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MAXIMUM ENTROPY APPROACH
TO OPTIMAL SENSOR PLACEMENT
FOR AEROSPACE NON-DESTRUCTIVE TESTING

R. OSEGUEDA, C. FERREGUT, M.J. GEORGE

J.M. GUTIERREZ, AND V. KREINOVICH

Future Aerospace Science and Technology Program (FAST)
Center for Structural Integrity of Aerospace Systems
University of Texas at El Paso, El Paso, TX 79968, USA†

Abstract. The ideal design of an airplane should include built-in sensors that are
pre-blended in the perfect aerodynamic shape. Each built-in sensor is expensive to
blend in and requires continuous maintenance and data processing, so we would
like to use as few sensors as possible.

The ideal formulation of the corresponding optimization problem is, e.g., to
minimize the average detection error for fault locations. However, there are two
obstacles to this ideal formulation:

− First, this ideal formulation requires that we know the probabilities of different
fault locations and the probabilities of different aircraft exploitation regimes.
In reality, especially for a new aircraft, we do not have those statistics (and
for the aging aircraft, the statistics gathered from its earlier usage may not be
applicable to its current state). Therefore, instead of a well-defined optimiza-
tion problem, we face a problem of not so well defined problem of optimization
under uncertainty.

− Second, even if we know the probabilities, the corresponding optimization
problem is very computation-consuming and difficult to solve.

In this paper, we overcome the first obstacle by using maximum entropy ap-
proach (MaxEnt) to select the corresponding probability distributions.

To overcome the second obstacle, we use the symmetry approach. Namely, the
basic surface shapes are symmetric (with respect to some geometric transforma-
tions such as rotations or shifts). The MaxEnt approach results in distributions
that are invariant with respect to these symmetries, and therefore, the resulting
optimality criterion (be it the minimum of detection error, or the minimum of
fault location error, etc.) is also invariant with respect to these same symmetries.
It turns out that for an arbitrary optimality criterion that satisfies the natural
symmetry conditions (crudely speaking, that the relative quality of two sensor

†E-mails: osegueda@utep.edu, ferregut@utep.edu, mjgeorge@utep.edu, jgutierr@utep.edu,
and vladik@cs.utep.edu
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placements should not change if we simply shift or rotate two placements), the
line formed by the optimally placed sensors (optimally with respect to this crite-
rion) can be described as an orbit of the corresponding Lie transformation groups.
As a result, we describe the optimal sensor placements.

A similar problem of optimal sensor placement is also discussed for space struc-
tures.

Key words: Non-destructive testing, maximum entropy, aerospace structures,
aging aircraft, futuristic aircraft, symmetry groups, geometry

1. Introduction

Checking structural integrity of aerospace systems is very important.
Structural integrity is extremely important for airplanes, because in flight, the
airframe is subjected to such stressful conditions that even a relatively small crack
can be disastrous.

This problem becomes more and more important as the aircraft fleet ages.
At present, most airplanes do not have built-in sensors for structural integrity,

and even those that have do not have a sufficient number of them, so additional
sensors must be placed to test the structural integrity of an airframe.
It is important to test structural integrity in-flight. Each integrity violation
(crack etc.) starts with a small disturbance that is only detectable in stressful in-
flight conditions. Therefore, to detect these violations as early as possible, we
should complement on-earth testing by in-flight measurements. Hence, we need
sensors for in-flight tests.
The problem of sensor placement. Where should we place sensors for in-flight
tests?

Most existing airplanes do not have built-in sensors for testing structural in-
tegrity (or at least do not have a sufficient number of these sensors), so, to test these
airplanes, we must place these sensors outside the airframe. Sensors attached out-
side the airframe interfere with the airplane’s well-designed aerodynamics; there-
fore, we should use as few sensors as possible.

This limitation leads to the following problem:
GIVEN: the number of sensors that we can locate on a certain surface of an

airframe,

FIND: the optimal placements of these sensors, i.e., locations that allow us to
detect the locations of the faults with the best possible accuracy.

