ALPS: A Logic for Program Synthesis (Motivated by Fuzzy Logic)

Daniel E. Cooke
Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu
Scott A. Starks
The University of Texas at El Paso, sstarks@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-97-17a

Recommended Citation
https://scholarworks.utep.edu/cs_techrep/538

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.
ALPS: A Logic for Program Synthesis
(Motivated by Fuzzy Logic)

D.E. Cooke, V. Kreinovich, and S.A. Starks, University of Texas at El Paso, El Paso, TX, USA

1. Introduction

1.1. General problem

One of the typical problems in engineering and scientific applications is as follows:

- we know the values \(x_1, \ldots, x_n\) of some quantities;
- we are interested in the values of some other quantities \(y_1, \ldots, y_m\), and
- we know the relationships between \(x_i, y_j\), and, maybe, some auxiliary physical quantities \(z_1, \ldots, z_k\).

There can be two types of relationships:

- We may know an algorithm that allows us to compute some of the unknown values \(y_j\) from \(x_i\) and, maybe, some other \(y_i\).

 For example, we may know how to compute \(y_2\) from \(x_1, x_3\) and \(y_1\).

- We may also know an equation that relates some of the values \(y_j, z_k,\) and \(x_i\).

 For example, we may know an equation \(F(x_1, x_2, y_1) = 0\), where \(F\) is some known expression.

The question is: given this knowledge, can we compute the values of \(y_j\), and, if we can, how to do it?

This is a general problem of data processing:

- we measure something;
- we know something, and
- we are interested in whether we can extract, from what we know and from what we have measured, the values of some quantities that we could not measure directly.

Let us briefly describe a pedagogical example from [15] and a real-life example.

Our pedagogical example is a triangle. A triangle is described by its angles \(A, B, C\) and side lengths \(a, b, c\), and we know the following relations between them: \(A + B + C = \pi\) (the sum of the angles is 180°, or \(\pi\) radians), \(a^2 + b^2 - 2ab \cos C = c^2\) and similar expressions for \(a\) and \(b\) (cosine theorem), and \(a/\sin A = b/\sin B = c/\sin C\) (sine theorem). Now we can ask all kinds of questions: If we know \(a, b\) and \(c\), can we determine \(A\)? If we know \(a, b\) and \(A\), how to compute \(b\)? etc.

For example, if we know \(a, b\) and \(c\), and we want to determine \(A\), then:

- \(x_1 = a, x_2 = b, x_3 = c\);
- \(y_1 = A\), and
- \(z_k\)'s are \(B\) and \(C\) (namely, \(z_1 = B\) and \(z_2 = C\)) because these quantities are neither known, nor desired, but they are part of the relations that connect \(x_i\) and \(y_j\).

It is a pedagogical example, because there are only finitely many possible problems, and all of them have been solved in elementary geometry.

A reader may get a wrong impression that problems of this sort are very simple and are mainly already solved. So we will just mention a real-life problem in solving which one of the authors (V.K.) participated [4, 5, 6]. In Very Long Baseline Interferometry:

- We measure the phase shift between the radiosignals that are received by two distant antennas, so \(x_i\) are shifts.
- We are interested in the coordinates \(y_j\) of the radiosources.

The formulas that relate \(x_i\) and \(y_j\) includes also such unknown variables as the initial clock instability, distance between antennas, atmospheric shifts, etc. (which play the role of \(z_k\)).

Initially, it was believed that there is no way to reconstruct \(y_j\) from \(x_i\) and these relations. Therefore, the values of \(z_k\) were crudely estimated, and the errors of these estimates led to crude estimates for \(y_j\). A mathematical analysis of these relations revealed that we can reconstruct the values of \(y_j\) from \(x_i\), and, therefore, we became able to reconstruct the coordinates with a hundred times better precision.
1.2. Methods of numerical mathematics

At first glance, the problems that we describe are the problems of numerical mathematics. And, indeed, there exist numerical methods to solve them. These methods are based on the well-known least squares techniques.

The idea of the least squares method is as follows:

- First, we represent all our knowledge in terms of equations.
- If we have an algorithm that computes a from b and c, then we represent it as an equation $a - f(b, c) = 0$, where by $f(b, c)$ we denote a function that is the result of those computations.

