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Abstract—A generic fuzzy relation often requires too many
parameters to represent – especially when we have a relation
between many different quantities x1, . . . , xn. There is, however,
a class of relations which require much fewer parameters to
describe - namely, relations which come from fuzzy rules. It is
therefore reasonable to approximate a given relation by fuzzy
rules. In this paper, we explain how this can be done in an
important case when “and”- and “or”-operation are distributive
– and we also explain why this case is important.

I. FORMULATION OF THE PROBLEM

Relations are ubiquitous. Many real-life quantities x1, . . . , xn
are related – in the sense that once we know the value of one or
more of the quantities, this knowledge restricts possible values
of other quantities.

In some cases, we have a functional relation – when the
values of the quantities x1, . . . , xn−1 uniquely determine the
value of the quantity xn. For example, according to Ohm’s
law, the voltage V is uniquely determine by the current I and
the resistance R as V = I ·R.

In many other cases, however, we have relations which
are not functional. In other words, even if we know the exact
values of all the quantities x1, . . . , xn−1, we can still have
different possible values of xn. This is actually true even for
voltage: different materials exhibit minor deviation from the
Ohm’s law; as a result, even if we know the current and the
resistance, we can only conclude that the voltage V is close
to I · R (e.g., that V can only takes values from the interval
[I ·R− ε, I ·R+ ε] for some small ε > 0.

In mathematical terms, a relation between real-valued
quantities xi is usually defined as a mapping R : IRn → {0, 1}
such that R(x1, . . . , xn) = 1 indicates that the corresponding
combination of values (x1, . . . , xn) is possible in a real-life
situation.

Real-life relations are often fuzzy. In practice, about some
combinations (x1, . . . , xn), we are often not 100% sure
whether these combinations are possible or not. In the tra-
ditional (“crisp”) approach, we simply count all such com-
binations as possible – since there is a possibility that such
combinations occur.

However, this crisp representation ignores the fact that we
may be more certain about the possibility of some combi-
nations and less certain about the possibility of others. To
describe the different, it is necessary to know, for each possible
combination (x1, . . . , xn), our degree of certainty that this
combination is practically possible.

In the computer, “true” is usually represented as 1, and
“false” as 0. It is therefore natural to represent intermediate
degrees of certainty as numbers from the interval [0, 1]: the
larger the number, the larger our degree of confidence. The
resulting mapping R : IRn → {0, 1} is known as a fuzzy
relation; see, e.g., [4], [10], [14].

Need for a concise representation of fuzzy relation. To
use the information about the relation, we need to represent
it in a computer. Theoretically, each of the quantities xi
can have infinitely many different values, but in practice,
due to inevitable measurement uncertainty, for each variable
xi, we can only have finitely many distinguishable values
xi1, . . . , xij , . . . , xiNi . Because of this, knowing a relation
means that we know the values R(x1i1 , . . . , xnin) correspond-
ing to all possible combinations (x1i1 , . . . , xnin).

In principle, we can simply store the degrees of certainty
corresponding to all possible N1 · . . . ·Nn combinations. This
requires storing and processing ≈ Nn values, where N is a
typical number of distinct values of each quantity. The problem
with this representation is that, as we have mentioned, many
quantities are related to each other; so, to have the most
adequate representation of a real-life phenomenon, we need
to describe a relation between a large number of variables.
When n is large, the resulting number of values Nn grows
exponentially with n – and, as it is well known about expo-
nential functions, the numbers easily become astronomically
high, exceeding the ability of modern computers to store and/or
process this information; see, e.g., [11]. We therefore need to
come up with a more concise representation of fuzzy relations.

An approximate representation is OK. The degrees of cer-
tainty can only be approximately described: an expert cannot
realistically distinguish between his/her degree of 0.71 and
0.72 :-) Since the values are only approximately known any-
way, it is OK to represent them approximately. This possibility978-1-4799-4562-7/14/$31.00 c⃝2014 IEEE



of using an approximate representation provides the flexibility
which makes more concise representations possible.