For future aircraft, we have a similar problem of sensor placement. The ideal
design of a future airplane should include built-in sensors that are pre-blended in
the perfect aerodynamic shape. Each built-in sensor is expensive to blend in and
requires continuous maintenance and data processing, so again, we would like to
use as few sensors as possible.
The problem of optimal sensor placement is difficult, because it requires
optimization under uncertainty. In both cases, the ideal formulation of the
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corresponding optimization problem is to minimize, e.g., the average detection
error for fault locations.

However, this ideal formulation requires that we know the probabilities of differ-
ent fault locations and the probabilities of different aircraft exploitation regimes.
In reality, we do not know these probabilities:
− for a new aircraft, we do not have this statistics; and
− for the aging aircraft, the statistics gathered from its earlier usage may not

be applicable to its current state.
Therefore, instead of a well-defined optimization problem, we face a not so well
defined problem of optimization under uncertainty.

Since the problem is not well defined, we cannot simply use standard numerical
optimization techniques.
To solve the optimal sensor placement problem, we will use symmetry.
In this paper, we overcome the first obstacle – of not knowing the probabilities –
by using maximum entropy approach (MaxEnt) to select the corresponding prob-
ability distributions.

To overcome the second obstacle – of computational complexity – we use the
symmetry approach. Namely, the basic surface shapes are symmetric (with respect
to some geometric transformations such as rotations or shifts). The MaxEnt ap-
proach results in distributions that are invariant with MaxEnt approach results in
distributions that are invariant with respect to these symmetries, and therefore,
the resulting optimality criterion (be it the minimum of detection error, or the
minimum of fault location error, etc.) is also invariant with respect to these same
symmetries. It turns out that for an arbitrary optimality criterion that satisfies the
natural symmetry conditions (crudely speaking, that the relative quality of two
sensor placements should not change if we simply shift or rotate two placements),
the line formed by the optimally placed sensors (optimally with respect to this
criterion) can be described as an orbit of the corresponding Lie transformation
groups. As a result, we describe the optimal sensor placements.

The efficiency of symmetry ideas is in line with the general efficiency of these
ideas in computer science in general (see, e.g., [5]) and in its maximum entropy
problems in particular (see, e.g., [4]).
First stage: Geometric techniques. The problem of choosing an optimal sen-
sor placement is formulated in geometric terms: we need to select points (sensor
placements) on a surface of the given structure.

To solve this problem, we use the experience of solving similar geometric prob-
lems of optimization under uncertainty in image processing and image extrapola-
tion [1–3]. Namely, astronomic image processing faces the problem of selecting the
best family of images for use in extrapolation. It turns out that for every optimal-
ity criterion that satisfies the natural symmetry conditions (crudely speaking, that
the relative quality of two image reconstructions should not change if we simply
shift or rotate two images), the extrapolation shapes that are optimal with respect
to this criterion can be described as orbits of the corresponding Lie transforma-
tion groups, which leads to exactly the shapes used in astronomy (such as spirals,
planes, spheres, etc).
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In this paper, we show that, since the basic surface shapes are symmetric,
a similar symmetry-based approach can be applied to the problem of optimal
sensor placement. For the simplest surfaces, this general approach describes several
geometric patterns that every sensor placement, which is optimal with respect to
reasonable (symmetric) optimality criterion, must follow.

Some of our results were announced in [6].
Second stage. After we have selected several possible sensor locations, we then
use detailed numerical simulations:
− first, to confirm that these placement patterns indeed lead to better fault

location, and
− second, to select a pattern that leads to the best results for each particular

problem.

The results: in brief. As a result of this analysis, we get several possible optimal
sensor placements.

A similar problem of optimal sensor placement is also important for space
structures.

2. Preliminary analysis: we need the optimal sensor placement

2.1. IT IS DESIRABLE TO FIND THE OPTIMAL SENSOR PLACEMENTS

The quality of non-destructive testing essentially depends on the placement of the
sensors: e.g., if all the sensors are concentrated in one area, and few are located in
the remainder of the structure, then possible cracks and other faults in the under-
covered area may go dangerously unnoticed. Therefore, it is important to choose
a good sensor placement.