After this representation, we have p equations $f_e(\vec{a}) \approx 0, 1 \leq e \leq p$, to determine the unknown parameters $\vec{a} = (a_1, \ldots, a_n)$.

- Then, we formalize this problem as a mathematical optimization problem $\sum_e f_e^2(\vec{a}) \to \text{min}$.

In case the statistical error is distributed according to the Gaussian law, this expression can be statistically justified.

There exists software packages that use this method.

In our case, we can use a similar method: namely, if we have p equations $F_e(x_i, y_j, \ldots, z_k) = 0$ that relate x_i, y_j, and z_k, then we determine the values y_j from the condition that $E \to \min$, where by E we denoted the sum

$$E = \sum_{e=1}^{p} F_e^2(x_i, y_j, \ldots, z_k).$$

So the method is as follows:

- form a function E, and apply some numerical optimization techniques to find the values y_j, for which this function E attains its minimum;
- if the minimal value E_{\min} is positive, this means that the conditions are inconsistent;
- if $E_{\min} = 0$, and minimum is attained for several different values of y_j, this means that y_j cannot be uniquely determined from x_i and the known relations;
- if $E_{\min} = 0$, and minimum is attained for only one value of $\vec{y} = (y_1, \ldots, y_m)$, then this value y_j is the one that is uniquely determined from x_i and a given knowledge.

These conclusions can be easily justified: indeed, the condition that $F_e = 0$ for all e is equivalent to the condition that $\sum_e F_e^2 = 0$. Therefore, if $E = 0$, this means that all the equations are satisfied. If $E_{\min} > 0$, this means that the equations cannot be satisfied, so our knowledge is inconsistent with the measurement results x_i.

This method was actually (and rather successfully) implemented in a system MARS (see, e.g., [8, 9]).

This implementation uses a library of powerful optimization techniques, and therefore, it works reasonably fast even when we have dozens of different variables and dozens of relations.

The main drawback is that it is a brute-force method, aimed at most complicated problems, and it is not flexible. In many cases we humans know that we do not need to use all the equations, and thus we can essentially simplify the problem.

For example, if we apply this method to a triangle problem, we end up with a non-linear functional E that is equal to the sum of squares of all the equations that represent cosine law, sine law, etc. To minimize this function of six variables, we need a lot of computation time. But in high school geometrical problems we never do that: if we know A and B and we want to know C, then we immediately see that one equation $A + B + C = \pi$ will be sufficient, and determine C as $\pi - A - B$. If we know a, b, and A, and we want to determine C, then we determine B from the sine theorem, and then compute C from A and B.

1.3. PRIZ: a case when logic helps

E. Tyugu proposed a two-stage (“lazy computations”) approach of solving these problems, and implemented it in a system PRIZ [7, 10, 11, 12, 13, 15, 16]:

- On the first stage, we analyze which quantities are computable from which. Suppose that we have a relation $F(A, B, C) = 0$. If we know all of these values but one (for example, A and B), then we have an equation with one unknown, from which in general we can compute C. So, if we already know A and B, then we are able to compute C. We will describe this implications, for short, as $A, B \rightarrow C$. Similarly, if we know A and C, then we can compute B, and from B and C we can compute A. So each equation leads to as many computability relations as there are unknowns in it. In our case we get three computability relations: $A, B \rightarrow C$; $A, C \rightarrow B$; and $B, C \rightarrow A$.
- Based on this information only (and not using the specific form of the algorithms or relationships of the type $F(A, B, C) = 0$) we find out, whether it is possible to compute y_j, and, if it is possible, what steps should we follow.
- Finally, we follow the steps and compute y_j.

In the triangle case, the relations turn into the following formulas: $A, B \rightarrow C$; $B, C \rightarrow A$; $A, C \rightarrow B$;
(these three stem from the equation \(A + B + C = \pi \)) \(A, a, b \rightarrow B; \ A, a, B \rightarrow B; \ldots \) (from sine theorem), and \(a, b, C \rightarrow c; \ a, b, c \rightarrow C; \ a, c, C \rightarrow b; \ b, c, C \rightarrow a; \ldots \) (from cosine theorem).