Fuzzy rules as a natural concise representation of fuzzy
relations. Many fuzzy relations come from fuzzy rules, i.e.,
from a combination of rules of the type

“if Ar,1(x1) and . . . and Ar,n−1(xn−1) then Ar,n(xn)”,

where r = 1, . . . , nr is the number of the rule, and Ar,i(xi)
are fuzzy properties. The ubiquity of such rules comes from
the fact that this is how experts often describe their decisions.
For example, a driver can explain his or her driving strategy
by describing rules like “if a car in front is close, and it
starts breaking seriously, one needs to hit the brakes hard right
away”. Such rules use imprecise (fuzzy) words like “close”,
“seriously”, “hard”, which are naturally described by fuzzy
logic techniques.

One of the most common ways to formalize the fuzzy
rules it the Mamdani approach. In this approach, we take into
account that a tuple (x1, . . . , xn) is consistent with the rules
if for one of the given rules, the conditions are satisfied and
the conclusion is satisfied as well. In other words, a tuple
(x1, . . . , xn) is consistent with the given rules if and only if
the following statement is true:

(A1,1(x1)& . . . &A1,n−1(xn−1)&A1,n(xn)) ∨ . . .∨

(Anr,1(x1)& . . . &Anr,n−1(xn−1)&Anr,n(xn)).

Fuzzy logic techniques enable us to transform this formula into
the exact value of a degree d(x1, . . . , xn) to which the tuple
(x1, . . . , xn) is consistent with the rules. Specifically:

• we can use an “and”-operation (t-norm) f&(a, b) to
represent “and”, and

• we can use an “or”-operation (t-conorm) f∨(a, b) to
represent “or”.

As a result, we get the following degree:

d(x1, . . . , xn) = f∨(d1(x1, . . . , xn), . . . , dnr (x1, . . . , xn)),

where the degree dr(x1, . . . , xn) to which the tuple
(x1, . . . , xn) is consistent with the r-th rule is equal to

dr(x1, . . . , xn) =

f&(Ar,1(x1), . . . , Ar,n−1(xn−1), Ar,n(xn)).

Fuzzy rules are a natural concise way of representing a
relation. Thus, it is reasonable to try to approximate a given
fuzzy relation by an appropriate family of rules.

What we do in this paper. In this paper, we propose new
algorithms for representing a given fuzzy relation in terms of
fuzzy rules, algorithms which are applicable in the important
case when “and”- and “or”-operations are distributive.

II. “AND”- AND “OR”-OPERATIONS (T-NORMS AND
T-CONORMS) IN FUZZY LOGIC: BRIEF REMINDER

Before we start describing our algorithms, we need to
explain why the case when “and”- and “or”-operations are
distributive is important. To explain this importance, let us first
recall the motivations behind the usual definitions of “and”-
operations (t-norms) and “or”-operations (t-conorms).

Why t-norms and t-conorms: reminder. The main idea
behind “and”-operations is that often, we know the expert’s
degrees of confidence a = d(A) and b = d(B) in two
statements A and B, and we want to estimate the expert’s
degree of confidence in a composite statement A&B or A∨B.
The only information that we have for this estimate consist of
degrees a and b, so the resulting estimates are obtained by
applying some computations to these two numbers:

• the algorithm for producing the estimate for d(A&B)
is denoted by f&(a, b), so the desired estimate has the
form f&(d(A), d(B)); and

• the algorithm for producing the estimate for d(A∨B)
is denoted by f∨(a, b), so the desired estimate has the
form f∨(d(A), d(B)).

Which properties should the corresponding functions f&(a, b)
and f∨(a, b) satisfy?

Commutativity. The composite statements A&B and B&A
are equivalent to each other for every two statements A and
B. It is therefore reasonable to require that the estimates
f&(a, b) and f&(b, a) for the expert’s degree of belief in these
composite statements coincide, i.e., that f&(a, b) = f&(b, a).
In mathematical terms, this means that the “and”-operation
f&(a, b) should be commutative.

Similarly, since for every two statements A and B, the
composite statements A∨B and B ∨A are equivalent to each
other, it is reasonable to require that the estimates f∨(a, b) and
f∨(b, a) for the expert’s degree of belief in these composite
statements coincide, i.e., that f∨(a, b) = f∨(b, a). Thus, the
“or”-operation f∨(a, b) should also be commutative.

Associativity. Another pairs of equivalent statements are
(A&B)&C and A&(B&C). We can estimate the expert’s
degree of belief in the statement (A&B)&C if:

• first, we apply the “and”-operation to the degrees a =
d(A) and b = d(B) and get an estimate f&(a, b) for
the expert’s degree of belief in a statement A&B;

• then, we apply the same “and”-operation to another
pair of numbers:

◦ our estimate f&(a, b) of the expert’s degree of
belief in A&B, and

◦ the expert’s degree of belief c = d(C) in the
statement C.

