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Abstract

A fault in an aerospace structure can lead to catas-
trophic consequences; therefore, it is extremely impor-
tant to test these structures regularly. Thorough test-
ing of a huge aerospace structures results in a large
amount of data, and processing this data takes a lot
of time. To decrease the processing time, we use a
“multi-resolution” technique, in which we first separate
the data into data corresponding to different vibration
modes, and then combine these data together. There
are many possible ways to transform each mode’s data
into the probability of a fault, and many possible way
of combining these mode-based probabilities; different
approaches lead to different results. In this paper, we
show how a general methodology for choosing the op-
timal uncertainty representation can be used to find
the optimal uncertainty representations for this partic-
ular problem. Namely, we we show that the problem
of finding the best approximation to the probability of
detection (POD) curve (describing the dependence of
probability p(a) of detection on the size a of the fault,
see [2, 6, 7]) can be solved similarly to the problem of
finding the best activation function in neural networks.
A similar approach can be used in detecting faults in
medical images (e.g., in mammography).

1 Introduction

1.1 Aerospace Testing: Why

One of the most important characteristics of the plane
is its weight: every pound shaved off the plane means
a pound added to the carrying ability of this plane.
As a result, planes are made as light as possible, with
its ”skin” as thin as possible. However, the thinner
the layer, the more vulnerable is the resulting structure

to stresses and faults, and a flight is a very stressful
experience. Therefore, even minor faults in the plane’s
structure, if undetected, can be disastrous. To avoid
possible catastrophic consequences, before the flight, we
must thoroughly check the structural integrity of the
plane.

1.2 Aerospace Testing: How

Some faults (cracks, holes, etc.), are external, and can,
therefore, be detected during the visual inspection.
However, to detect internal faults, we must somehow
scan the inside of the thin plate that forms the skin of
the plane. This skin is not transparent to light or to
other electromagnetic radiation; very energetic radia-
tion, e.g., X-rays or gamma-rays, can go through the
metal, but it is difficult to use it on such a huge object
as a modern plane.

The one thing that easily penetrates the skin is vibra-
tion. Therefore, we can use sound, ultrasound, etc., to
detect the faults. Usually, a wave easily glosses over ob-
stacles whose size is smaller than its wavelength. There-
fore, since we want to detect the smallest possible faults,
we must choose the sound waves with the smallest pos-
sible wavelength, i.e., the largest possible frequency.
This frequency is usually higher than the frequencies
that we hear, so it corresponds to ultrasound.

Ultrasonic scans are indeed one of the main non-
destructive NDE tools; see, e.g, [3, 5, 9, 11].

1.3 Aerospace Integrity Testing is Very Time-
Consuming and Expensive

One possibility is to have a point-by-point ultrasound
testing, the so called S-scan. This testing detects the
exact locations and shapes of all the faults. Its main
drawback, however, is that since we need to cover every
point, we get a very time-consuming (and therefore,



very expensive) testing process.

A faster idea is to send waves through the material so
that with each measurement, we will be able to test
not just a single point, but the entire line between the
transmitter and the receiver. To make this procedure
work, we need special signals called Lamb waves.

There are other testing techniques. All these techniques
aim at determining whether there is a fault, and if there
are faults, what is the location and the size of each fault.

1.4 How Can We Save Time and Money?

In spite of many time-saving ideas, for each of these
methods, we must still scan a huge area for potential
small faults. As a result, testing requires lots of time,
and is very expensive. How can we save the time and
cost of testing? Our main idea is this:

The existing testing procedures are very expensive and
time-consuming because they try not only to check
whether there is a fault, but also to find its location and
size. If our only goal is to detect the fault, and we are
not interested in its exact location, then the problem
becomes much simpler and hopefully, easier to solve.
Therefore, we suggest to make a two-step testing:

e First, we apply a simpler test to check whether
there is a fault.

e Only when the first test detects the presence of a
fault, we run more expensive tests to locate and
size this fault.

This two-step procedure is very similar to medical test-
ing: In medical testing, first, the basic parameters are
tested such as body temperature, blood pressure, pulse,
etc. If everything is OK, then the person is considered
healthy. Only if something is not OK, then the whole
battery of often expensive and time-consuming tests is
used to detect what exactly is wrong with the patient.

