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Abstract—In this paper, we describe how to estimate relative
spatial resolution of different maps or images of the same
area under uncertainty. We consider probabilistic and fuzzy
approaches and we show that both approaches lead to the same
estimate – which makes us somewhat more confident that this
joint result is reasonable.

I. INTRODUCTION

Different measurements results in maps of different spatial
resolution. In many practical situations, we have several maps
or images of the same areas, with different accuracy and
different spatial resolution.

Example: geosciences. For example, in geosciences, we have,
among others, two different types of data: gravity data and
seismic data.

Gravity measurements measure the exact gravity force at
different locations. These measurements enable us to distin-
guish areas where the material is heavier – and thus, causes
more gravitational field – from the areas where material is
lighter. Based on measurements of each type, we can develop
a 3-D map describing the densities at different spatial locations
and at different depths.

We can measure the gravity force at each location with a
very high accuracy; as a result, each gravity measurement is
very accurate. However, each gravity measurement describes
not just the density at this particular location, but the overall
effect of the densities at all neighboring areas as well. By using
only gravity measurements, it is very difficult to distinguish
between two nearby spatial locations. As a result, the gravity-
based map is accurate, but it has a low spatial resolution.

Seismic data consists of the arrival times of a seismic signal
from a natural earthquake – or of an artificial small explosion
set up for the whole purpose of seismic analysis. Each travel
time reflects the path by which a seismic wave propagated from
the source to the sensor. This path is narrow, so the resulting
map has a high spatial resolution – but its accuracy is much
lower, since the small seismic signal has to be detected against
a noisy seismic background.

Need to fuse the corresponding maps. The above example
from geophysics describes a typical situation when we have
two different maps describing the same area:

• one of the maps has very accurate values, but with a
low spatial resolution, while

• another map has higher spatial resolution but much
less accurate values.

In other words, the second map provides approximate values
of the quantity at different 3-D locations, while the first maps
provides very accurate values of the quantity averaged over
some subareas.

It is desirable to combine all this information into a single
3-D map.

To fuse the maps, we need to know their relative spatial
resolution. If we know how exactly the two maps are related
to the actual quantity, we can then apply the Least Squares
method to the two corresponding equations and find the map
which is the best fit for both types of data; see, e.g., [6],
[7], [8], [9], [10], [11]. The problem is that in many cases
– and geophysics is one of these cases – we do not know how
exactly these maps are related to the actual (unknown) spatial
distribution of the corresponding quantity. In other words, we
do not know the relative spatial resolution of the two maps,
we need to find this resolution based on the maps themselves.

What we do in this paper. In this paper, we use fuzzy and
probabilistic methods to come up with algorithms for deter-
mining relative spatial resolution of two maps. Interestingly,
both techniques lead to similar estimate – which makes us
somewhat more confident about the validity of this common
approach.

II. WHAT IS THE RELATION BETWEEN IMAGES WITH
DIFFERENT SPATIAL RESOLUTION: PROBABILISTIC AND

FUZZY APPROACHES

Need to perform estimations under uncertainty. In order
to fuse images Ĩi(x), i = 1, 2, . . . corresponding to different
spatial resolution, we need to find out how the observed images
Ĩi(x) are related to the actual (ideal) image I(x).

As we have mentioned, we consider a practically important
case of uncertainty, when we do not have an exact formula
describing the relation between the observed images Ĩi(x) and



the actual image, and we need to extract this information from
the observed images themselves.

Possible approaches to estimation under uncertainty. Tra-
ditionally, uncertainty in science and engineering is handled
by the probabilistic approach. This approach originated in
situations when we can experimentally determine the frequen-
cies (probabilities) of different image distortions, but it is
also actively used in situations when we only have partial
information about these probabilities – or even, as in our case,
we do not have any information about these probabilities at all.
In such situations, we can use some commonsense principles
to come up with the missing probabilities; see, e.g., [1], [12].

For example, if we have two alternatives and we have no
reason to assume that one of the them is more frequent than
the other one, then it makes sense to assume that these two
alternatives have equal probabilities – which are thus equal to
1/2. If we have n alternatives, and we have no information
about which alternatives are more probable and which are less
probable, it makes sense to assume that all these n alternatives
are equally probable.

Similarly, if we only know that a quantity x is located on
an interval [0, 1], and we do not know which values from this
interval are more probable or less probable, it makes sense to
assume that all these possible values are equally probable, i.e.,
that we have a uniform probability distribution on the interval
[0, 1].

