1-2000

Which Sensor Set is Better for Monitoring Spacecraft Subsystems? A Geometric Answer and its Probabilistic Generalization

Matthew Barry
Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

Part of the Computer Engineering Commons

Comments:
UTEP-CS-99-43d.

Recommended Citation
https://scholarworks.utep.edu/cs_techrep/582

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.
WHICH SENSOR SET IS BETTER FOR MONITORING SPACECRAFT SUBSYSTEMS? A GEOMETRIC ANSWER AND ITS PROBABILISTIC GENERALIZATION

by Matthew Barry1 and Vladik Kreinovich2

1Advanced Technology Department
United Space Alliance LLC, 600 Gemini Ave.
Houston, TX 77058-2783, USA
matthew.r.barry@usahq.unitedspacealliance.com

2Department of Computer Science, University of Texas
El Paso, TX 79968, USA, vladik@cs.utep.edu

Abstract. Each Space Shuttle mission produces more than 25,000 real-time measurements in NASA’s mission control center. Within the mission control center, dozens of computer programs analyze these measurements and present results to mission control personnel. Because these programs support the practice of human-in-the-loop control, they serve primarily to present information to mission controllers. The controller’s job is to interpret the displayed information to monitor spacecraft and astronaut performance, taking decisions and control actions when necessary for mission success or crew safety.

A single mission controller clearly cannot monitor all 25,000 real-time measurements. The experience of human space flight has evolved into a practice of several mission control disciplines each monitoring and controlling several thousand measurements. The controllers arrange the measurements by function onto dozens of windowed displays each showing a few hundred measurements. Because of the limited screen size, only a few of the displays is visible at any moment. The problem is: how can we use the statistics gathered from previous Space Shuttle missions to automatically select from a list of candidates the most informative display?

In this paper, we first provide a geometric approach to solving this problem, and then show how this geometric approach can be generalized to take statistical information into consideration.
A practical problem: brief description. Many Space Shuttle on-board subsystems have automated controls; however, many other systems, including the ground-based monitoring and analysis systems, are manual controls. Because of the safety concerns and the criticality of mission success, a large team of expert personnel supports each mission.

The Space Shuttle orbiter telemeters thousands of sensors, which when combined with payload sensors, trajectory sensors, and synthesized data in the mission control center (MCC) leads to more than 25,000 real-time or near-real-time measurements. The mission control personnel analyze and interpret these measurements in real-time or near-real-time with the aid of dozens of computer programs. Recent trends in the application of workstations with graphical user interfaces have led the mission controllers to arrange the measurements by function in a collection of windows. Herein, we will call each arrangement of these measurements a sensor set. The thousands of measurements and dozens of windows available to each mission controller leads to a problem of window clutter and irrelevance of information in time-critical decision-making contexts.

Previous results, e.g. [Horvitz et al. 1995], have shown that controllers can create belief network models of orbiter subsystem performance and, when combined with models of possible actions, automatically compute the ideal action (decision) and highlight on a display the sensors supporting this decision. This approach works well, particularly in off-nominal situations, but sufficient expert time is not available to create models for thousands of sensors and the many action contexts.

What we would like is to create decision-support tools from the statistics available from almost 100 previous missions. Each mission archive contains roughly 20,000 measurements sampled at a minimum of one sample per second for up to fifteen days. How can we use this information in the selection of the best sensor set?

Main idea. Our natural idea is to select a screen which would give a mission controller the largest amount of information about the flight.

In this paper, we will show how this idea can be formalized.
Novice vs. experienced mission controllers. Since we are interested in the amount of information that a mission controller can get, we will have to distinguish between:

- a novice controller to whom most information will be new, and
- an experienced controller for whom only the unusual information will be new.

Brief classification of possible situations. We will distinguish between three types of possible situations:

- routine monitoring of a space flight, when the main goal of a mission controller is to help make routine planned decisions;
- situations when there is a suspicion that something may malfunction, so the main goal of the mission controller is to detect any possible malfunction as soon as possible, and
- situations when a malfunction has already been detected, so we must get as much information about the problem itself as well as information that may be hiding behind the malfunction.

Using a natural analogy with street lights, we can mark these situations as, correspondingly, green, yellow, and red. To avoid misunderstanding, we should emphasize that red does not necessarily mean catastrophic development: there is a lot of redundancy in Space Shuttle systems, so it can function well even with a malfunction in, say, one of the computers; however, red means that, due to a malfunction, it is necessary to be more cautious about possible decisions.

Geometric approach: brief description. For each sensor, we have an interval of possible measured values, and within this interval, a sub-interval of the desired values. For example, to measure the temperature within the main cabin, we can use a normal room thermometer which can measure a temperature between -60 F and 140 F, with desired values from 60 to 80 (this is just an illustrative example; this is not how the temperature is actually measured in the main cabin).