So the question is: How can we detect the presence of
a fault?

1.5 Our Main Idea

The amount of data coming from the ultrasonic test
is huge, and processing this data takes a lot of time.
It is therefore desirable to uncover some hierarchical
structure and to apply multi-resolution techniques to
speed up the processing of this data.

The first natural idea is to divide the tested structure
into pieces and consider these pieces as different clus-
ters. However, physically, the tested piece is a solid

body, so the observed vibrations of different points are
highly correlated and cannot be easily divides into clus-
ters.

Instead of division in the original space, we propose to
make a division, crudely speaking, in frequency domain,
i.e., separate different vibration modes.

For each vibration mode, we can estimate the energy
density at each point; if this measured energy density
is higher than in the original (undisturbed) state, this
is a good indication that a fault may be located at this
point. The larger the increase in energy density, the
larger the probability of a fault. After we get the prob-
abilities related to different modes, we combine them
into an overall probability of having a fault at this par-
ticular point.

Ideally, we should get all these probabilities from the ex-
periments; however, in real-life, we do not have enough
statistics to get reliable estimates for probabilities; we
have to complement the statistics with expert esti-
mates. In other words, we must use intelligent methods
for non-destructive testing as described, e.g., in [4].

The intelligent methods, however, come with a large un-
certainty: we can use different t-norms and t-conorms
to combine degrees of belief in fuzzy-logic approach; we
can use different activation functions in a neural net-
work approach, etc. The resulting probabilities essen-
tially depend on these choices: for some choices, we get
a very good fault detection, while for others, the quality
of detection is much worse. It is desirable to find the
optimal uncertainty representations.

This optimization problem is very hard, for two reasons:

o first, due to the presence of expert uncertainty, it
is difficult to formulate this problem as a precise
mathematical optimization problem;

e second, even when we succeed in formalizing this
problem, it is usually a complicated non-linear
optimization problem which is extremely difficult
to solve by using traditional optimization tech-
niques.

In our previous work (see, e.g., [10]), we have developed
a general methodology for finding the optimal uncer-
tainty representation. In [8], we have shown how this
general methodology can be used to find the optimal
uncertainty representations for this particular problem:
namely, the problem of assigning probability p(a) to
excess energy F(a) is solved similarly to problem of
finding the best simulated annealing technique. The



resulting (optimal) function is
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for some real number «.

In this paper, we show that the problem of finding
the best approximation to the probability of detection
(POD) curve (describing the dependence of probability
p(a) of detection on the size a of the fault, see [2, 6, 7])
can be solved similarly to the problem of finding the
best activation function in neural networks.

2 Theoretical Explanation for the Empirical
Probability of Detection (POD) Curve: A
Neural Network-Motivated Approach

Recently, an empirical formula has been found which
described this dependence [2, 6, 7]:

- a?
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Since important decisions are based on this formula, it
is desirable to find out how reliable it is, i.e., whether it
is a crude empirical approximation or a precise formula
which has deep theoretical justifications.

In this paper, we show that this formula (1) can indeed
be theoretically justified. Our justification for this for-
mula will use methods motivated by the neural network
approach (see, e.g., [10]).

2.1 The POD Function Must Be Smooth and
Monotonic

If we change the size a slightly, the probability p(a)
of detecting the fault of this size should not change
drastically. Thus, we expect the dependency p(a) to be
smooth (differentiable).

For a POD function, the probability of detection should
be equal to 0 when the fault is too small (e = 0) and
should be equal to 1 when the fault is very large (a —
00).