As a result, we get the estimate f&(f&(a, b), c) for the expert’s
degree of belief in (A&B)&C.

Similarly, we can estimate the expert’s degree of belief in
the statement A&(B&C) if:



• first, we apply the “and”-operation to the degrees b =
d(B) and c = d(C) and get an estimate f&(b, c) for
the expert’s degree of belief in a statement B&C;

• then, we apply the same “and”-operation to another
pair of numbers:

◦ the expert’s degree of belief a = d(A) in the
statement A; and

◦ our estimate f&(b, c) of the expert’s degree of
belief in B&C.

As a result, we get the estimate f&(a, f&(b, c)) for the expert’s
degree of belief in A&(B)&C).

Since the statements (A&B)&C and A&(B&C) are
equivalent A&(B∨C) and (A&B)∨(A&C), it is reasonable
to require that the corresponding estimates f&(f&(a, b), c) and
f&(a, f&(b, c)) for the expert’s degrees of belief in these state-
ments be equal, i.e., that f&(f&(a, b), c) = f&(a, f&(b, c)) for
all a, b, and c. In mathematical terms, this means that the
“and”-operation f&(a, b) should be associative.

Similarly, since the composite statements (A∨B)∨C and
A ∨ (B ∨ C) are equivalent to each other, it makes sense
to require that the corresponding estimates f∨(f∨(a, b), c)
and f∨(a, f∨(b, c)) for the expert’s degrees of belief in these
statements be equal, i.e., the “or”-operation f∨(a, b) should
also be associative.

Because of associativity, we can simply write
f&(a, b, . . . , c) and f∨(a, b, . . . , c) without worrying about
the order of the corresponding “and”- and “or”-operations.

Other properties of “and”- and “or”-operations. Other
properties of “and”- and “or”-operations also follow from
common sense. For example, from the fact that “true”&A
is equivalent to A, we conclude that f&(a, 1) = a. From the
fact that “true”∨A is equivalent to “true”, we conclude that
f∨(a, 1) = 1.

Similarly, from the fact that “false”&A is equivalent to
“false”, we conclude that f&(a, 0) = a, and from the fact that
“false”∨A is equivalent to A, we conclude that f∨(a, 0) = a.

Another example: if an expert increases his/her belief in
one or both of the statements A and B, then it is reasonable
to assume that the expert’s degree of belief in a composite
statement A&B will either increase or stay the same, but it
cannot decrease. In other words, if a ≤ a′ and b ≤ b′, then
we should have f&(a, b) ≤ f&(a

′, b′). In mathematical terms,
this means that the “and”-operation should be a (non-strictly)
increasing function of each of its variables.

Similarly, it is reasonable to require that the “or”-operation
f∨(a, b) is a non-strictly increasing function of each of its
variables.

It is also reasonable to require that small changes in degree
a = d(A) and b = d(B) should lead to small changes in
d(A&B). In other words, it is reasonable to require that the
“or”-operation be continuous.

III. WHAT ABOUT DISTRIBUTIVITY?

Distributivity: reminder. In the previous section, when we
described “and”- and “or”-operations, we considered only

equivalences which use only one of the two connectives: either
“and” or “or”.

In logic, there are also equivalences which combine both
“and” and “or”. One of these properties is distributivity.
Specifically, for every three statements A, B, and C, the
composite statements A&(B ∨ C) and (A&B) ∨ (A&C)
are equivalent to each other.

Seemingly natural idea: let us add distributivity to the
list of requirements on “and”- and “or”-operations. In the
previous sections, we showed that:

• from the fact that A&B is equivalent to B&A, we
implied that the “and”-operation should be commuta-
tive;

• from the fact that A&(B&C) is equivalent to
(A&B)C, we implied that the “and”-operation is
associative.

Similar equivalences about ∨ led us to commutativity and
associativity of “or”-operations.

It seems reasonable to see what we can conclude based on
the fact that the statements A&(B∨C) and (A&B)∨(A&C)
are equivalent to each other. Similar to the previous section,
we will see what estimates we get when we use “and”- and
“or”-operations to estimate the degree of confidence in both
expressions, and we will require that the resulting estimates
coincide.