Using telemetry samples, the signal from each sensor is transformed into a binary sequence; if we add 0 and a binary point in front of this sequence, then we can interpret this binary sequence as a real number from the interval $[0, 1]$, so that 0 corresponds to
the lowest possible value on the sensor's scale, and 1 corresponds to the largest possible value on this scale. In this interpretation, the desired interval becomes the sub-interval of the interval \([0, 1]\). For example, in the above case, when \([-60, 140]\) is transformed into \([0, 1]\) (the corresponding transformation is \((t + 60)/200\)), the sub-interval \([60, 80]\) is transformed into \([0.6, 0.7]\).

After this transformation, the signals \(s_1, \ldots, s_N\) corresponding to say \(N = 200\) sensors from a given window form an \(N\)-dimensional element \(s = (s_1, \ldots, s_N)\) from the set \(S = [0, 1]^N\). Sequences \(s\) in which for each sensor \(i\), the signal fits \(s_i\) within the desirable sub-interval \(D_i\) forms a desirable set \(D = D_1 \times \ldots \times D_N\).

Not all possible combinations of signals \(s_i\) may have been observed; the actually observed combinations form a set \(A \subseteq S\). Of course, in reality, we have observed only finitely many elements from \(S\), but since the measurements are imprecise anyway, observing a vector \(s\) means any nearby vector can be the set of actual values of measured quantities; so, we can consider, as \(A\), the set of all the vectors which have actually been observed or which are sufficiently close (within measurement inaccuracy) to the actually observed vectors. The resulting set \(A\) is therefore no longer a finite set, but a close domain with an non-empty interior.

Since most archived observations describe proper functioning of all the systems, the set \(A\) is either completely within \(D\) or at least largely within \(D\).

Green-light situations. In the case of routine monitoring, we can measure the information provided by each screen by the total amount of possible readings on this screen. In geometric terms, this total amount of possible readings is proportional to the \((N\)-dimensional\) volume \(V(A)\) of the set \(A\) of actual reading. Therefore, for green-light situations, we must select a window for which

\[
V(A) \to \max.
\]

Yellow-light situations: novice operator. A novice operator knows the desired range \(D\), but does not know the actual set \(A\). So, the only way how a novice operator can detect a malfunction is
when the observed vector \(s \) goes outside the desired set \(D \). Therefore, it is reasonable to select a window for which this deviation has the highest probability.

If we do not have any information about the frequencies of different possible values of \(s \in S \), it is reasonable to consider them equally probable. In this case, the probability \(P(A') \) of a situation being in any subset \(A' \) of the set \(S \) is proportional to the volume \(V(A') \) of this set: \(P(A') = V(A')/V(S) \). In particular, the probability to detect a malfunction from a given screen is equal to \(P(S - D) = V(S - D)/V(S) \). So, we must select a window for which

\[
\frac{V(S - D)}{V(S)} \to \max .
\]

Yellow-light situations: experienced operator. An experienced operator not only knows the desired set \(D \), but he also has an intuitive understanding of the actual set \(A \); therefore, he may be able to detect a possible malfunctioning by observing a vector which is still within \(D \) but outside \(A \).

In general, we can formalize a malfunctioning as a “random” deviation from the correct state \(s \), i.e., as a transition from a state \(s \) to a new state \(s' \) which may be different from \(s \). Let \(\varepsilon \) be the largest possible distance between the original state \(s \) and the new state \(s' \). Then, instead of the original state \(s \in A \), we get a new state \(s' \) from the \(\varepsilon \)-neighborhood \(A_{\varepsilon} \) of the set \(A \).

It may be that the new point is still in \(A \). The probability of detecting a malfunction is therefore equal to the probability of a point from \(A_{\varepsilon} \) not to be in \(A \), i.e., to the ratio \(V(A_{\varepsilon} - A)/V(A_{\varepsilon}) \). For small \(\varepsilon \), we know that

\[
V(A_{\varepsilon}) = V(A) + \varepsilon \cdot S(A) + o(\varepsilon),
\]

where \(S(A) \) is a \((N-1)\)-dimensional) surface area of the domain \(A \). Therefore, for small \(\varepsilon \), the probability of detecting a malfunction is proportional to \(S(A)/V(A) \). Hence, we should choose a window for which this ratio is the largest possible:

\[
\frac{S(A)}{V(A)} \to \max .
\]
In particular, this ratio may be very large in two situations:

- if the area A is itself a (hyper)surface, e.g., a (hyper)plane (then $V(A) = 0$), or
- if A’s surface is a fractal (then $S(A) = \infty$).

Red-light situations. In the case when a malfunction has already been detected, we must select a window which gives the largest information of possible problems. Sensor readings corresponding to malfunctioning situations form a set $S - D$, so we must choose a window for which

$$V(S - D) \to \text{max}.$$

Open problems.