Instead of “making up” the unknown probabilities based
on common sense, another idea is to explicitly formalize the
commonsense ideas. This formalization is usually not easy,
because our commonsense ideas are often formulated in terms
of imprecise (“fuzzy”) words from natural language. For this
formalization, we can use fuzzy techniques, techniques specifi-
cally developed to formalize natural-language knowledge; see,
e.g., [2], [4], [13].

What we do in this section. In this section, to find the
relation between Ĩi(x) and I(x), we use both probabilistic
and fuzzy approaches. Interestingly, we get the same relation
in both cases. The fact that the same relation comes from two
completely different set of ideas makes us somewhat more
confident that this is indeed the right relation between the
observed and actual images.

Because of this increased confidence, in the following
section, we use this relation to determine the relative spatial
resolution of two maps.

Relation between Ĩi(x) and I(x): probabilistic approach.
Spatial uncertainty means that the value which is actually
located at a point x is observed as corresponding to a slightly
different point x̃ = x+∆x. As a result, each value I(x) gets
distributed to values I(x+∆x), for the corresponding random
variable ∆x.

In general, there are many independent sources of spatial
uncertainty. The resulting spatial deviations ∆x can therefore
be represented as a sum of many small independent random
variables. It is known that under reasonable assumptions, the
distribution of such sums is close to Gaussian; this is known
as the Central Limit Theorem; see, e.g., [12]. We can therefore

conclude that ∆x is normally distributed. In the isotropic case,
this distribution has the probability density

ρ(∆x) =
1

2π · σ
· exp

(
−∥∆x∥2

2σ2

)
.

Each original value I(x) is thus distributed, with this density,
among the neighboring values, contributing a proportional
value I(x)·ρ(∆x) d∆x to each point x+∆x. The resulting ob-
served overall intensity Ĩ(y) at a point x can thus be obtained
by adding up the values I(x) · ρ(∆x) d∆x corresponding to
x+∆x = y:

Ĩ(y) =

∫
I(x) · f(y − x) dx =

const ·
∫

I(x) · exp
(
−∥y − x∥2

2σ2

)
dx;

see, e.g., [5]

Relation between Ĩ(x) and I(x): fuzzy approach. In fuzzy
approach, instead of trying to guess the corresponding prob-
abilities, we explicitly formalize the corresponding common-
sense knowledge. The corresponding rules for each observed
value Ĩ(y) are straightforward: the value of Ĩ(y) comes from
the values I(x) for points x which are close to y. In more
precise terms, we have the following rules:

If x is close to y, then Ĩ(y) is close to I(x).

In [3], we have shown that, under reasonable assumptions,
a natural way to describe closeness is by using a Gaussian
membership function, which, in the isotropic case, has the form

µ(∆x) = exp

(
−∥∆x∥2

2σ2

)
,

where ∆x
def
= y − x.

For reach y, by combining the values coming from different
rules, we conclude that, for each x, the value Ĩ(y) is equal to
I(x) with degree of membership µ(y − x). In other words,
we have a membership function that attains values I(x) with
degree of membership µ(y − x). We want to transform this
fuzzy information into a single (crisp) value, i.e., to defuzzify
the original membership function. The experience of fuzzy
control [2], [4] has shown that in most cases, the most effective
defuzzification procedure is centroid defuzzification, when we
transform the original membership function m(t) into the crisp
value

t =

∫
t ·m(t) dt∫
m(t) dt

.

In our case, we get the value

Ĩ(y) =

∫
I(x) · µ(y − x) dx∫

µ(y − x) dx
.

The denominator is a constant not depending on y. Substituting
the expression for the Gaussian membership function into this
formula, we conclude that

Ĩ(y) = const ·
∫

I(x) · exp
(
−∥y − x∥2

2σ2

)
dx.



Relation between Ĩ(x) and I(x): conclusion. From the
previous two subsections, we can see that both approaches lead
to the exact same relation between the observed image Ĩ(x)
and the actual image I(x): namely, that Ĩ(x) is proportional
to the result of a convolution between the original image I(x)
and the Gaussian kernel.

This coincidence is a good indication that this is probably
an adequate model for spatial distortion.

III. HOW TO ESTIMATE RELATIVE SPATIAL
RESOLUTION?

Analysis of the problem. Let us use the above model to come
up with an algorithm for estimating relative spatial resolution
between two images or maps.