We can estimate the expert’s degree of belief in the first
statement A&(B ∨ C) if:

• first, we apply the “or”-operation to the degrees b =
d(B) and c = d(C) and get an estimate f∨(b, c) for
the expert’s degree of belief in a statement B ∨ C;

• then, we apply the “and”-operation to the following
pair of numbers:

◦ the expert’s degree of belief a = d(A) in the
statement A, and

◦ our estimate f∨(b, c) of the expert’s degree of
belief in B ∨ C.

As a result, we get the estimate f&(a, f∨(b, c)) for the expert’s
degree of belief in A&(B ∨ C).

Similarly, we can estimate the expert’s degree of belief in
the second statement (A&B) ∨ (A&C) if:

• first, we apply the “and”-operation to the degrees a =
d(A) and b = d(B) and get an estimate f&(a, b) for
the expert’s degree of belief in a statement A&B;

• then, we apply the same “and”-operation to the de-
grees a = d(A) and c = d(C) and get an estimate
f&(b, c) for the expert’s degree of belief in a statement
B&C;

• finally, we apply the “or”-operation to the following
pair of numbers:

◦ our estimate f&(a, b) of the expert’s degree of
belief in A&B, and

◦ our estimate f&(a, c) of the expert’s degree of
belief in A&C.



As a result, we get the estimate f∨(f&(a, b), f&(a, c)) for the
expert’s degree of belief in (A&B) ∨ (A&C).

Since the statements A&(B ∨ C) and (A&B) ∨
(A&C) are equivalent to each other, it is reasonable to
require that the corresponding estimates f&(a, f∨(b, c)) and
f∨(f&(a, b), f&(a, c)) for the expert’s degrees of belief in
these statements be equal, i.e., that

f&(a, f∨(b, c)) = f∨(f&(a, b), f&(a, c))

for all a, b, and c. In mathematical terms, this means that
the “and”-operation f&(a, b) should be distributive over the
“and”-operation f∨(a, b).

Good news: there are reasonable distributive pairs of
“and”- and “or”-operations. Let us show that some rea-
sonable pairs of “and”- and “or”-operations do have the
distributivity property.

The example is when we use f∨(a, b) = max(a, b)
(one of the most frequently used “or”-operations) and an
arbitrary “and”-operation f&(a, b). Let us show that in this
case, we have distributivity, i.e., that f&(a,max(b, c)) =
max(f&(a, b), f&(a, c)) for all a, b, and c.

Indeed, without losing generality, we can assume that b ≤ c
(when c ≤ b, distributivity can be proven in the exact same
way). In this case, max(b, c) = c, so the left-hand side of the
desired equality is equal to f&(a, c):

f&(a,max(b, c)) = f&(a, c).

Due to the fact that the “and”-operation is increasing, b ≤ c
implies that f&(a, b) ≤ f&(a, c). Thus, the right-hand side of
the desired equality is also equal to f&(a, c):

max(f&(a, b), f&(a, c)) = f&(a, c).

So, both sides of the desired equality are equal to the same
value and are, thus, equal to each other.

Not so good news: distributivity requirement excludes
many reasonable “or”-operations. The above example looks
great, but it turns out that this is the only such example.
Indeed, for an “and”-operation, we have f&(1, a) = a and
f∨(a, 1) = 1 for all a. In particular, for b = c = 1,
we have f∨(b, c) = 1, f&(a, b) = a, and f&(a, c) = a.
Thus, the left-hand side of the distributivity equality is equal
to f&(a, f∨(b, c)) = f&(a, 1) = a, while the right-hand
side is equal to f∨(f&(a, b), f&(a, c)) = f∨(a, a). Thus, for
b = c = 1, distributivity implies that f∨(a, a) = a for every a.

One can show that that the only “or”-operations satisfying
this condition is f∨(a, b) = max(a, b). Indeed, if b ≤ a,
then from the known property f∨(a, 0) = a, new property
f∨(a, a) = a, and monotonicity a = f∨(a, 0) ≤ f∨(a, b) ≤
f∨(a, a) = a, we conclude that f∨(a, b) = a. Similarly,
for b ≥ a, we get f∨(a, b) = b. In both cases, we get
f∨(a, b) = max(a, b).