1) In order to apply the above geometric ideas to the actual data, we must be able to determine the volume $V(A)$ and the surface area $S(A)$ of the set A from a representative set of points $A' \subseteq A$. It is possible to estimate the volume as a probability of a random point from S being in A (i.e., being close to some point from A'); it is not so clear how to estimate the $(N - 1)$-dimensional measure A.

2) Since we will be dealing with an approximation of a set A by some simple geometric shapes, it is also desirable to come up, for different shapes, with reasonable estimates for the above geometric characteristics.

Probabilistic generalizations. In the previous descriptions, we assumed that we only know the set A of possible actual sensor readings, but that the statistics is not sufficient to determine the probabilities of different readings from the set A. If we have enough statistics, then we will be able to determine the probability distribution, e.g., in terms of a probability density function $\rho(s)$ (for probabilistic terms and methods, see, e.g., [Wadsworth 1990]).

In this case, for a green-light situation, we can measure the amount of information by computing the entropy

$$I = - \int \rho(s) \cdot \ln(\rho(s)) \, ds.$$
of this probability distribution, and select a window with the largest possible information content I.

For a yellow-light situation with a novice operator, we shall select a window with the largest possible detection probability, estimated as $P(S - D) = \int_{S - D} \rho(s) \, ds$.

Finally, for a red-light situation, we select a window for which the entropy of the conditional distribution $\rho(s)/P(S - D)$ is the largest possible.

A yellow-light situation with an experienced operator requires a separate analysis. In this situation, we start with a probability density $\rho(s)$ corresponding to the normal behavior. If we then replace the original state s with the modified state s', then we get a new probability distribution $\rho_e(s) = \int K_e(|\Delta s|) \cdot \rho(s + \Delta s) \, d\Delta s$, where the kernel $K_e(|\Delta s|)$ describes the probability of different deviations $\Delta s = s' - s$. Since Δs is small, we can expand the function $\rho(s + \Delta s)$ into Taylor series and only keep linear and quadratic terms in this expansion: $\rho(s + \Delta s) = \rho(s) + \rho_s \cdot \Delta s_i + \rho_{ij} \cdot \Delta s_i \cdot \Delta s_j$, where ρ_s denotes a partial derivative with respect to s_i. Then, due to the symmetry of the kernel, the resulting formula becomes $\rho_e(s) = \alpha \cdot \rho(s) + \beta \cdot \Delta \rho(s)$. From the normalization condition $\int \rho_e(s) \, ds = 1$, we conclude that $\alpha = 1$, so

$$\rho_e(s) = \rho(s) + \beta \cdot \Delta \rho(s). \quad (1)$$

As a measure of relative information, we can use the relative entropy $I = - \int \rho_e \cdot \ln(\rho_e / \rho) \, ds$. If we substitute the expression (1) into this formula, then expand the formula in terms of β and keep only linear and quadratic terms, and take into consideration that $\int \Delta \rho \, ds = 0$, we conclude that I is proportional to

$$I_0 = \int \frac{(\Delta \rho)^2}{\rho} \, ds. \quad (2)$$

So, we must select a window for which this characteristic takes the largest possible value.

In particular, if ρ is a Gaussian distribution, then in the coordinates in which s is a sequence of independent Gaussian variables
with standard deviation σ_i (i.e., $\rho(s) = \rho_1(s_1) \cdot \ldots \cdot \rho_N(s_N)$), we get
\[
\frac{\Delta \rho}{\rho} = \sum_i \frac{\rho^\prime_i(s_i)}{\rho(s_i)} = -\sum_i \sigma_i^{-2} + \sum_i s_i^2 \sigma_i^{-4}.
\]
Hence, the integral I is proportional to $\sum \sigma_i^{-4}$, i.e., in terms of the covariance matrix c_{ij}, to the trace of the matrix $\sum_j c_{ij} \cdot c_{jk}$, i.e., to $\sum_{ij} c_{ij}^2$. This formula is true in arbitrary coordinates as well. So, we should select a window for which this sum takes the largest possible value.

Similar formulas are true if, instead of counting the amount of information, we estimate the probability of detecting a malfunction m by using Bayes formula. Here, $P(s|m) = \rho_\xi(s), P(s|m) = \rho(s), P_0(m) = p_0$ for some $p_0 > 0$, so we can use Bayes formula to compute $P(m|s)$ and then estimate the probability of detection as $\int P(m|s) \cdot P(s|m) \, ds$. This probability is proportional to the same integral (2).

For the probabilistic generalization, we face the same open problem: how to estimate the window's characteristics (such as I_0)?

Acknowledgments. This work was supported in part by NASA under cooperative agreement NCC5-209, by NSF grants No. DUE-9750858 and CDA-9522207, by United Space Alliance, grant No. NAS 9-20000 (PWO C0C67713A6), by the Future Aerospace Science and Technology Program (FAST) Center for Structural Integrity of Aerospace Systems, effort sponsored by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant number F49620-95-1-0518, and by the National Security Agency under Grant No. MDA904-98-1-0561.

References