First approximation. Specifically, we have two images Ĩ1(x)
and Ĩ2(x). According to the above formulas describing spatial
distortion, we have

Ĩ1(y) = C1 ·
∫

I(x) · exp
(
−∥y − x∥2

2σ2
1

)
dx

and

Ĩ2(y) = C2 ·
∫

I(x) · exp
(
−∥y − x∥2

2σ2
2

)
dx.

We are interested in the values σ1 and σ2 which characterize
the spatial resolution corresponding to each image or map.

What can we determine about the spatial resolutions σ1

and σ2? Can we determine both spatial resolutions σ1 and σ2?
If not, what can we determine about the values σi?

To answer these questions, it is useful to take into account
that formulas involving convolution are greatly simplified if we
use Fourier transform: namely, the Fourier transform H(ω) of
the convolution h(y) =

∫
f(y) · g(x − y) dx is equal to the

product H(ω) = F (ω) ·G(ω) of the Fourier transforms of the
functions f(x) and g(x). The Fourier transform G(ω) of the
Gaussian function

g(x)
def
= exp

(
−∥x∥2

2σ2

)
is known to also be a Gaussian:

G(ω) = exp

(
−1

2
· ∥ω∥2 · σ2

)
.

Thus, in this first approximation, for Fourier transforms F1(ω)
and F2(ω) of the observed images, we get

F1(ω) = C1 · F (ω) · exp
(
−1

2
· ∥ω∥2 · σ2

1

)
;

F2(ω) = C2 · F (ω) · exp
(
−1

2
· ∥ω∥2 · σ2

2

)
,

where F (ω) is the Fourier transform of the original image.

From the above equations, one can conclude that

F2(ω) = C · F1(ω) · exp
(
−1

2
· ∥ω∥2 · (σ2

2 − σ2
1)

)
.

Thus, when we only know two different maps, the only infor-
mation that we can extract from these maps is the difference

∆
def
= σ2

2 − σ2
1 .

It is reasonable to call this difference relative spatial resolution
of the two images (maps), since it describes the difference
between spatial resolutions of different images.

A more realistic description. The above first-approximation
description takes into account spatial distortion, but it idealizes
the situation by assuming that only the spatial location changes
while the actual value of the quantity is measured exactly. Of
course, the actual value is also not measured exactly, there is
always a difference ∆q

def
= q̃ − q between the measured value

q̃ and the actual value q. In other words, the measured value
q̃ is not exactly equal to q, it is equal to q + ∆q, for some
∆q. This measurement error is added to the actual (unknown)
value and is, therefore, known as the additive noise.

If we take additive noise ni(y) into account, then we get
more realistic formulas for describing the dependence between
the actual and observed images:

Ĩ1(y) = C1 ·
∫

I(x) · exp
(
−∥y − x∥2

2σ2
1

)
dx+ n1(y);

Ĩ2(y) = C2 ·
∫

I(x) · exp
(
−∥y − x∥2

2σ2
2

)
dx+ n2(y).

As a result, for Fourier transforms, we get

F1(ω) = C1 · F (ω) · exp
(
−1

2
· ∥ω∥2 · σ2

1

)
+N1(ω);

F2(ω) = C2 · F (ω) · exp
(
−1

2
· ∥ω∥2 · σ2

2

)
+N2(ω),

where Ni(ω) denotes the Fourier transform of the additive
noises n1(y) and n2(y). From these equations, we can con-
clude that

F2(ω) = C · F1(ω) · exp
(
−1

2
· ∥ω∥2 · (σ2

2 − σ2
1)

)
+N(ω),

where
C

def
=

C1

C2

and

N(ω)
def
= N2(ω)−N1(ω) · exp

(
−1

2
· ∥ω∥2 ·∆

)
.

This is a model that we will use to reconstruct the relative
spatial resolution ∆.

How to find C. The coefficient C can be found, e.g., by com-
paring the overall energy of two images – i.e., by comparing
the values corresponding to ω = 0. For this value, the above
formula takes the form

F2(0) = C · F1(0) +N(0).

Thus, we can estimate C as

C ≈ F2(0)

F1(0)
.



Once the constant C is estimated, we can divide the image
Ĩ(x) (and thus, its Fourier transform F2(ω)) by this constant,
and get a simpler relation between F1(ω) and F2(ω):

F2(ω) = F1(ω) · exp
(
−1

2
· ∥ω∥2 ·∆

)
+N(ω).