Currently, the choice of sensor placements is mainly made either ad hoc, or, at
best, by testing a few possible placements and choosing the one that performs the
best on a few benchmark examples. There are two drawbacks in this approach:
− In this approach, only a few possible placements are analyzed, so it is quite

possible that we miss really good placements.
− Even when the placement that is good “on average” is indeed present among

the tested placements, the very fact that we only test these placements on a
few examples leads to the possibility that we will choose different placements,
that work well for the tested examples, but that are, on average, much worse
than the rejected placement.

In other words, often, the normal engineering good enough approach does not work
for our problem.

It is, therefore, desirable to find the optimal (best) sensor placements.

2.2. “OPTIMAL” IN WHAT SENSE?

Since we do not know the exact optimality criterion, we will try to
describe sensor placements that are the best relative to all possible
reasonable optimality criteria. If we knew the exact probabilities of different
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exploitation regimes and of different faults, then we could formulate the exact op-
timality criterion and look for the sensor placement that is optimal relative to this
criterion. In reality, however, as we have already mentioned in the Introduction,
we do not know the exact optimality criterion.

Since we do not know the exact criterion, the natural idea is to do the following:
− consider all possible optimality criteria that are reasonable for this problem;
− describe all the placements that are optimal relative to each of these criteria;
− and finally, depending on the exact situation, choose the best placement

among the “possibly best” ones.
In this manner, we still face the problem of choosing between several possible
placements (and we may still make a wrong choice), but we are, at least, guaranteed
that we do not initially miss the best placement.
This general program sounds ambitious and computationally intractable,
but it is actually doable. Even when we know the optimality criterion, finding
the optimal sensor placement is extremely computationally difficult and time-
consuming. According to the above program, we intend to describe sensor place-
ments that are optimal relative to all possible reasonable optimality criteria. Since
there are many such criteria, it may seem, at first glance, that we need to re-
peat the (already time-consuming) computations so many times that the resulting
required computation time will make this problem computationally intractable.

Fortunately, we will see that this problem is quite doable: namely, it is possible
to describe all possibly optimal placements without actually solving all possible
optimization problems, but using geometric arguments instead.

Before we start describing and using these arguments, we must describe in
precise terms what we mean by a “reasonable” optimality criterion.
Optimality criteria can be arbitrarily complicated. Traditionally, the qual-
ity of different alternatives is described by a numerical optimality criterion, in
which the quality of each alternative a from the set A of all possible alternatives is
characterized by a real number J(a), and we choose the alternative a for which this
value J(a) is the smallest possible (i.e., J(a) → min). For example, for the problem
of placing the given number n of sensors, A is the set of all possible placements of
these sensors, and J(a) is, e.g., equal to the mean square average detection error
of fault location based on the data from these sensors.

Such numerical criteria are useful and often sufficient, but in many cases, we end
up with several alternatives with the same smallest possible value of the average
error J(a). In this case, it makes sense to select, among them, an alternative a for
which, e.g., the worst-case error J ′(a) is the smallest possible. This very natural
idea leads to a non-numerical optimality criterion, according to which two different
functions J(a) and J ′(a) are given, and an alternative a is considered to be better
than an alternative b if either J(a) < J(b), or J(a) = J(b) and J ′(a) < J ′(b).

This more complicated criterion can also result in several “best” alternatives,
in which case we will be able, simultaneously, to optimize a third characteristic,
etc. As a result, we can have arbitrarily complicated non-numerical optimality
criteria. Since we want to describe placements that are optimal with respect to all
possible reasonable criteria, we have to consider all these criteria.



6 R. OSEGUEDA, C. FERREGUT, M.J. GEORGE

How can we describe them?

A general description of an optimality criterion. In general, when we say
that an optimality criterion is given, this means that for every two alternatives
a and b from the set A of all alternatives, one of the following four possibilities
holds: either a is better than b according to this criterion (we will denote it by
a < b), or b is better than a (b < a), or a and b are of the same quality (we will
denote it by a ∼ b), or, according to the given criterion, the alternatives a and b
are incompatible (we will denote this case by a ‖ b).