Why this is a problem. While the maximum “or”-operations
works well in many cases, in many other situations, other “or”-
operations work better. For example, in fuzzy control [6], [12]:

• if we are interested in the smoothest control, then we
should select f∨(a, b) = max(a, b);

• however, if we are interested in the most stable control,
then we should select f∨(a, b) = a+ b− a · b.

Similar, if we look for an operation f∨(a, b) which is the
least sensitive to the uncertainty with which we can estimate
the original degrees of belief a and b, then [6], [8], [10]:

• if we minimize the worst-case uncertainty in f∨(a, b),
we get f∨(a, b) = max(a, b);

• however, if we instead minimize the average uncer-
tainty, we get f∨(a, b) = a+ b− a · b.

If we select an “and”-operation based on the principle of
maximum entropy [3] – a natural formalization of Laplace’s
principle of indifference – we also get f∨(a, b) = a+ b− a · b
[6], [7].

So what do we do: need to consider limited distributivity.
We would like to require distributivity and at the same time
still allow “or”-operations which are different from maximum.
Since full distributivity does not allow such “or”-operations, a
natural idea is to consider limited distributivity.

The above proof that only f∨(a, b) = max(a, b) leads to
distributivity is based on considering pairs b and c for which
f∨(b, c) = 1. It is therefore reasonable to only consider cases
when f∨(b, c) < 1. Thus, we arrive at the following definition.

Definition 1. We say that a pair of an “and”-operation
f&(a, b) and an “or”-operation f∨(a, b) are distributive if for
every three real numbers a, b, and c, f∨(b, c) < 1 implies
f&(a,max(b, c)) = max(f&(a, b), f&(a, c)).

In the following text, this is how we will understand
distributivity of “and”- and “or”-operations.

Comment. It is worth mentioning that when f∨(b, c) < 1,
then both sides of the distributivity equality, i.e., both val-
ues f&(a,max(b, c)) and max(f&(a, b), f&(a, c)), are smaller
than 1.

Indeed, due to monotonicity, we have f&(a, f∨(b, c)) ≤
f&(1, f∨(b, c)) = f∨(b, c) < 1, so the left-hand side is indeed
smaller than 1.

Due to monotonicity, f&(a, b) ≤ f&(1, b) = b and
f&(a, c) ≤ f&(1, c) = c. Thus, due to monotonicity, we have
f∨(f&(a, b), f&(a, c)) ≤ f∨(b, c) < 1. So, the right-hand side
is also smaller than 1.

Is the above limitation sufficient? A new example of
operations which are distributive in the above sense. Is the
above restriction sufficient? Do we have now “or”-operations
beyond maximum? The following example shows that the
answer to both questions is “yes”.

To explain this example, let us recall that the notion of
distributivity started with arithmetic, where multiplication is
distributive with respect to addition: a · (b+ c) = a · b+ a · c.
It is therefore reasonable to consider an example, in which
the “and”-operation is multiplication and the “or”-operation is
addition.



Multiplication f&(a, b) = a · b (“algebraic product”) is
indeed one of the most frequently used “and”-operations. In
contrast, pure addition a+b cannot be an “or”-operation, since:

• an “or”-operation, given two values a, b ∈ [0, 1],
should always return a value f∨(a, b) ∈ [0, 1],

• while for numbers a, b ≤ 1, the sum a+b can be larger
than 1: e.g., when a = b = 1, we have a+ b = 2 > 1.

Once we restrict the sum to 1 from above, i.e., consider
the operation f∨(a, b) = min(a + b, 1), then we already get
one of the most frequently used “or”-operations.

In this case, if we limit ourselves to situations when the
“or”-operation coincides with addition, i.e., when b + c < 1,
then f∨(b, c) = b + c, so the left-hand side of the desired
equality takes the form

f&(a, f∨(b, c)) = a · f∨(b, c) = a · (b+ c).

For the right-hand side, we get f&(a, b) = a ·b and f&(a, c) =
a · c. From b+ c ≤ 1 and a ≤ 1, it follows that a · (b+ c) =
a · b+ a · c ≤ 1. Thus, we have

f∨(f&(a, b), f&(a, c)) = f∨(a · b, a · c) = a · b+ a · c.

The equality between the expressions for the left-hand side and
the right-hand sides now follows from the well-known fact that
multiplication is distributive with respect to addition.