There exists a natural algorithm to decide whether \(y_j \) is computable: a so-called wave algorithm. According to the wave algorithm, we first mark the variables that we know; then we look at all the rules, find those, for which all the conditions are marked and the conclusion is not, and mark the conclusion. Then we repeat the same procedure.

After each iteration, either we did not add anything, which means that we are done (nothing else can be computed), or we add at least one marked variable. Since there are finitely many variables, this process will eventually stop. If the desired \(y_j \) are marked, then we can compute them, else we cannot.

For example, suppose that in the triangle, we know \(A \) and \(B \), and we want to compute \(C \) and \(a \). Then, according to the algorithm, we first mark \(A \) and \(B \). There is only one rule whose conditions are marked: the rule \(A, B \rightarrow C \). So, we mark \(C \). On the second iteration, we find three rules whose conditions are marked: \(A, B \rightarrow C; \ B, C \rightarrow A; \) and \(B, C \rightarrow A \), but their conclusion have already been marked. So, we stop.

As a result, \(C \) is marked, which means that we can compute \(C \). Moreover, we know how to compute \(C \): \(C \) was obtained from a rule \(A, B \rightarrow C \) that stems from \(A + B + C = \pi \), so we must solve an equation \(A + B + C = \pi \), in which \(A \) and \(B \) are known, and \(C \) is the only unknown. The PRIZ system includes an embedded equation solver (based on a version of Newton’s method) that solves equations with one unknown.

As for \(a \), it is not marked, and therefore, cannot be computed.

Actually, the wave algorithm is the simplest algorithm, and the PRIZ system implements a more complicated but faster method (for the fastest possible methods, see [2]).

G. Mints showed (see, e.g., [12, 13]), that the first step of PRIZ can be reformulated in logical terms. Namely, we can interpret each rule \(A, B \rightarrow C \) that stem from the relations as a propositional formula \(A \& B \rightarrow C \) with variables \(A, B, \ldots \) that can take the values “true” or “false”: “true” means that we can compute the corresponding variable, and “false” means that we cannot. So our knowledge can be represented as a set of propositional formulas that include all the rules and all the atoms \(A \) that represent the known variables \(x_i \).

We want to know whether the values \(y_j \) are computable, or, in the propositional terms, whether the variables that correspond to \(y_j \) are true. So, in logical terms, we want to know whether these variables are deducible from the knowledge base.

In the triangle case, we have a knowledge base \(\text{A} \& \text{B} \rightarrow \text{C}; \ \text{B} \& \text{A} \rightarrow \text{C}; \ \ldots ; \ \text{A}; \ \text{B} \), and we want to know whether \(C \) and \(a \) follow from these formulas.

In this example, the application of logic is (something) trivial, but in many complicated cases it really helps.

In many cases, but not always: there exist cases in which this logical approach does not work.

1.4. Cases in which traditional logic does not help

Let us consider the case when we want to know the values of two unknowns \(y_1 \) and \(y_2 \), and we know two relations between them: \(y_1 + y_2 - 1 = 0 \) and \(y_1 - y_2 - 2 = 0 \). In this case, we can determine both \(y_1 \) and \(y_2 \), because we have a system of two linear equations with two unknowns. However, Tyugu’s approach will not work:

Indeed, the first equation will translate into two rules \(Y_1 \rightarrow Y_2, \ Y_2 \rightarrow Y_1 \), where propositional variables \(Y_i \) correspond to \(y_i \). The second equation will lead to these same rules. From these two formulas we cannot logically conclude that \(Y_1 \) is true (because if \(Y_1 \) are both false, still both rules are true), and therefore, we cannot conclude that \(y_1 \) are computable.

This is not a specific feature of this weird example: the same situation occurred in the above-described radioastronomical example.

In PRIZ, there are some means of handling these situations, but they are rather ad hoc: they are based on trying to determine whether there is a system of two equations with two unknowns, or a system of three equations with three unknowns, etc. These heuristic methods are often helpful, but they do not give a general solution. (And we do not want to use any general-case monster system inspired by numerical mathematics, if we can avoid it.)