So, we can describe the optimality criterion as a pair of relations 〈<,∼〉.
These two relations must satisfy natural consistency conditions, e.g., if a is

better than b and b is better than c, then a should be better than c, etc. A pair
that satisfies these natural consistency conditions is called a pre-ordering relation.
In these terms, an optimality criterion is a pre-ordering relation on the set of all
alternatives.

There is also one additional requirement that we have used before, when we
talked about the necessity for complicated optimality criteria: that there should
be exactly one optimal alternative. Indeed, if there are several alternatives that
are equally good according to some criterion, it means that we still need to choose
between them; thus, the current optimality criterion is not final. We are interested
in final criteria, i.e., in pre-ordering relations in which there exists exactly one best
alternative.

Now, that we have a general definition of an optimality criterion, we must
describe all sensor placements that are optimal relative to these criteria. For this
description, as we have mentioned, we will use the geometric techniques.

3. Geometric techniques

3.1. GEOMETRIC TRANSFORMATIONS: A SEEMING COMPLICATION

The idea of using symmetries first appeared not as a method for solving the prob-
lem, but rather as an additional unexpected complication that made its solution
even harder. Namely, we started with simplified toy examples, and tried to use
an optimization method to find the optimal placements for these toy problems.
Since we were solving an extremely simplified problem, we expected that the opti-
mization algorithm would soon give us a single optimal sensor placement. Instead,
for each problem, different applications of the numerical algorithm, applications
that started with different randomly chosen initial sensor placements, resulted in
drastically different optimal sensor placements.

When we plotted these seemingly different solutions, we saw a simple explana-
tion for this non-uniqueness: these “different” solutions turned out to be approxi-
mately one and the same solution, but differently rotated and/or shifted. How can
we explain this behavior?

3.2. SYMMETRIES OF AEROSPACE SHAPES EXPLAIN THE OBSERVED
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COMPLICATION

There is a simple geometric explanation for the above-described behavior. This
explanation is based on the fact that most surfaces that form an airframe can be
described, within a good accuracy, in simple geometric terms.

Basic geometric shapes of aerospace structures and their symmetries.
Let us first describe the geometric shapes of basic aerospace structures:

− The airplane cabin can be described as a cylinder.
− The surface of the wings can be approximately described as a plane (same,

for the tail).
− Finally, the plane’s “nose” can be approximately described as either a part of

the sphere (to be more precise, a half-sphere), or as a piece of a cone.

Each of these geometric shapes has certain geometric symmetries, i.e., geometric
transformations that leave this shape invariant:

− a cylinder is invariant with respect to shifts along its axis and rotations around
this axis;

− a plane is invariant with respect to shifts in the plane, rotations in this plane,
and dilations (similarities);

− a sphere is invariant with respect to arbitrary rotations around its center;
− finally, a cone is invariant with respect to rotations around its axis and dila-

tions centered at its vertex.

For perfectly symmetric shapes, optimal placement is non-unique. Let
us first consider the idealized situation in which the shape is precisely symmetric
(e.g., a perfect sphere, that is invariant with respect to arbitrary rotation T around
its center). Let P = {p1, . . . , pn} be a sensor placement for which the optimality
criterion (e.g., the average fault location error) is the smallest possible, and let T be
one of the symmetries. Since the shape is invariant with respect to this symmetry,
locations T (p1), . . . , T (pn) also belong to this same shape. Since natural optimality
criteria are also invariant with respect to these geometric symmetries, the quality
of the rotated placement T (P ) = {T (p1), . . . , T (pn)} is equal to the quality of the
original placement and therefore, the rotated placement is also optimal.

Thus, if P is an optimal placement, then for every symmetry T of the geometric
shape, the placement T (P ) is also optimal. This explains non-uniqueness of optimal
sensor placement for perfectly symmetric shapes.