Resulting proposal: let us restrict ourselves to distributive
“and’- and “or”-operations. Instead of considering arbitrary
pairs of “and- and “or”-operations, we propose to consider
only pairs which are distributive (in the sense of Definition 1).

The motivation for this proposal is the same as the moti-
vation for “or”- and “and”-operations to be commutative and
distributive.

Comment. Of course, as we have mentioned, even when we
know the degrees of belief a and b in statements A and B,
the value f&(a, b) only approximately describes our degree
of belief in A&B. Because of the approximate character of
“and”- and “or”-operations, it is reasonable to expect that the
empirical “and”- and “or”-operations are only approximately
associative – and this has indeed been discovered when re-
searchers analyzed how people think; see, e.g., [5], [13], [15].

Similarly, we expect that the empirical “and”- and “or”-
operations are only approximately distributive.

Another reason why associativity – and, similarly, distribu-
tivity – can be only approximate is that in fuzzy control, while
we start with “and”- and “or”-operations which best describe
expert’s reasoning, we eventually need to switch to operations
which provide the best control (smoothest, most stable, etc.). It
is known that this need to go beyond the original expert ideas,
to an event better control, sometimes leads to more complex
operations which may not necessary be exactly associative (or
distributive); see, e.g., [12].

IV. HOW TO DESCRIBE DISTRIBUTIVE “AND”- AND
“OR”-OPERATIONS

Need for a general description. The main objective of this
paper is to approximate a general fuzzy relation by fuzzy rules.
In the previous section, we explained why it is reasonable to
require that the “and”- and “or”-operations are distributive. In
view of this explanation, our goal is to approximate a general
fuzzy relation by fuzzy rules that use distributive “and”- and
“or”-operations.

We would like to produce an algorithm which is applicable
for each distributive pairs of operations. So, to approach this
approximate problem, let us see how we can describe such a
generic pair. To come up with such a description, let us first
recall how we can describe a generic “or”-operation.

Different types of “or”-operations: reminder. Some of
the “or”-operations are Archimedean, in the sense that for
every two values a ∈ (0, 1) and b ∈ (0, 1) for which
f∨(a, a, . . . , a) (n times) > b. A typical example of an
Archimedean “or”-operation is the “algebraic sum” f∨(a, b) =
a+ b−a · b. From the algebraic viewpoint, it is known that all
such operations are isomorphic to addition, i.e., there exists a
function ψ : [0, 1] → [0,∞] such that f∨(a, c) = c if and only
if ψ(a)+ψ(b) = ψ(c); see, e.g., [4], [10]. In other words, each
such operation has the form f∨(a, b) = ψ−1(ψ(a) + ψ(b)),
where ψ−1(t) denotes the function which is inverse to the
function ψ(a).

Another type of “and”-operations is an operation which is
isomorphic to f∨(a, b) = min(a+b, 1), i.e., an operation of the
type f∨(a, b) = ψ−1(min(ψ(a) + ψ(b), 1)), for some strictly
increasing function ψ(a). We also have f∨(a, b) = max(a, b).

It is known (see, e.g., [4], [10]) that every “or”-operation
is isomorphic to a lexicographic combination of Archimedean
operations, isomorphic to f∨(a, b) = min(a+ b, 1), and max.

The exact description of a generic “or”-operation is com-
plex, but we can consider approximate descriptions. As
we have mentioned earlier, the main purpose of “or”-operation
f∨(a, b) is to estimate the expert’s degree of belief d(A∨B) in
a composite statement A∨B as f∨(d(A), d(B)). It is therefore
reasonable to select an “or”-operation for which, for all the
pairs of statements (Ak, Bk) for which we know both the de-
grees d(Ak) and d(Bk) and the actual expert’s degree of belief
d(Ak∨Bk), we should have d(Ak∨Bk) ≈ f∨(d(Ak), d(Bk)).

Because of the approximate character of an “or”-operation,
we can always replace it with a very close one without
changing the practical accuracy of the approximation. For
example, if an estimate f∨(d(Ak), d(Bk)) approximates the
actual expert’s degree d(Ak ∨ Bk) with an accuracy of 10%,
then replace the corresponding “or”-operation with another
operation f ′∨(a, b) ≈ f∨(a, b) one which is 0.01-close (or
even 0.001-close) to f∨(a, b), we get, in effect, the exact same
approximation accuracy.