There exist several other approaches that attempt to incorporate equations into the rule-based knowledge (see, e.g., [1, 3, 17]), but none of them gives a general solution to our problem.

We would like to have a sort of logical approach that would be applicable also to the case when we have several equations with the same unknowns. Since traditional propositional logic does not help, we need a new logic.

2. Informal Discussion of the New Logic

Let us start with the simplest equation \(F(A, B) = 0 \). As we have already argued, this equation means that
if we know \(A \), then we can compute \(B \), and vice versa. So this equation will give way to two rules: \(A \rightarrow B \) and \(B \rightarrow A \). The most wide-spread deduction techniques for propositional formulas is the resolution method (and it is also one of the basic techniques of PRIZ). In order to apply it, we need to reformulate the propositional formulas in terms of disjunctions, i.e., rewrite \(A \rightarrow B \) as \(\neg A \lor B \), and rewrite \(B \rightarrow A \) as \(A \lor \neg B \).

Suppose that we have a rule \(A \rightarrow B \). This means that we are able to compute \(B \) from \(A \). Let us denote by \(f(A) \) the result of applying these computations. Then we have a relation between \(A \) and \(B \): \(B = f(A) \), or, in terms that we got used, \(B - f(A) = 0 \). But this means that, in general, we can reconstruct \(A \) from \(B \) as well, i.e., that we have a rule \(B \rightarrow A \).

Indeed, if we know that a variable \(B \) is uniquely determined by the value of the variable \(A \), then it is natural to expect that we can invert this relation and use \(B \) to determine \(A \). For example, if the temperature \(T \) determines a density \(\rho \) of a substance, and we know the dependency, then from this dependency we can reconstruct a temperature if know \(\rho \).

In terms of disjunctions, our conclusion is that if \(\neg A \lor B \), then \(A \lor \neg B \). Similarly, if we consider a relation with three unknowns, we come to a conclusion that if \(\neg A \lor \neg B \lor C \) is true, then both \(A \lor \neg B \lor C \) and \(\neg A \lor B \lor \neg C \) are true. It looks like the truth of the disjunction does not depend on which variables we negate. In other words, it looks like the negation symbol \(\neg \) does not influence on the truth of the formula, and can therefore be omitted.

Indeed, if we have a relation \(F(A, B, C) = 0 \), then with negation we will have three rules \(A, B \rightarrow C \); \(B, C \rightarrow A \); and \(A, C \rightarrow B \); that in disjunctive form are \(\neg A \lor \neg B \lor C \), \(A \lor \neg B \lor \neg C \), and \(\neg A \lor B \lor \neg C \). If we delete negations, then all three disjunctions will turn into one and the same rule: \(A \lor B \lor C \). Similarly, any relation leads to only one rule.

So, we decrease the total number of rules, and, therefore, the amount of computations.

What we really want is to be able to use a logic in which some statements \(A \) are equivalent to their negations \(\neg A \). In classical (two-valued) logic, this is clearly impossible. But luckily, there is another logic: a fuzzy logic, in which the equivalence between \(A \) and \(\neg A \) is quite possible. This made us think that logic can be useful in non-traditional program synthesis situations.

In principle, we could have probably used the general fuzzy logic, but since we only needed one feature of it (and enlarging logic would make computations more complicated), we decided to restrict ourselves to a specially tailored logic, which can be thus viewed as an intermediate logic between classical and fuzzy, a logic that incorporates only some features of fuzzy logic in its definitions.

3. The New logic: Definitions and Properties

3.1. Description of the new logic

In accordance with the above informal description, in this logic, we start with the list of variables \(A_1, \ldots, A_n \). These variables can be combined into disjunctions, i.e., into formulas \(D \) of the type \(A \lor B \), \(A \lor B \lor C \), etc.

A typical problem in this logic is as follows: we know that several disjunctions \(D_1, \ldots, D_k \) are true, and we must check whether some other disjunction \(D \) follows from these ones. This implication will be described as \(D_1 \& \ldots \& D_k \rightarrow D \) or as a deduction

\[
\frac{D_1, \ldots, D_k}{D}.
\]

To complete the description of the logic, we must specify when a deduction is true and when it is not true.

