manipulate it, typically one value at a time. One distinguishing
feature of our patterns is to promote the intended function of the loop body, manipulating individual
values, to the whole sequence iterated over by a loop to definethe intended function of the whole
loop. Our patterns include Accumulating, Searching, Selecting and Collecting along with numerous
variations.

Our specification patterns are compositional and hierarchical. A pattern can be decomposed
along the four, orthogonal dimensions of loop analysis: value acquisition, value manipulation, loop
termination, and result storage. As a consequence, a new pattern can be assembled by selecting an
appropriate combination of the values from these dimensions. Our patterns can also be classified into
a pattern hierarchy. A generalized pattern is applicable toa wide range of loops, but its specification
is more abstract and thus provides less help in deriving a detailed intended function from its
application. A specialized pattern, on the other hand, is more specific with limited applicability
but provides more help in deriving a detailed intended function. The pattern hierarchy is extensible
in that one can easily introduce a new pattern by refining or specializing the value manipulation
function of an existing pattern. The pattern hierarchy allows one to match patterns, starting from
more general patterns and moving down to more specific ones. Acase study indicates that our
patterns are applicable to a wide range of programs from systems programming to scientific and
business applications.

There are several contributions of our work. The four, orthogonal loop analysis dimensions
provide an excellent conceptual framework for examining loops systematically. They can be used
not only for general understanding of loops but also for composing new patterns and finding
matching patterns for loops. Our pattern catalog provides aset of reusable loop specifications
that can be matched to and instantiated to derive intended functions of loops systematically.
Unlike previous work on specification patterns, our patterns are for deriving source code-level
specifications for formal analysis and verification of programs; they provide a solution to the
problem of formulating candidate or likely specifications of loop control structures for various
formal treatments of code containing loops. Another uniqueness of our work is the idea of promoting

30 A. BARUA AND Y. CHEON

the manipulation of individual elements to the whole sequence to define a pattern, resulting in a
uniform pattern structure and facilitating an easy introduction of new patterns.

ACKNOWLEDGEMENT

This work was supported in part by NSF grant DUE-0837567. Anyopinion, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of
NSF.

REFERENCES

1. Nouha Abid, Silvano Dal Zilio, and Didier Le Botlan. Real-time specification patterns and tools. InFormal
Methods for Industrial Critical Systems, volume 7437 ofLecture Notes in Computer Science, pages 1–15. Springer
Berlin Heidelberg, 2012. DOI: 10.1007/978-3-642-32469-71.

2. Virginia Aponte, Pierre Courtieu, Yannick Moy, and Marc Sango. Maximal and compositional pattern-based loop
invariants. InFM 2012: Formal Methods, volume 7436 ofLecture Notes in Computer Science, pages 37–51.
Springer Berlin Heidelberg, 2012. DOI: 10.1007/978-3-642-32759-97.

3. Ralph-Johan Back and Joakim von Wright.Refinement Calculus: A Systematic Introduction. Graduate Texts in
Computer Science. Springer-Verlag, 1998.

4. Aditi Barua and Yoonsik Cheon. A catalog of while loop specification patterns. Technical Report 14-65,
Department of Computer Science, The University of Texas at El Paso, 500 West University Ave., El Paso, TX,
79968, September 2014.

5. Aditi Barua and Yoonsik Cheon. Finding specifications of while statements using patterns. InNew Trends in
Networking, Computing, E-learning, Systems Sciences, andEngineering, volume 312 ofLecture Notes in Electrical
Engineering, pages 581–588. Springer International Publishing, 2015.DOI: DOI 10.1007/978-3-319-06764-375.

6. David Binkley. Source code analysis: A road map. In2007 Future of Software Engineering, FOSE ’07, pages
104–119, Washington, DC, USA, 2007. IEEE Computer Society.DOI: 10.1109/FOSE.2007.27.

7. Yoonsik Cheon. Functional specification and verificationof object-oriented programs. Technical Report 10-23,
Department of Computer Science, The University of Texas at El Paso, 500 West University Ave., El Paso, TX,
79968, August 2010.

