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From Global to Local Constraints:
A Constructive Version of Bloch’s Principle

Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

University of Texas at El Paso, El Paso, TX 79968, USA
{mceberio,olgak,vladik}@utep.edu

Abstract. Generalizing several results from complex analysis, A. Bloch
formulated an informal principle – that for every global implication there
is a stronger local implication. This principle has been formalized for
complex analysis, but is has been successfully used in other areas as
well. In this paper, we propose a new formalization of Bloch’s Principle,
and we show that in general, the corresponding localized version can be
obtained algorithmically.

1 Bloch’s Principle: Formulation of the Problem

Bloch’s Principle: a brief history (see [4] for details). Liouville’s Theorem
states that every analytical function f(z) which is bounded on a whole complex
plane and for which f(0) = 0 is equal to 0; see, e.g., [3]. This theorem requires
that the constraint |f(z)| ≤ C be satisfied globally, i.e., for all z. What if this
constraint is only satisfied locally, i.e., for all z from a bounded set? Such a
“localization” of Liouville’s theorem was indeed proven by H. A. Schwarz: if a
function f(z) for which f(0) = 0 is analytical for all z from a disk

BR(0)
def
= {z : |z| < R}

and |f(z)| ≤ C for all z ∈ BR(0), then for all such values z, we get |f(z)| ≤ C

R
·|z|.

When the size R increases, the bound tends to 0; so for R → ∞, we get Liouville’s
Theorem.

Several similar localizations of global results are known. In 1926, A. Bloch,
formulated a general (informal) Bloch’s Principle: that for every global result,
there is a local version from which this global result follows [2]. In complex anal-
ysis, this principle was formalized; however, there are many interesting results
of the use of Bloch’s Principle in other areas of mathematics.

Problem. Can we formalize Bloch’s Principle in a context which is more general
than complex analysis? If yes, and if the appropriate the localization always
exists, can we find it algorithmically?

What we do in this paper. In this paper, we provide positive answers to both
questions.

Comment. Of course, due to the informal character of Bloch’s principle, no an-
swer is final – it is always possible that our result (or a similar result) holds in
a more general context.



2 Bloch’s Principle: General Formalization

Analysis of the problem. In general terms, the Liouville’s theorem has the
form

∀f ∈ F (∀x (f(x) ∈ A(x)) ⇒ ∀x (f(x) ∈ B(x))), (1)

where F is the class of all analytical functions for which f(0) = 0, x goes over
all complex numbers, A(x) = {x : |x| ≤ C} is the set of all the valued bounded
by the given constant C, and B(x) = {0}.

The implication (1) says that if the constraint f(x) ∈ A(x) is exactly satisfied
for all possible values x, then the conclusion holds. What we want to prove is
that when the constraint is “approximately” satisfied – i.e., if it satisfied with
some accuracy δ > 0 for all the values x which are at a distance r form 0 – then
the conclusion is also approximately satisfied, with some accuracy ε > 0 and for
all values at a distance R from 0. We also want to make sure that when δ → 0
and r → ∞, then ε → 0 and R → ∞. In other words, we want to prove that for
every ε > 0 and R > 0, there exist δ > 0 and r > 0 for which, if the condition is
satisfied with accuracy δ for all x which are r-close to 0, then the conclusion is
satisfied with accuracy ε for all x which are R-close to 0.

A natural way to describe the fact that f(x) is “approximately” in the set
A(x) (or in the set B(x)) is to say that f(x) is close to the set A(x) in the sense

of the usual distance d(z, S)
def
= inf{d(z, s) : s ∈ S}. In the above case, the sets

A(x) and B(x) are compact, so d(z,A(x)) = 0 if and only if z ∈ A(x). Thus, the
global result (1) can be reformulated in the equivalent form

∀f (∀x d(f(x), A(x)) = 0 ⇒ ∀x d(f(x), B(x)) = 0)). (2)

and the desired localized result has the form

∀ε > 0∀R > 0∃δ > 0∃r > 0

∀f ((∀x (d(x, x0) ≤ r ⇒ d(f(x), A(x)) ≤ δ)) ⇒

(∀x (d(x, x0) ≤ R ⇒ d(f(x), B(x)) ≤ ε))). (3)

It is worth mentioning that in the case of Liouville’s Theorem (and in several
similar results mentioned in [4]), not only all the sets A(x) and B(x) compact,
but they also continuously depend on x – in the sense of the Hausdorff metric

dH(A,B)
def
= max

(
max
a∈A

d(a,B),max
b∈B

d(b, A)

)
.