2.2 We Must Choose a Family of Functions, Not
a Single Function

For practical applications, we need the function p(a)
which would determine the probability that if a sam-
ple with a fault size a is presented to a certain NDE
technique, then this fault will be detected. In order
to determine this function empirically, we must have a
statistics of samples which were presented to this tech-
niques and for which, later on, the fault was discovered;

from this statistics, we can determine the desired prob-
ability. This probability, however, depends on how we
select the samples presented to the NDE techniques.
For example, most structures are inspected visually be-
fore using a more complicated NDE technology. Some
aerospace structures are easier to inspect visually, so
we can detect more faults visually, and only harder-
than-usual faults are presented to the NDE technique;
as a result of this pre-selection, for such structures, the
success probability p(a) is lower than in other cases.
Other structures are more difficult to inspect visually;
for these structures, all the faults (including easy-to-
detect ones) are presented to the NDE techniques, and
the success probabilities p(a) will be higher. In view
of this pre-selection, for one and the same NDE tech-
nique we may have different POD functions depend-
ing on which structures we apply it to. So, instead of
looking for a single function p(a), we should look for a
family of POD functions which correspond to different
pre-selections.

How are different functions from this family related to
each other? Pre-selection means, in effect, that we are
moving from the original unconditional detection prob-
ability to the conditional probability, under the condi-
tion that this particular sample has been pre-selected.
In statistics, the transformation from an unconditional
probability Po(H;) of a certain hypothesis H; to its
conditional probability P(H;|S) (under the condition
S that a sample was pre-selected) is described by the
Bayes formula

_ P(C|H;) - Py(H;)
P(H;|S) = Z] P(S|H]) (_JPO(H])

In mathematical terms, the transformation from p(a) =
Py(H;) to pla) = P(H;|S) is fractionally linear, i.e., has
the form p(a) — p(a) = ¢(p(a)), where

()_M
Yy n

for some real numbers &, I, m, and n. So, instead of
looking for a single function p(a), we should look for
a family of functions {¢(p(a))}, where p(a) is a fixed
function and ¢(y) are different fractionally linear trans-
formations. In the following text, when we say “a family
of functions”, we will mean a family of this very type.

2.3 What family is the best?

Among all such families, we want to choose the best
one. In formalizing what “the best” means we fol-
low the general idea outlined in [10]. The criteria to
choose may be approzimation accuracy (i.e., accuracy
with which these functions approximate the empirical



data about the dependence of the POD of the fault
size), computational simplicity, or something else. In
mathematical optimization problems, numeric criteria
are most frequently used, when to every family we as-
sign some value expressing its performance, and choose
a family for which this value is maximal. However, it
is not necessary to restrict ourselves to such numeric
criteria only. For example, if we have several different
families that have the same approximation accuracy A,
we can choose between them the one that has the small-
est computational complexity C'. In this case, the ac-
tual criterion that we use to compare two families is not
numeric, but more complicated: a family Fy is better
than the family F if and only if either A(Fy) > A(F3)
or A(F1) = A(Fy) and C(F1) < C(F3). A criterion can
be even more complicated. What a criterion must do is
to allow us for every pair of families to tell whether the
first family is better with respect to this criterion (we’ll
denote it by F; > F5), or the second is better (Fy < F»)
or these families have the same quality in the sense of
this criterion (we’ll denote it by Fy ~ F5). Of course, it
is necessary to demand that these choices be consistent,
e.g., if F{ > F5 and F5 > F3 then Fy > F3.

Another natural demand is that this criterion must
choose a unique optimal family (i.e., a family that is
better with respect to this criterion than any other fam-
ily). The reason for this demand is very simple. If a
criterion does not choose any family at all, then it is
of no use. If several different families are “the best”
according to this criterion, then we still have a prob-
lem to choose among those “best”. Therefore, we need
some additional criterion for that choice. For example,
if several families turn out to have the same approxi-
mation accuracy, we can choose among them a family
with minimal computational complexity. So what we
actually do in this case is abandon that criterion for
which there were several “best” families, and consider
a new “composite” criterion instead: F} is better than
F, according to this new criterion if either it was bet-
ter according to the old criterion or according to the
old criterion they had the same quality and F} is bet-
ter than F» according to the additional criterion. In
other words, if a criterion does not allow us to choose
a unique best family it means that this criterion is not
ultimate; we have to modify it until we come to a final
criterion that will have that property.