We interpret each variable as a physical quantity, and each disjunction as a relationship between physical quantities. For example, a disjunction \(A \lor B \) means that there is a relationship \(F(A, B) = 0 \) between the values of the variables \(A \) and \(B \).

In general, this relationship can be non-linear. However, we usually know the approximate values \(\hat{A} \) and \(\hat{B} \) of the measured quantities, i.e., we know that \(A \) belongs to a small neighborhood of \(\hat{A} \), and that \(B \) belongs to a small neighborhood of \(\hat{B} \). In these small neighborhoods, the function \(F(A, B) \) can be, within a reasonable accuracy, replaced by the first order terms of its Taylor expansion, i.e., by a linear relation of the type \(c_1 A + c_2 B = c_3 \). Therefore, in the following text, we will interpret each formula as the existence of such a linear relation.

At first glance, it looks like we are ready for a definition: we may proclaim the deduction \(D_1 \& \ldots \& D_k \rightarrow D \) as true if for all possible values of the coefficients describing relations \(D_i \), there exists some non-trivial relation corresponding to \(D \). However, this is not exactly what we want. Let us give a simple example why.

If we have two identical disjunctions \(A \lor B \) and \(A \lor B \), this means that we have two relationships between the same variables. Of course, if the corresponding two linear equations simply coincide, then we cannot find the value of \(A \) from these two equations. However, from a physical viewpoint, it is highly improbable that two different relations would lead to exactly the same equations, and if these two equations are different, we can indeed get \(A \).
So, it is reasonable to interpret deduction as meaning not “for all values of the coefficients”, but “for almost all values of the coefficients”, where “almost all” is understood in the standard mathematical sense (everywhere except for a set of measure 0).

Thus, we arrive at the following formal definition:

Let \(D_1, \ldots, D_k, D \) be disjunctions. To check whether the deduction \(D_1 \& \ldots \& D_k \rightarrow D \) is true, we do the following:

- We represent the first disjunction \(D_1 = A \lor \ldots \lor B \) as a linear equation \(c_1 \cdot A + \ldots + c_k \cdot B = c_{k+1} \), the second disjunction \(D_2 = C \lor \ldots \lor D \) as an equation \(c_{k+2} \cdot C + \ldots + c_l \cdot D = c_{l+1} \), etc., until we represent the last disjunction \(D_k \) by an equation \(\ldots = c_N \).
- Then, we say that a disjunction is true if for almost all values of the coefficient vector \(\vec{c} = (c_1, \ldots, c_N) \), from the equations that represent \(D_i \), we can conclude that there is a non-trivial linear relation between the variables that represent \(D \).

We will also consider deduction of the type \(D_1 \& \ldots \& D_k \rightarrow \bot \), where \(\bot \) stands for “false”: such a deduction would mean that for almost all values of the coefficient vector \(\vec{c} \), the corresponding linear equations are inconsistent.

3.2. Examples

To illustrate this definition, let us give examples of formulas that are true according to this definition:

\(A \& A \rightarrow \bot \). Indeed, if we have two different equations that describe the same value, then in almost all cases, these two equations are inconsistent.

\((A \lor B) \& (A \lor B) \rightarrow A\). If we have two equations with two unknowns, then, in general, we can reconstruct \(A \) (and, similarly, \(B \)). This example can be generalized to \(n \) equations with \(n \) unknowns:

\[
A_1 \lor \ldots \lor A_n, \ldots, A_1 \lor \ldots \lor A_n \quad (n \text{ times})
\]

3.3. Similarity to resolution method

These examples illustrate a natural derivation idea: If we have a relationship that relates \(A, \ldots, B \), and some variable \(C \), and some other relationship that relates \(C \) with other variables \(D, \ldots, E \), then, we can use the first equation to express \(C \) in terms of \(A, \ldots, B \), and substitute the resulting expression into the second equation. As a result, we get a new equation that contains \(A, \ldots, B, D, \ldots, E \), and does not contain \(C \) any more. So, we have the following derivation rule:

\[
\begin{align*}
A \lor \ldots \lor B \lor C, & \quad C \lor D \lor \ldots \lor E \\
\hline
A \lor \ldots \lor B \lor D \lor \ldots \lor E
\end{align*}
\]

This rule is very similar to the above-mentioned resolution method, one of the main methods of automated reasoning. Thus, hopefully, we can still use modern automated reasoning techniques to check implication in the new logic, and thus, to solve our program synthesis problems.

