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Increased Climate Variability Is More Visible

Than Global Warming: A General

System-Theory Explanation

L. Octavio Lerma, Craig Tweedie, and Vladik Kreinovich
Cyber-ShARE Center

University of Texas at El Paso
500 W. University

El Paso, TX 79968, USA
lolerma@episd.org, ctweedie@utep.edu, vladik@utep.edu

Abstract

While global warming is a statistically confirmed long-term phenomenon,
its most visible consequence is not the warming itself but, somewhat sur-
prisingly, the increased climate variability. In this paper, we use general
system theory ideas to explain why increased climate variability is more
visible than the global warming itself.

1 Formulation of the Problem

What is global warming. The term “global warming” usually refers to the
fact that there is a statistically significant long-term increase in the average
temperature; see, e.g., [1, 2, 3, 4].

Somewhat surprisingly, what we mainly observe is not global warning
itself, but rather related climate variability. Researchers have analyzed
the expected future consequences of global warming: increase in temperature,
melting of glaciers, raising sea level, etc. A natural hypothesis was that at
present, when the effects of global warming are just starting, we would see the
same effects, but at a smaller magnitude. This turned out not to be the case.

Some places do have the warmest summers and the warmest winters in
record. However, other places have the coldest summers and the coldest winters
on record.

What we do observe in all these cases is not so much the direct effects of the
global warming itself, but rather an increased climate variability, an increase
not so much in the average temperatures but rather in the variance of the
temperature: in both unusually warm days and unusually cold days, what we
observe is unusually high deviations from the average.
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This phenomenon is sometimes called climate change, but a more proper
description should be increased climate variability [1, 2, 3, 4].

Why is increased climate variability more visible than global warm-
ing? A natural question. A natural question is: why is increased climate
variability more visible than global warming – which is supposedly the reason
for this increased variability?

A usual answer to this question – and its limitations. A usual answer
to the above question is that the increased climate variability is what computer
models predict. However, the existing models of climate change are still very
crude. Their quantitative predictions are usually very approximate and often
unreliable, even on the qualitative scale: for example, none of these models
explains the fact that the growth in the average temperature has drastically
slowed down in the last two decades [1, 2, 3, 4].

It is therefore desirable to supplement the usual computer-model-based an-
swer to the above question by more reliable explanations.

What we do in this paper. In this paper, we show that, on the qualitative
level, the fact that the increase climate variability is more observable than the
global warming can be explained in general system-theoretic terms.

2 Towards Formulation of the Problem in Pre-
cise Terms: A Simplified System-Theory Model

Towards a simplified model: first approximation. For simplicity, let us
consider the simplest possible model, in which the state of the Earth is described
by a single parameter x. In our case, x can be an average Earth temperature
or the temperature at a certain location.

We want to describe how the value x of this parameter changes with time.

In other words, we want to describe the derivative
dx

dt
.

There are external forces affecting the dynamics. So, in the first approxima-

tion, we can say that
dx

dt
= u(t), where u(t) describes these external forces.

We know that, on average, these forces lead to a global warming, i.e., to
the increase in the value of the parameter x(t). In terms of our equation, this
means that the average value of u(t) is positive. Let us denote this average

value by u0, and the random deviation from this average by r(t)
def
= u(t) − u0,

then u(t) = u0 + r(t).
For simplicity, we will assume that the random values r(t) corresponding

to different moments t are independent and identically distributed, with some
standard deviation σ0.

Towards the second approximation. The above simplified equation does
not take into account the fact that most natural systems – including the system
corresponding to climate – are somewhat resistant to change: if a system is not
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resistant to change, it would not have persisted in the presence of numerous
external forces.

Resistance to change means that when a system deviates from its stable value
x0, forces appear that try to bring this system back to this stable value. From
the mathematical viewpoint, this phenomenon is easier to describe if instead

of the original variable x, we consider the difference y
def
= x − x0. In terms of

this difference, when y > 0, we have a force that decreases y, and when y < 0,
we have a force that increases y. When y = 0, i.e., when x = x0, the system
remains in the stable state, so there are no forces.