The next natural condition that the criterion must sat-
isfy is that the relative quality of the two families should
not depend on the choice of the units in which we mea-
sure the size of the fault. Suppose that instead of the
original unit of length, we consider a new unit of length
which is A times larger than the original one. How will

the POD curve change, i.e., what will be the new func-
tion p(a) describing the dependence of the probability
of detection on the size a in the new units? One new
unit is equal to A old units, therefore, the length @ in
the new units means the length a = A-a in the old units.
So, the probability p(a) is equal to p(a) = p(A-a). The
optimality criterion should be invariant with respect to
these rescaling transformations.

We arrive at the following definitions:

2.4 Definitions
Definition 1.

e By a probability function, we mean a smooth
monotonic function p(a) defined for all a > 0 for
which p(0) = 0 and p(a) — 1 as a — oo.

e By a family of functions we mean the set of func-
tions that is obtained from a probability function
p(a) by applying fractionally linear transforma-
tions.

e A pair of relations (<,~) is called consistent if
it satisfies the following conditions: (1) if F < G
and G < H then F < H; (2) F ~ F; (3) it F ~ G
then G ~ F; (4) if F ~ G and G ~ H then
F~H; (5 if F<G andG ~ H then F < H;
(6) if F ~ G and G < H then F < H; (7) if
F < G then G < F or G ~ F are impossible.

e Assume a set F is given. Its elements will be
called alternatives. By an optimality criterion we
mean a consistent pair (<, ~) of relations on the
set F of all alternatives. If F' > G, we say that
F is better than G; if F ~ G, we say that the
alternatives F' and G are equivalent with respect
to this criterion. We say that an alternative F' is
optimal (or best) with respect to a criterion (<, ~)
if for every other alternative G, either F' > G or
F~Q@G.

e We say that a criterion is final if there exists an
optimal alternative, and this optimal alternative
is unique.

In the present section we consider optimality criteria on
the set F of all families.

Definition 2. Let A > 0. By the A-rescaling Six(p)
of a function p(a), we mean a function p(a) = p(A - a).
By the A-rescaling Sx(F') of the family F', we mean the
family of the functions that are obtained from p € F
by A-rescaling.



Definition 3. We say that an optimality criterion on F
is scale-invariant if for every two families F' and G and
for every number X\ > 0, the following two conditions
are true:

o if F is better than GG in the sense of this criterion
(i.e., F > G), then Sx\(F) > Sx(G);

e if F' is equivalent to G in the sense of this criterion
(i.e., F ~ G), then S)(F) ~ Sx\(G).

2.5 Main Result
Theorem. If a family F is optimal in the sense of some
optimality criterion that is final and scale-invariant,

then every function p from the family F is equal to
pla) = (A-aP)/(A-dP +1) for some A and > 0.

So, the empirical formula (1) is justified.

2.6 Proof

The idea of this proof is as follows: first we prove that
the optimal family is scale-invariant (in part 1), and
from that, in part 2, we conclude that any function f
from F' satisfies some functional equations, whose solu-
tions are known.

1. Let us first prove that the optimal family Fj exists
and is scale-invariant in the sense that Sx(Fopt) = Fopt
for all real numbers A > 0.

Indeed, we assumed that the optimality criterion is
final; therefore, there exists a unique optimal family
F,pt. Let’s now prove that this optimal family is scale-
invariant. The fact that F,p¢ is optimal means that for
every other F', either Fype > F or Fope ~ F. In par-
ticular, for every family F' and for every A > 0, either
Fopt > Sy-1(F) or Fopy ~ Sy-1(F). Since the opti-
mality criterion is scale-invariant, we conclude that for
every family F, either Sy(Fopt) > Sx(Sx-:(F)) = F,
or Sx(Fopt) ~ F. Thus, Sy(Fopt) is also an optimal
family. Since the optimality criterion is final, there is
only one optimal family hence, Sx(Fypt) = Fopt for all
real numbers A > 0. Scale-invariance is proven.

2. Let us now deduce the actual form of the functions
p from the optimal family.

Due to part 1 of this proof, if the function p(a) belongs
to the optimal family F;, then, for every A > 0, the re-
scaled function p(\-a) of multiplying a to this function
f belongs to Fyp, i.e., due to definition of a family,
there exist values k(\, etc., for which

k(A) - pla) +1(A)
m(A) - p(a) + n(A)’

p(A-a) = 2

The solution to this functional equation is, in essence,
described in [1]. For completeness, let us describe the
proof in detail.