The class F is also compact in some reasonable sense: indeed, for ever
bounded set D, the set of all these functions limited to D is compact in the
usual metric dD(f, g) = max

x∈D
d(f(x), g(x)). Indeed, for an analytical function

f(z), its value f(z) can be described by a Cauchy integral over a surrounding

curve γ: f(z) =

∫
γ

f(t)

z − t
dt. Differentiation of this formula enables us to get a

similar formula for the derivative f ′(z). Thus, when the analytical function is



bounded, its derivative is also bounded. Due to Ascoli-Arzela theorem, this im-
plies that the corresponding class of functions is compact – when limited to each
bounded domain.

It is also important to notice that the notion of an analytical function is
locally defined, in the sense that if a function f(x) coincides with some analytical
function in every neighborhood, then it is analytical itself.

Thus, we arrive at the following natural formalization of Bloch’s Principle.

Definition 1. Let us call a metric space bounded-compact if every closed
bounded set in this space is compact.

Comment. In particular, this implies that every closed ball

Br(x0)
def
= {x : d(x, x0) ≤ r}

is compact. Vice versa, if for some point x0, every closed ball with a center at x0

is compact then every closed bounded set is compact too: indeed, very bounded
set is contained in some ball Br(x0), and a closed subset of a compact set is also
compact.

Definition 2. Let F be a class of functions from a bounded-compact metric space
X to a bounded-compact metric space Y . We say that the class F is bounded-
compact if for every compact set K ⊂ X, this class is compact in the metric

dK(f, g)
def
= sup

x∈K
d(f(x), g(x)).

Definition 3. Let F be a class of a functions from X to Y , and let x0 be a point
in x0. We say that a function f : X → Y locally belongs to the class F if for
every n, there exists a function fn ∈ F which coincides with f on Bn(x0).

Comment. This definition uses the point x0, but one can easily check that the
resulting notion does not depend on x0.

Definition 4. We say that a bounded-compact class of functions F is locally
defined if it contains all the functions that locally belong to this class.

Definition 5. Let F be a bounded-compact locally defined class of functions. By
an F-constraint A, we mean a (Hausdorff)-continuous function that map each
point x ∈ X into a compact set A(x) ⊆ Y .

Definition 6. Let F be a bounded-compact locally defined class of functions, and
let A and B be F-constraints.

• We say that the constraint A globally implies the constraint B if for every
function f ∈ F , the condition ∀x (f(x) ∈ A(x)) implies ∀x (f(x) ∈ B(x)).

• We say that the constraint A locally implies the constraint B for ε, R, δ,
and r if for every function f(x) for which d(f(x), A(x)) ≤ δ for all x with
d(x, x0) ≤ r, we have d(f(x), B(x)) ≤ ε for all x with d(x, x0) ≤ R.

• We say that the constraint A locally implies the constraint B if for every
ε > 0 and for every R > 0, there exist real numbers δ > 0 and r > 0 such
that A locally implies B for ε, R, δ, and r.



Comment. The definition of local implication uses a point x0, but one can easily
see that the corresponding property does not change if we replace this point with
any other point from the metric spaces X.

Proposition 1. Let F be a bounded-compact locally defined class of functions,
and let A and B are F-constraints. Then, if A globally implies B, then A locally
implies B.

Proof. We will prove the result by contradiction. Let us assume that A does
not locally imply B. This means that there exist ε > 0 and R > 0 such that for
every n, there is a function fn ∈ F for which max

x∈Bn(x0)
d(fn(x), A(x)) ≤ 1/n but

d(fn(xn), B(xn)) > ε for some xn ∈ Bx0(R). Since the sequence xn is contained
in a compact set BR(x0), it has a subsequence which converges to some limit ℓ.
Without losing generality, we can assume that xn → ℓ.

Since F is compact relative to each metric dBk(x0), from the sequence fn, we
can extract a subsequence n(1, i) convergent for k = 1; from this subsequence,
we can extract a subsequence n(2, i) which is convergent for k = 2, etc. The
diagonal subsequence fn(i,i) then converges for all k. This convergence is for
all x, no matter how far from x0 we are, so we can defining a point-wise limit
function f(x). On each ball Bk(x0), this limit coincides with the corresponding
limit from F limited to this ball. Thus, the limit function f(x) locally belongs
to F ; since the class F is locally defined, this means that f ∈ F .