To be more precise, for every ε > 0, we say that an “or”
operation f ′∨(a, b) is an ε-approximation to an “or”-operation
f∨(a, b) if for all a and b, we have |f ′&(a, b)− f&(a, b)| ≤ ε.

Approximate descriptions can indeed be simpler. It is
known (see, e.g., [9]) that for every “or”-operation f∨(a, b) and



for every ε > 0, there exists an Archimedean “or”-operation
f ′∨(a, b) which is ε-close to f∨(a, b).

Alas, the resulting approximation does not help in de-
scribing generic distributive pairs. Maybe we can use this
universal approximation result to describe distributive pairs of
“and”- and “or”operations? Alas, no.

In this approximation result, we approximate each “or”-
operation by an Archimedean one. For each Archimedean
operation, if b < 1 and c < 1, then we have f∨(b, c) < 1.
Thus, due to our definition of distributivity, we would have
distributivity for all b < 1 and c < 1 and thus, by continuity,
for all b and c, and we already know that this is only possible
for f∨(a, b) = max(a, b) – which is not an Archimedean “or”-
operation.

Thus, if we want to require distributivity, we need to
consider non-Archimedean “or”-operations.

A new universal approximation result. The above universal
approximation result says that each “or”-operation f∨(a, b) can
be approximated by an Archimedean “or”-operation f ′∨(a, b).
We have already mentioned that each Archimedean “or”-
operation has the form f ′∨(a, b) = ψ−1(ψ(a) + ψ(b)) for
some function ψ : [0, 1] → [0,∞]. We want to find a non-
Archimedean approximation to f ′∨(a, b), which will then be
an approximation to the original t-norm f∨(a, b).

Indeed, for every δ > 0, we can consider a new function
ψ′(a) which is equal to ψ(a) for all a ≤ 1 − δ and which is
equal to ψ(1 − δ) + (a − (1 − δ)) for all a ∈ (1 − δ, 1]. For
this function ψ′(a), the operation

f ′′∨(a, b)
def
= (ψ′)−1(min(ψ′(a) + ψ′(b), ψ′(1))

is an “or”-operation, and one can prove that when δ → 0,
we have f ′′∨(a, b) → f ′∨(a, b). Thus, for sufficiently small δ >
0, the new operation f ′′∨(a, b) is indeed an approximation to
f ′∨(a, b) and thus, to the original “or”-operation f∨(a, b).

We can rewrite the above expression for f ′′∨(a, b) in a more

familiar form if we take ψ′′(a)
def
=

ψ′(a)

ψ′(1)
. One can show that

in terms of this new function ψ′′(a), the “and”-operation has
the form f ′′∨(a, b) = (ψ′′)−1(min(ψ′′(a) + ψ′′(b), 1)).

We therefore conclude that for every ε > 0, each “or”-
operation can be ε-approximated by by an “or”-operation
which is isomorphic to min(a+ b, 1).

Let us use the new approximation result to get a general
description of distributive pairs. Under the above approxi-
mation result, let us now describe all distributive pairs of fuzzy
logic operations.

In this description, we assume that the “or”-operation is
isomorphic to f∨(a, b) = min(a + b, 1). This means that if
we “re-scale” all the original degrees of belief a, b, c ∈ [0, 1]
into values a′ = ψ′′(a), b′ = ψ′′(b), and c′ = ψ′′(c), then
the original relation c = f∨(a, b) takes a simplified form c′ =
min(a′ + b′, 1).

We can apply the same re-scaling to the “and”-operation
f&(a, b), resulting in a new “and”-operation g(a′, b′)

def
=

ψ′′(f&((ψ
′′)−1(a′), (ψ′′)−1(b′)). One can easily check that

this is indeed an “and”-operation (i.e., a t-norm). In the new
scale, our distributivity condition takes the following form: if
b′ + c′ < 1, then g(a′, b′ + c′) = g(a′, b′) + g(a′, c′). In other
words, for each a′, the function b′ → g(a′, b′) is a monotonic
additive function of b′.

It is known [1] that all monotonic additive functions have
the form f(x) = k · x. Thus, we have g(a′, b′) = k(a′) · b′
for some k(a′). Since every “and”-operation is commutative
g(a′, b′) = g(b′, a′), we get k(a′) · b′ = k(b′) · a′. Dividing
both sides of this equality by a′ · b′, we conclude that

k(a′)

a′
=
k(b′)

b′
.