What we know about the additive noise. In many practical
cases, we do not know the exact characteristics of the additive
noise, we only know its order of magnitude, i.e., we only know
a number n such that that N(ω) ≈ n.

We must limit ourselves to above-noise values. For frequen-
cies ω for which N2(ω) ≈ n, the whole observed value may be
caused by noise. As a result, the corresponding values Ni(ω)
do not carry any information about the actual image – and
thus, do not carry any information about ∆. Therefore, we
must limit ourselves only to frequencies for which the signal
is above noise, i.e., for which |F2(ω)| ≫ n, i.e., for which
|F2(ω)| ≥ c · n for some constant c ≫ 1.

For these frequencies, we have

F2(ω) ≈ F1(ω) · exp
(
−1

2
· ∥ω∥2 ·∆

)
with accuracy ≈ n.

It is sufficient to consider absolute values. The values of
the Fourier transform are, in general, complex numbers. A
complex number z can be characterized by its absolute value
(modulus) |z| and its phase. As one can see from the above
equation, the unknown ∆ does not affect the phases, only
absolute values, so it is sufficient to consider the absolute
values of both sides:

F2(ω) ≈ F1(ω) · exp
(
−1

2
· ∥ω∥2 ·∆

)
with accuracy ≈ n.

From non-linear regression to linear regression. The above
formula non-linearly depends on the unknown ∆. To simplify
the formula, it is desirable to reduce this dependence to a linear
one. This can be done if we take logarithms of both sides,
i.e., if instead of the absolute values |Fi(ω)| of the Fourier
transforms, we consider their logarithms ℓi(ω)

def
= ln(|Fi(ω)|).

In taking the logarithms, we need to take into account that
for a signal q with noise ∆q ≪ q, we have

ln(q +∆q) ≈ ln(q) +
∆q

q
.

Thus, if the original noise ∆q was of order n, the noise

∆q

q

of the logarithm is of order
n

q
.

Thus, after taking logarithms, we get

ℓ2(ω) ≈ ℓ1(ω)−
1

2
· ∥ω∥2 ·∆ with accuracy ≈ n

|F2(ω)|
.

By moving the terms containing the unknown ∆ to one side
of the equation and all other terms to the other side and by
dividing by the coefficient

1

2
· ∥ω∥2

at ∆, we conclude that

∆ ≈ 2(ℓ1(ω)− ℓ2(ω))

∥ω∥2
with accuracy ≈ 2n

|F2(ω)| · ∥ω∥2
.

Solving the linear regression problem leads to the desired
estimate for the relative spatial resolution ∆. In general, if
we have several estimates x ≈ xi with accuracy σi, then, to
combine these estimates, we can use the Least Squares Method∑

i

(x− xi)
2

σ2
i

→ min,

which leads to the estimate

x =

∑
xi · σ−2

i∑
σ−2
i

.

In our case, we have

σ−2
i =

|F2(ω)|2 · ∥ω∥4

4n2
,

so∑
xi ·σ−2

i =
1

4n2
·
∫

(ℓ1(ω)− ℓ2(ω))

∥ω∥2
· |F2(ω)|2 ·∥ω∥4 dω =

1

4n2
·
∫

2(ℓ1(ω)− ℓ2(ω)) · |F2(ω)|2 · ∥ω∥2 dω

and ∑
σ−2
i =

1

4n2
·
∫

|F2(ω)|2 · ∥ω∥4 dω.

We can simplify the resulting expression for the estimate ∆ if
we multiply both the numerator and the denominator by the
same constant 4n2. Thus, we arrive at the following formula
for the relative spatial resolution ∆.

Resulting formula for the relative spatial resolution.

∆ = 2

∫
(ℓ1(ω)− ℓ2(ω)) · |F2(ω)|2 · ∥ω∥2 dω∫

|F2(ω)|2 · ∥ω∥4 dω
,

where integration is over frequencies ω for which

|F2(ω)| ≥ c · n

for some pre-selected constant c ≫ 1.

Preliminary results. For simulated 3-D maps, when we artifi-
cially introduce different spatial resolutions to the same image,
the above method correctly reconstructs the relative spatial
resolution.

However, it is difficult to gauge how accurate is our method
for the actual geophysical data. The problem is that we do not
know the actual density distribution and thus, we do not know
for sure how close our estimates are to the actual values of the
relative spatial resolution of two geophysical 3-D maps.
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