For the limit function f , for every x, the condition d(fn(x), A(x)) ≤ 1/n in
the limit tends to d(f(x), A(x)) = 0. Since A globally implies B, we conclude that
we have d(f(x), B(x)) = 0 for all x, in particular, that we have d(f(ℓ), B(ℓ)) = 0.
However, from d(fn(xn), B(xn)) > ε, in the limit xn → ℓ, we get d(f(ℓ), B(ℓ)) ≥
ε > 0. This contradictions shows that our assumption is wrong, and A does
locally imply B. The proposition is proven.

3 Bloch’s Principle: A Constructive Version

Towards an algorithmic version. In this paper, we will use the usual defi-
nitions of computable numbers, functions, compact spaces, etc.; see, e.g., [1, 5].

Proposition 2. If spaces X and Y are computable and computably bounded-
compact, and if A and B are computable functions for which A globally implies
B, then there exists an algorithm that, given rational numbers ε > 0 and R > 0,
produces computable numbers δ > 0 and r > 0 for which A locally implies B for
ε, R, δ, and r.

Proof. From the proof of Proposition 1, we can conclude that that for ε0 = ε/3
and for R0 = R+ 1, there exists an integer n = n0 for which r = n and δ = 1/n
satisfy the desired property. Let us show how to algorithmically find this n. For
that, we will repeat the below computations for n = 1, 2, . . . until we find the
value n for which the desired condition is satisfied.

In these computations, we will use the fact that there are algorithms for com-
puting the maximum and minimum of a computable function over a computable



compact. We will also use the fact that for a computable function F (x) on a
computable compact set K, for every two computable numbers z− < z+ within
the range of F (x) on K, we can compute an intermediate value z ∈ (z−, z+) for
which the set {x : F (x) ≤ z} is a computable compact.

Before we go through n = 1, 2, . . ., we use the intermediate-value algorithm
to compute a value R′ ∈ (R,R + 1) for which the ball BR′(x0) is computably
compact.

Then, for each n, we compute a value rn ∈ (n − 1, n) for which the closed
ball Brn(x0) is a computable compact. Since this ball is a computable compact,

the value v(f)
def
= max

x∈Brn (x0)
d(f(x), A(x)) is also computable – and is, therefore,

a computable function of f ∈ F ′ def
= F|Bx0

(R).
The restriction F ′ is a computable compact. Thus, by the same intermediate-

value result, we can compute a value δn ∈ (1/n, 1/(n − 1)) for which the set

S
def
= {f : v(f) ≤ δn} is a computable compact. We can therefore compute the

maximum M of a computable function d(f(x), B(x)) over all x ∈ BR′(x0) and
all f ∈ S with any given accuracy. Let us compute it with accuracy ε/3. If the

resulting estimate M̃ is ≤ (2/3) · ε, we stop.
Let us show that if we stop, then we get the desired n. Indeed, in this case,

if for some f , we have d(f(x), A(x)) ≤ 1/n < δn for all x ∈ Bn(x0), then (since
rn < n) this inequality is also true for all x ∈ Brn(x0), hence v(f) < δn. Every
x ∈ BR(x0) belongs to BR′(x0) and thus, for this x, we have d(f(x), B(x)) ≤ M .

Since M ≤ M̃ + ε/3 and M̃ ≤ (2/3) · ε, we conclude that d(f(x), B(x)) ≤ ε.
Let us now show that the above algorithm will stop for n = n0 + 1. By defi-

nition of n0, if x ∈ Bn0(x0) and d(f(x), A(x)) ≤ 1/n0, then d(f(x), B(x)) ≤ ε/3
for all x ∈ BR0(x0). Here, R′ < R + 1 = R0, so x ∈ BR′(x0) implies
that x ∈ BR0(x0). Similarly, since rn > n − 1 = n0, we conclude that

max
x∈Bn0 (x0)

d(f(x), A(x)) ≤ v(f) = max
x∈Brn (x0)

d(f(x), A(x)) and thus, v(f) ≤ δn <

1/n0 implies that max
x∈Bn0 (x0)

d(f(x), A(x)) <
1

n0
. Thus, indeed, for all such x

and f , we have d(f(x), B(x)) ≤ ε/3; hence, the largest value M is ≤ ε/3, so

M̃ ≤ (2/3) · ε, and the algorithm will stop. The proposition is proven.
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