In other words, we conclude that the ratio

k(a′)

a′

has the same value for all possible values a′ ∈ [0, 1] – in other
words, we conclude that this ratio is a constant. Let us denote
this constant by r. Then, from

k(a′)

a′
= r,

we conclude that k(a′) = r · a′. Therefore, g(a′, b′) = k(a′) ·
b′ = r · a′ · b′. From the requirement that g(1, 1) = 1, we
conclude that r = 1 and thus, g(a′, b′) = a′ · b′.

So, we arrive at the following conclusion.

Resulting description of a generic pair of distributive op-
erations. Each “or”-operation can be, with arbitrary accuracy,
approximated by an operation isomorphic to min(a + b, 1).
Thus, for all practical purposes, we can assume that the actual
“or”-operation is isomorphic to min(a+ b, 1).

Under this assumption, each distributive pair is isomor-
phic to the pair consisting of an “and”-operation f∨(a, b) =
min(a + b, 1) and the algebraic-product ”and”-operation
f&(a, b) = a · b.

V. APPROXIMATING A FUZZY RELATION BY FUZZY
RULES: WHAT WE PROPOSE

The problem of approximating a fuzzy relation: reminder.
Now that we know how to describe a general distributive pair
of “and”- and “or”-operations, we can handle the original ap-
proximation problem: we have a fuzzy relation R(x1, . . . , xn),
we have a distributive pair of “and”- and “or”-operations, and
we want to represent it as

R(x1, . . . , xn) = f∨(d1(x1, . . . , xn), . . . , dnr
(x1, . . . , xn)),

where

dr(x1, . . . , xn) = f&(Ar,1(x1), . . . , Ar,n(xn)).

Towards solving the problem. Since the pair of “and”-
and “or”-operations is distributive, there is a re-scaling



ψ′′(a) after which, for the new relation R′(x1, . . . , xn)
def
=

ψ′′(R(x1, . . . , xn)), the desired representation takes the form

R′(x1, . . . , xn) = min

(
nr∑
r=1

dr(x1, . . . , xn), 1

)
,

where

d′r(x
′
1, . . . , x

′
n) = A′

r1(x1) · . . . ·A′
ri(xi) · . . . ·A′

rn(xn),

for d′r(x1, . . . , xn) = ψ′′(dr(x1, . . . , xn)) and A′
ri(xi) =

ψ′′(Ari(xi). Thus, we get

R(x′1, . . . , x
′
n) = min

(
nr∑
r=1

n∏
i=1

A′
ri(xi), 1

)
.

Here, as we have seen in our approximation result, the 1
part in max(. . . , 1) is rare (as rare as we want), so we can
safely assume that

R(x′1, . . . , x
′
n) =

nr∑
r=1

n∏
i=1

A′
ri(xi).

Resulting algorithms. The problem of approximating a given
function by expressions of the above type is known: it is
known as the problem of tensor decomposition. Many efficient
algorithms have been developed for solving this problem; see,
e.g., a recent survey [2] and references therein; many of these
algorithms have been developed in the last few years.

We therefore propose to solve the original problem of
approximating a relation R(x1, . . . , xn) as follows:

• first, we form a new relation

R′(x1, . . . , xn) = ψ′′(R(x1, . . . , xn));

• then, we use one of the tensor decomposition algo-
rithms to find the functions A′

ri(xi) approximating the
relation R′(x1, . . . , xn);

• finally, we “re-scale” the resulting functions A′
ri(xi)

back to the original scale, i.e., form functions

Ari(xi)
def
= (ψ′′)−1(A′

ri(f(xi)).

This way, we approximate the original fuzzy relation by a
sequence if fuzzy rules.

Comment. We are interested in representations with non-
negative values Ari(xi). Most tensor decomposition algo-
rithms allow representations with functions of arbitrary sign,
so we may end up with negative values of Ari(xi).

This is OK if all we are interested in is approximation,
but if we want an interpretable approximation, i.e., an approx-
imation for which the values Ari(xi) can be interpreted as
membership functions, then we have to replace each negative
value by the closest non-negative one, i.e., by 0.

It should be mentioned, however, that this replacement may
somewhat decrease the approximation accuracy.
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