For A\=1, we have k =n =1 and [ = m = 0, so, since
p is smooth (hence continuous), for A =~ 1, we have
n(A # 0; hence, we can divide both the numerator and
the denominator of (2) by n(\) and thus, get a similar
formula with n(A\) = 1. If we multiply both sides of
the resulting equation by the denominator, we get the
following formula:

m(A) -p(a) - p(A - a) + p(a) = k(A) - p(a) + 1(A).

If we fix A and take three different values of a, we get
three linear equations for determining three unknowns
k(A\), I(A), and m()), from which we can determine
these unknowns using Cramer’s rule. Cramer’s rule ex-
presses every unknown as a fraction of two determi-
nants, and these determinants polynomially depend on
the coefficients. The coefficients either do not depend
on A at all (like p(a)) or depend smoothly (p(\ - a)
smoothly depends on X because p(a) is a smooth func-
tion). Therefore, these polynomials are also smooth
functions of A\, and so are their ratios k(\), I()), and
m(A).

Now that we know that all the functions in the equa-
tions (2) are differentiable, we can differentiate both
sides with respect to A and set A = 1. As a result, we
get the following differential equation:

d
a-—pZCo+C1-p+02-p2
da

for some constants C;. To solve this equation, we can
separate the variables, i.e., move all the terms related
to a to one side and all the terms related to p to the
other side, and get the differential equation
dp _da 3)
Co+CL-p+0Cy-p? T a’
Let us first show that Cy # 0. Indeed, if C2 = 0 and
Cy = 0, then p/Cy = In(a) + const, which contradicts
to our assumption that p(0) = 0. If C2 = 0 and C; # 0,
then we get C;' -In(Cy - p + Co) = In(a) + const hence
Ci-p+ Cy = A-a®, which for a < 0, contradicts to
the assumption that p(0) = 0, and for a« > 0, con-
tradicts to the assumption that p(a) — 1 as a — 0.
Thus, the case Cs = 0 is impossible, and Cs # 0. For
Cy # 0, in general, the left-hand side of the equation (3)
can be represented as a linear combination of elemen-
tary fractions (p + 2z1)~! and (p + 22)~! (where z; are
— possibly complex — roots of a quadratic polynomial
Ci+Ci-p+Cy-p?):

1 1 1
=C- - .
Co+Ci-p+Csy-p? (p+21 p+Z2>



(the case of a double root can be handled in a similar
manner.) Thus, integrating the equation (3), we con-
clude that

p+2z
c¢ln { —— ) =1In(a) + const,
(p+22) (@)

and
p+x

P+ 2

=P.-af

for some A and 3. So, the expression A -aP can be ob-
tained from p(a) by a fractional linear transformation;
hence, by applying the inverse transformation (and it
is known that the inverse to a fractionally linear trans-
formation is also fractionally linear) we conclude that

()_A-a5+B
pla _Caﬁ+D

for some numbers A, B, C, and D. One can easily
check that only for real values A — D and 3, we get a
monotonic everywhere defined function p(a).

If 8 < 0, then we can multiply both numerator and
denominator by a=? and get a similar expression with
B > 0. Thus, without losing generality, we can assume
that 8 > 0. Now, the condition that p(0) = 0 leads to
B/D = 0 and hence, to B = 0. The condition leads to
A=0C,ie.,to

_ A-af
p(a)_A-a5+D'

Since p(a) is not identically equal to 1, we have D # 0.
Therefore, we can divide both the numerator and the
denominator of this fraction by D, and get the desired
expression (1). The theorem is proven.

3 Preliminary Results

We have applied our techniques to testing pieces of
Space Shuttle. This technique indeed worked better
than previously known methods. We are currently try-
ing different data fusion techniques (as described, e.g.,
in [6]) to further improve the method’s performance.

4 Potential Applications to Mammography

The main problem of mammography is to detect small
faults in the mammal (small clots, cracks, etc.), which
may indicate a tumor. When formulated in these terms,
the problem sounds very similar to the problem of
aerospace testing: in both cases, we must detect pos-
sible faults. Thus, we can use the above idea in mam-
mography as well.
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