8. Yoonsik Cheon, Gary T. Leavens, Murali Sitaraman, and Stephen Edwards. Model variables: Cleanly supporting
abstraction in design by contract.Software: Practice and Experience,, 35(6):583–599, May 2005. DOI:
10.1002/spe.649.

9. Yoonsik Cheon, Cesar Yeep, and Melisa Vela. The CleanJavalanguage for functional program verification.
International Journal of Software Engineering, 5(1):47–68, January 2012.

10. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property specification patterns for finite-state
verification. InProceedings of the Second Workshop on Formal Methods in Software Practice, FMSP ’98, pages
7–15, New York, NY, USA, 1998. ACM. DOI: 10.1145/298595.298598.

11. M.D. Ernst, J. Cockrell, William G. Griswold, and D. Notkin. Dynamically discovering likely program invariants
to support program evolution.IEEE Transactions on Software Engineering, 27(2):99–123, February 2001. DOI:
10.1145/302405.302467.

12. Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, StephenMcCamant, Carlos Pacheco, Matthew S. Tschantz, and
Chen Xiao. The Daikon system for dynamic detection of likelyinvariants. Science of Computer Programming,
69(1-3):35–45, 2007. DOI: 10.1016/j.scico.2007.01.015.

13. Apache Software Foundation. Apache HTTP Server Project. https://httpd.apache.org. Accessed: 2015-12-18.
14. Apache Software Foundation. Apache Jmeter. https://jmeter.apache.org. Accessed: 2015-12-18.
15. Apache Software Foundation. Apache Syncope. https://syncope.apache.org. Accessed: 2015-12-18.
16. Apache Software Foundation. Chukwa. https://chukwa.apache.org. Accessed: 2015-12-18.
17. Apache Software Foundation. Commons Math: The Apache Commons Mathematics Library. https://commons.

apache.org/proper/commons-math. Accessed: 2015-12-18.
18. Carlo A. Furia, Bertrand Meyer, and Sergey Velder. Loop invariants: Analysis, classification, and examples.ACM

Computing Surveys, 46(3):34:1–34:51, January 2014. DOI: 10.1145/2506375.
19. Carlo Alberto Furia and Bertrand Meyer. Inferring loop invariants using postconditions. InFields of Logic and

Computation, pages 277–300. Springer-Verlag, Berlin, Heidelberg, 2010. DOI: 10.1007/978-3-642-15025-815.
20. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, Mass., 1995.
21. Lars Grunske. Specification patterns for probabilisticquality properties. InProceedings of the 30th International

Conference on Software Engineering, ICSE ’08, pages 31–40, New York, NY, USA, 2008. ACM. DOI:
10.1145/1368088.1368094.

22. C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576–
580,583, October 1969.

23. Sascha Konrad and Betty H. C. Cheng. Facilitating the construction of specification pattern-based properties. In
Proceedings of the 13th IEEE International Conference on Requirements Engineering, RE ’05, pages 329–338.
IEEE Computer Society, 2005. DOI: 10.1109/RE.2005.29.

24. Sascha Konrad and Betty H. C. Cheng. Real-time specification patterns. InProceedings of the 27th International
Conference on Software Engineering, ICSE ’05, pages 372–381, New York, NY, USA, 2005. ACM. DOI:
10.1145/1062455.1062526.

DERIVATION OF LOOP SPECIFICATIONS 31

25. Eric Larson. Program analysis too loopy? set the loops aside. IET Software, 7(3):131–149, June 2013. DOI:
10.1049/iet-sen.2012.0048.

26. K. Rustan M. Leino and Francesco Logozzo. Loop invariants on demand. InProceedings of the Third Asian
Conference on Programming Languages and Systems, APLAS’05, pages 119–134, Berlin, Heidelberg, 2005.
Springer-Verlag. DOI: 10.1007/115754679.

27. Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and Peter Marwedel. A fast and precise static loop analysis based
on abstract interpretation, program slicing and polytope models. InProceedings of the 7th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO ’09, pages 136–146, Washington, DC, USA,
2009. IEEE Computer Society. DOI: 10.1109/CGO.2009.17.

28. Harlan D. Mills, Michael Dyer, and Richard Linger. Cleanroom software engineering.IEEE Software, 4(5):19–25,
September 1987. DOI: doi:10.1109/MS.1987.231413.

29. Oscar Mondragon, Ann Q. Gates, and Steven Roach. Prospec: Support for elicitation and formal specification of
software properties. InRV 2003, Run-time Verification (Satellite Workshop of CAV ’03), volume 89 ofElectronic
Notes in Theoretical Computer Science, pages 67–88. Elsevier, 2003. DOI: doi:10.1016/S1571-0661(04)81043-0.

30. Robert Oshana. Tailoring Cleanroom for industrial use.IEEE Software, 15(6):46–55, November 1998. DOI:
10.1109/52.730840.

31. Jeff H. Perkins and Michael D. Ernst. Efficient incremental algorithms for dynamic detection of likely invariants. In
Proceedings of the 12th ACM SIGSOFT Twelfth International Symposium on Foundations of Software Engineering,
SIGSOFT ’04/FSE-12, pages 23–32, New York, NY, USA, 2004. ACM. 10.1145/1041685.1029901.

32. Nadia Polikarpova, Ilinca Ciupa, and Bertrand Meyer. A comparative study of programmer-written and
automatically inferred contracts. InProceedings of the Eighteenth International Symposium on Software Testing
and Analysis, ISSTA ’09, pages 93–104, New York, NY, USA, 2009. ACM. DOI: 10.1145/1572272.1572284.

33. Stacy J. Prowell, Carmen J. Trammell, Richard C. Linger,and Jesse H. Poore.Cleanroom Software Engineering.
Addison Wesley, February 1999.

34. Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V. Nori. A data driven
approach for algebraic loop invariants. InProceedings of the 22nd European Conference on Programming
Languages and Systems, ESOP’13, pages 574–592, Berlin, Heidelberg, 2013. Springer-Verlag. DOI: 10.1007/978-
3-642-37036-631.

35. Allan M. Stavely.Toward Zero Defect Programming. Addison-Wesley, 1999.
36. Marvin V. Zelkowitz. A functional correctness model of program verification.Computer, 23(11):30–39, November

1990. DOI: 10.1109/2.60878.
37. Xiaoyan Zhu, E. James Whitehead, Caitlin Sadowski, and Qinbao Song. An analysis of programming language

statement frequency in C, C++, and Java source code.Software: Practice and Experience, 45(11):1479–1495,
2015. DOI: 10.1002/spe.2298.

	University of Texas at El Paso
	DigitalCommons@UTEP
	12-2015

	A Systematic Derivation of Loop Specifications Using Patterns
	Aditi Barua
	Yoonsik Cheon
	Recommended Citation

	1 Introduction
	2 Functional Program Verification
	2.1 Programs As Functions
	2.2 Correctness Verification
	2.3 Intended Functions of While Loops

	3 While Loop Patterns
	3.1 Loop Analysis
	3.2 Pattern Documentation
	3.3 Accumulating Pattern
	3.3.1 Notation
	3.3.2 Pattern
	3.3.3 Example
	3.3.4 Variations and Related Patterns

	3.4 Searching Pattern
	3.5 Selecting Pattern
	3.5.1 Notation
	3.5.2 Pattern
	3.5.3 Example
	3.5.4 Variations and Related Patterns

	3.6 Collecting Pattern
	3.6.1 Pattern
	3.6.2 Example
	3.6.3 Variations and Related Patterns

	3.7 Discussion

	4 Application of Patterns
	4.1 Accumulating Pattern
	4.2 Collecting Pattern

	5 Evaluation
	6 Related Work
	7 Conclusion