For approximately symmetric shapes, optimal placement is also non-
unique. Since optimal placement is non-unique for perfectly symmetric shapes,
it is natural to expect that a similar complication occurs for the shapes that are
close to the perfectly symmetric shapes (e.g., for a slightly deformed sphere).

Optimal sensor placement is non-unique even when for geometric shapes
that are only locally symmetric. As we have mentioned earlier in this section,
the actual shapes of aerospace structures are indeed close to perfectly symmetric
ones, but they are only locally close to the perfectly symmetric shapes:
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− For example, the shape of a cabin is close to a cylinder. An (infinite) cylinder
is invariant with respect to rotations and shifts; however, the shape of a cabin
is only a piece of this infinite cylinder.

− Similarly, a wing is only a piece of a plane, a nose is only a piece of a sphere
or of a cone, etc.

In other words, the actual shapes are not themselves symmetric, they are only
locally close to the symmetric shapes. However, for sensors testing structural in-
tegrity, local is all we need: the very need for numerous sensors comes from the
fact that the effects of each newly appearing small structural fault are so small
that they can be only detected by a sufficiently close sensor. So, the interaction of
a fault and of a nearby sensor on, e.g., a small piece of a spherical surface depends
only on the local properties of this surface and practically does not depend on
whether this surface is the whole sphere or a piece of it.

Thus, if a surface locally coincides with the symmetric one, the local quality
of each sensor placement on this surface coincides with the local quality of their
placement on the perfectly symmetric shape, and therefore, the optimal placement
on the actual surface locally coincides with the optimal sensor placement on the
ideal symmetric surface.

Since the optimal placement on an ideal surface is non-unique, the placement
on its piece is also non-unique.

3.3. DUE TO NON-UNIQUENESS, WE HAVE NOT A SINGLE OPTIMAL SENSOR
PLACEMENT, BUT A FAMILY OF DIFFERENT OPTIMAL SENSOR
PLACEMENTS

We have shown, both experimentally and theoretically, that, due to symmetry
of the basic shapes of airframes, optimal sensor placements are non-unique: for
every optimal placement P and for every symmetry T , the placement T (P ) is also
optimal. Therefore, we cannot find a unique optimal sensor placement. Instead, we
must look for a family of optimal sensor placements (that correspond to different
symmetries T ).

3.4. SO FAR, SYMMETRIES ONLY MADE OUR PROBLEM MORE
COMPLICATED, BUT SYMMETRIES CAN ALSO HELP

So far, symmetries only made the optimal sensor placement problem more com-
plicated. However, in general, symmetries are known to help in solving numerical
problems.

For example, if we know that a solution f(x, y, z) of a partial differential equa-
tion is invariant with respect to arbitrary rotations around 0, this means that the
value of the desired function f(x, y, z) depend only on a single parameter: distance
r =

√
x2 + y2 + z2 from 0. Therefore, instead of a partial differential equation that

describes a function of three variables, we have a much easier-to-solve regular dif-
ferential equation that describes an unknown function f(r) of only one variable.

We will show that a similar simplification happens for the sensor placement
problem.
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3.5. TWO-STEP APPROACH

We start with a 2-dimensional geometric shape, and we want to find a finite number
of points on this shape, i.e., in geometric terms, a 0-dimensional shape. Since
moving directly from a 2D to 0D sets is complicated, we will do this transition in
two, hopefully easier, steps – from 2D to 1D and then from 1D to 0D:

− On the first step, we will find a 1D curve or curves along which the optimal
sensor placement will occur.

− Then, on the second step, we will find the optimal sensor placements on the
chosen curves.

Let us first describe the first step.

3.6. FIRST STEP: FINDING THE OPTIMAL CURVE OR CURVES ON WHICH
SENSORS WILL BE PLACED

Let us start with re-formulating our problem in precise mathematical terms.

What is given. We are given a geometric surface α that has several symmetries.
We can easily describe the set G of all these symmetries, i.e., in precise terms,

the set of all geometric transformations (rotations, shifts, and dilations) that leave
this surface invariant. Thus, we can assume that this set G is given as well.