In precise terms, in the absence of external forces, the system’s dynamics is

described by an equation
dy

dt
= f(y), where f(0) = 0, f(y) < 0 for y > 0, and

f(y) > 0 for y < 0. Since the system is stable, deviations y from the stable state
are relatively small, so we can expand f(y) in Taylor series in y and retain only
the first few terms in this expansion. In general, we have f(y) = f0+ f1 · y+ . . .
The condition f(0) = 0 implies that f0 = 0, so f(y) = f1 · y+ . . . The condition
that f(y) < 0 for y > 0 implies that f1 < 0, i.e., that f1 = −k for some
k > 0. Thus, by keeping only the leading term in the Taylor expansion, we get
f(y) = −k · y.

Thus, we arrive at the following equation.

Resulting equation.
dy

dt
= −k · y + u0 + r(t). (1)

Discussion. Due to the linear character of the equation (1), each solution of
this equation can be represented as a sum y(t) = ys(t) + yr(t) of the solutions
ys(t) and yr(t) corresponding to the systematic (average) part u0 of the outside
force and and to the random part r(t):

dys
dt

= −k · ys + u0; (2)

dyr
dt

= −k · yr + r(t). (3)

Here, the systematic component ys(t) describes the systematic change in tem-
perature (global warming), while the random component yr(t) describes the
random change in temperature, i.e., the increased climate variability.

An empirical fact that needs to be explained. We need to explain that,
in spite of the fact that eventually, we will see the effects of the global warming
itself, at present, the climate variability becomes more visible than the global
warming itself. In other words, at present, the relative role yr(t)/ys(t) of climate
variability is much higher than it will be in the future, when the global warming
may become significant.

How to describe this empirical fact in precise terms? The change in
y is determined by two factors: the external force u(t) and the parameter k
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that describes how resistant is our system to this force (the larger k, the large
resistance to the change).

While some part of global warming may be caused by the variations in
Solar radiation, most climatologists agree that the prevailing part of the long-
term global warming is caused by local processes – such as the greenhouse
effect – that lower the system’s natural resistance to changes. (What causes
numerous debates is which proportion of the global warming is caused by human
activities.)

Since the decrease in resistance is the major contribution to the observed
phenomena, in the first approximation, we will consider only this decrease. In
other words, we will assume that the forces remain the same, but the parameter
k decreases with time.

In these terms, the observed phenomenon is that at present, when the resis-
tance value k is still reasonably high, the ratio yr(t)/ys(t) is much larger than it
will be in the future, when the resistance k will decrease. In other words, what
we need to explain is that this ratio decreases when the value k decreases.

When computing this ratio, we need to take into account that while the
systematic component ys(t) is deterministic, the random component yr(t) is a
random process, its values change wildly. To gauge the size of this random
component, i.e., to gauge how far the random variable yr(t) deviates from 0, it
is reasonable to use standard deviation σ(t) of this random variable.

Thus, we arrive at the following formulation.

Resulting formulation of the problem. We fix values u0 and σ0. Then, for
each k, we can form the solutions ys(t) and yr(t) of the differential equations
(2) and (3) corresponding to ys(0) = 0 and yr(0) = 0, where r(t) is a family of
independent identically distributed random variables with 0 mean and standard
deviation σ0. Since r(t) is random, the solution yr(t) is also random, so for each
moment t, we can define the standard deviation σ(t) of this solution.

We want to prove that for every moment t, for sufficiently large k > 0, when
k decreases, then the ratio σ(t)/ys(t) also decreases.

3 Analysis of the Problem and the Main Result

Solving the equation for the systematic deviation ys(t). If we move all
the terms containing the unknown ys(t) to the left-hand side, we get

dys(t)

dt
+ k · ys(t) = u0. (4)

For an auxiliary variable z(t)
def
= ys(t) · exp(k · t), we get

dz(t)

dt
=

dys(t)

dt
·exp(k·t)+ys(t)·exp(k·t)·k = exp(k·t)·

(
dys(t)

dt
+ k · ys(t)

)
. (5)

Thus, due to (4), we have

dz(t)

dt
= u0 · exp(k · t). (6)

4



We know that for t = 0, we have ys(0) = 0 and thus, z(0) = 0. Thus, the value
z(t) can be obtained by integration:

z(t) = z(0) +

∫ t

0

u0 · exp(k · s) ds = u0 ·
exp(k · t)− 1

k
. (7)

Hence, for ys(t) = exp(−k · t) · z(t), we get

ys(t) = u0 ·
1− exp(−k · t)

k
. (8)

Solving the equation for the random component yr(t). For the random
component, we similarly get

yr(t) = exp(−k · t) ·
∫ t

0

r(s) · exp(k · s) ds. (9)

The mean value of each variable r(s) is 0, thus, the mean value E[yr(t)] of their
linear combination yr(t) is also 0. Hence, the variance

σ2(t) = E[(yr(t)− E[yr(t)])
2]

of the random component yr(t) is simply equal to the expected value E[y2r(t)]
of its square.