An important comment about transformation groups. The set of transfor-
mations is very important because it is a particular case of a concept that plays a
central role in modern theoretical physics: the concept of a transformation group.

Namely, it is easy to see that if transformations g and g′ belong to this set G
(i.e., leave the surface α invariant), then their composition g ◦ g′ and the inverse
transformation g−1 also leave the same surface invariant. A set of transformations
that satisfies this property is called a transformation group.

The objective of the first step: from informal description to precise
formulation. The goal of the first step is to find either a single curve or a family
of curves that are optimal in some reasonable sense.

To describe this goal formally, we must explain which families of curves we will
consider and what we mean by “optimal”. Let is start with families.

In general, a curve can be described as a mapping that traces this curve, i.e.,
in more formal terms, a mapping ~r that maps real numbers t into points ~r(t)
in 3D space. Correspondingly, a family of curves can be described as a family
of such mappings characterized by one or several parameters C1, . . . , Cp, i.e., in
more precise terms, as a mapping that maps tuples (C1, . . . , Cp, t) of real numbers
into points ~r(C1, . . . , Cp, t) of a 3D space. If we fix some values of p parameters
C1, . . . , Cp, we get a curve from this family. (For example, the formula ~r(t) =
(t, C1 · t + C2) describes the family of all straight lines in a plane expect for the
lines that are parallel to the y axis.)

How many parameters do we need in a sensor placement problem? In the
simplest possible case of 1-parametric family (p = 1), the set of all points from all
curves from this family already spans a 2D surface. Thus, we do not need more
than one parameter to describe the lines of optimal sensor placements. So, in the
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following text, we will consider either single curves, or 1-parametric families of
curves.

Now that we formalized the notion of a family, we must describe what “optimal”
means. Here, the set of alternatives is the set of all curves (or of all 1-parametric
families of curves) on the surface α. As before, the optimality criterion is a pre-
ordering relation on this set for which there exists exactly one optimal curve (or
family of curves).

We also want the optimality criterion to be natural, which means, in particular,
that the relative quality of different placement curves should not change if we apply
any transformation g that leaves the original surface α invariant. In precise terms,
we require that the pre-ordering relation 〈<,∼〉 that describes our optimality
criterion satisfy the following two conditions:
− if a > b and g ∈ G, then g(a) > g(b);
− if a ∼ b and g ∈ G, then g(a) ∼ g(b).

A pre-ordering relation that satisfies these two conditions is called invariant with
respect to the transformation group G.

So, we get the following precise formulation of the problem that correspond to
the first step:

GIVEN: a surface α that is invariant with respect to a group G of geometric
transformations.

WE KNOW: that on the set of all 1-parametric families of curves on a surface α,
a pre-ordering relation is given that is invariant with respect to the
transformation group G, and for which exactly one family is optimal.

FIND: the optimal 1-parametric family.

General solution to this problem. The problem, as formulated above, is a
particular case of a general problem of finding optimal families of sets as formulated
in the papers [1–3]. In these papers, we have actually solved this general problem
by describing the general solution to it.

To formulate this general solution, we need to introduce two notions: of a
subgroup and of an orbit.
− A subgroup G0 of a transformation group G is a subset G0 ⊆ G0 that is itself

a transformation group.

For example, the set of all rotations around the x-axis is a subgroup of
the group of all rotations.

− To describe an orbit of a transformation group G, we must fix a point ~r. If
we apply all transformation from G to this point ~r, then the resulting set
{g(~r) | g ∈ G} is exactly the orbit.

For example, for the group G of all rotations around the x-axis, depend-
ing on the choice of the point ~r, we get either a point (if ~r is on this
axis), or a circle circling around the axis.

In these terms, the above-mentioned solution is as follows: Every set from the
optimal family consists of one or several orbits of subgroups of the original trans-
formation group.
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Thus, to apply this general solution to our problem, we must, for all the geo-
metric shapes enumerated above:
− find all subgroups G0 of the corresponding transformation groups G; and then
− find all orbits of these subgroups.

This is a (somewhat tedious but) doable task. The results are as follows:
The results of Step 1: Optimal curves for sensor placement.