Due to the formula (9), we have

yr(t)
2 = exp(−2k · t) ·

(∫ t

0

r(s) · exp(k · s) ds
)
·
(∫ t

0

r(v) · exp(k · v) dv
)

=

exp(−2k · t) ·
∫ t

0

ds

∫ t

0

dv r(s) · r(v) · exp(k · s) · exp(k · v). (10)

Since the expected value of a linear combination is equal to the linear combina-
tion of expected values, we get

σ2(t) = E[yr(t)
2] =

exp(−2k · t) ·
∫ t

0

ds

∫ t

0

dv E[r(s) · r(v)] · exp(k · s) · exp(k · v). (11)

We assumed that the values r(s) corresponding to different moments of time
s are independent and identically distributed, with standard deviation σ0. Thus,
for s ̸= v, we get E[r(s) · r(v)] = E[r(s)] · E[r(v)] = 0 and E[r2(s)] = σ2

0 .
Substituting these expressions into the formula (11), we conclude that

σ2(t) = E[yr(t)
2] = exp(−2k · t) ·

∫ t

0

ds σ2
0 · exp(k · s) · exp(k · s) =
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exp(−2k · t) ·
∫ t

0

σ2
0 · exp(2k · s) ds. (12)

This integral can be explicitly integrated, so we get

σ2(t) = σ2
0 exp(−2k · t) · exp(2k · t)− 1

2k
= σ2

0 ·
1− exp(−2k · t)

2k
. (13)

Analyzing the ratio. We are interested in the ratio σ(t)/ys(t) of two positive
numbers. The value σ(t) is the square root of the expression (13). To avoid the
need to take square roots, we can take into account the fact that for positive
numbers, the square function is increasing; thus, the desired ratio increases with
the decrease in k if and only if its square

S(t)
def
=

σ2(t)

y2s(t)
(14)

increases. Let us thus analyze this new ratio S(t).
Due to the formulas (8) and (13), we get

S(t) =
σ2
0

u2
0

· (1− exp(−2k · t)) · k2

2k · (1− exp(−k · t))2
. (15)

By using a known formula a2 − b2 = (a− b) · (a+ b), we conclude that

1− exp(−2k · t) = (1− exp(−k · t)) · (1 + exp(−k · t)). (16)

Substituting the expression (16) into the formula (15) and cancelling the terms
k and 1 − exp(−k · t) in the numerator and in the denominator, we conclude
that

S(t) =
σ2
0

u2
0

· (1 + exp(−k · t)) · k
2 · (1− exp(−k · t))

. (17)

Conclusion. When the value k is reasonably large, we have exp(−k · t) ≈ 0,
thus,

S(t) ≈ σ2
0

u2
0

· k
2
. (18)

This ratio clearly decreases when k decreases. Thus, eventually, when the
Earth’s resistance k will decrease, this ratio will also decrease and so, we will
start observing mainly the direct effects of global warming (as researchers orig-
inally conjectured) – unless, of course, we do something to prevent the negative
effects of global warming.

Comment. In our analysis, we made a simplifying assumption that the climate
system is determined by a single parameter x (or y). The conclusion, however,
remains the same if we consider a more realistic model, in which the climate
system is determined by several parameters y1, . . . , yn.
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Indeed, in this case, in our linear approximation, the dynamics is described
by a system of linear differential equations

dyi
dt

= −
n∑

j=1

aij · yj(t) + ui(t). (19)

In the generic case, all eigenvalues λk of the matrix aij are different; in this case,
the matrix can be diagonalized: by considering the linear combinations zk(t)
corresponding to the eigenvectors, we get a system with the diagonal matrix
aij , i.e., a system of the type

dzk
dt

= −λk · zk(t) + uk(t). (20)

For each of these equations, similar analysis enables us to reach the same con-
clusion – that the current ratio of the random to systematic effects is much
higher than it will be in the future, when the effects of global warming will be
larger.
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