− For a cylinder, possibly optimal curves (i.e., orbits of subgroups) are:

• straight lines parallel to the cylinder’s axis;

• circles orthogonal to the cylinder’s axis; and

• cylindric spirals.

These spirals can be easily described in cylindric coordinates (z, ρ, ϕ),
in which z is a coordinate along the cylinder’s axis, ρ is a distance
from this axis, and ϕ is an angle from some fixed direction orthogonal
to the z-axis. In these coordinates, a spiral takes the form ρ = const
and ϕ = k · z, for some constant k.

Cylindric spirals are generic orbits; straight lines and circles can be viewed as
their degenerate cases.

− For a plane, possibly optimal curves (i.e., orbits of subgroups) are: straight
lines, circles, and logarithmic spirals, i.e., curves describe by the equation
ρ = C · exp(k · ϕ) in polar coordinates. Here, logarithmic spiral is a generic
shape.

− For a sphere, possibly optimal curves (i.e., orbits of subgroups) are circles.
− For a cone, possibly optimal curves (i.e., orbits of subgroups) are:

• straight line rays going from the vertex of the cone;

• circles that are orthogonal to the cone’s axis; and

• conic spirals.

In cylindrical coordinates (z, ρ, ϕ), in which the cone is described by
the equation ρ = C · z, a conic spiral is described by the formula
ϕ = k · z for some constant k.

Conic spirals are the generic type of orbits.
Therefore, depending on the shape, sensors should be placed along one or several
of these curves.
Important comments.

1. If the optimal sensor placement is not along a single curve, but along sev-
eral curves, then the same ideas of transformation groups can be used to choose
appropriate families (as orbits of discrete subgroups). Let us give a few examples:
− If we have several straight lines on the cylinder, these straight lines must be

equidistant in the sense that the angular distant between every two neighbor-
ing lines is the same.

− If we have several circles around the cylinder, then these circles should be
equidistant.
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− If we have several straight lines on a plane, then these straight lines should
be:

• either parallel and equidistant,

• or parallel at distances that form a geometric progression, or

• pass through the same point and form equidistant angles.

− If we have several circles on a plane, then these circles must be:

• either parallel, equal, and equidistant,

• or concentric, with their radii forming a geometric progression, etc.

2. In space structures, we face yet another shape: a paraboloid (y = z = c ·x2).
This structure is invariant with respect to rotations and re-scalings x′ = λx,
y′ = λ2y, z′ = λ2z. For this group, we can also describe the resulting orbits
as spirals (ρ = C · exp(k · ϕ) in cylindric coordinates).

3.7. SECOND STEP: FINDING THE ACTUAL SENSOR PLACEMENTS (MAIN
IDEA)

The problem that corresponds to the second step, i.e., the problem of selecting a
0D subset from a 1D curve can be formulated and solve in a similar manner as
the problem that we solved at the first step.

− We started with a surface α with a transformation group G.
− On the first step, optimal curves for sensor placements from orbits of sub-

groups G0 of this group G.
− Similarly, on the second step, optimal sensor placements form orbits of sub-

groups G1 of the corresponding groups G0.

From the mathematical viewpoint, the main difference between these two steps is
that on the second step, we start already with a 1D transformation group G0 and
thus, its subgroups G1 are discrete. Thus, we face the problem of describing all
orbits of discrete subgroups of the above groups.

Due to lack of space, we are not able to enumerate all possible orbits of this
type here, but we will briefly enumerate the ones that correspond to generic curves:
on a cylinder, we get equidistant points on a cylindric curve; on a plane and on a
cone, we get points on the corresponding spiral whose distances from the center
of this spiral form a geometric progression.

In all these families, there are still a few parameters whose choice depends on
what exactly our goal is. The specific values of these parameters are determine by
computer simulations.

4. Computer simulations: in brief

Symmetry approach enables us to select several possible sensor placements. To
choose one of these placements, we test different sensor placements on different
fault locations using the detailed (accurate) model of an aerospace structure.
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