3.4. Differences with the resolution method

The above useful analogy does not mean that we can immediately apply the resolution techniques from classical logic; these techniques must be changed.

In the traditional resolution method, we have a slightly different resolution rule: it is indeed similar to the above one, but with \(C \) in one of the disjunctions, and its negation \(\neg C \) in another disjunction. Since we are identifying each variable with its negation, we get this rule in its above form.

In the traditional resolution rule, we use multi-step (chain) reasoning, and for that, we need deductions in which the conclusion is not only a single disjunction, but several of them. In classical logic, we simply say that a formula \(D = D_1 \& \ldots \& D_k \) implies a formula \(D' = D'_1 \& \ldots \& D'_l \) if the first formula implies all the disjunctions \(D'_i \) from \(D' \).

If we simply repeat a similar definition for our new logic, then, for thus defined implication \(\rightarrow \), we lose the ability to perform chain reasoning, i.e., to conclude, from \(D \rightarrow D' \) and \(D' \rightarrow D'' \), that \(D \rightarrow D'' \). Indeed, from \(D = A \& A \), we can deduce each of the disjunctions of \(D' = A \& A \), but from \(D' \), we can deduce the contradiction \(D'' = \bot \), whereas from the original formula \(D \), we cannot deduce the contradiction.

Thus, if we want to be able to make meaningful chain deductions in the new logic, we cannot use \(\rightarrow \), we must use a more complicated implication operation \(D \Rightarrow D' \) meaning that for every other formula \(D'' \), if \(D' \Rightarrow D'' \), then \(D \Rightarrow D'' \).

Examples: \(A \& A \Rightarrow \bot \); \((A \lor B) \& (A \lor B) \Rightarrow A\); \((A \lor B) \& (A \lor B) \Rightarrow A \& B \) (meaning that \((A \lor B) \& (A \lor B) \Rightarrow A \& B \) and \(A \& B \Rightarrow (A \lor B) \& (A \lor B) \)).

The new implication implies the old one, but not the other way around: e.g., \(A \Rightarrow A \& A \), but \(A \not\Rightarrow A \& A \).

One can easily check that thus defined new implication is already transitive: if \(A \Rightarrow B \) and \(B \Rightarrow C \), then \(A \Rightarrow C \).

The fact that \(A \) is not equivalent to \(A \& A \) also reminds of fuzzy logic, in which, unless we use min as a t-norm, \(A \& A \) is not equal to \(A \).
3.5. How can we actually check deducibility in the new logic?

One possibility is to use a Monte-Carlo method that is based on the following idea: When the values of the coefficients c_i are fixed, we can use linear algebra packages to check whether the variables from D are really linearly related. So, we can: use random number generators to generate random values c_i, and check whether, for these values, we get the desired conclusion.

If the desired conclusion is true for almost all \vec{c}, then it should be true for random coefficients with probability 1, i.e., practically always. On the other hand, if this conclusion is not true with probability 1, then, as one can see, it is true with probability 0, i.e., practically never.

Ideally, we would like to have a purely logical algorithm.

Acknowledgments. This work was supported in part by NASA under cooperative agreement NCCW-0089, by NSF under grants No. DUE-9750858 and EEC-9322370, and by the Future Aerospace Science and Technology Program (FAST) Center for Structural Integrity of Aerospace Systems, effort sponsored by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant number F49620-95-1-0518.

The authors are greatly thankful to A. Gates and M. Gelfond (El Paso, Texas), A. Dikovskii and M. Kanovich (Moscow), G. Mints (Stanford), G. Pospelov (Moscow), E. Tyugu (Tallinn), and to the anonymous referees for valuable discussions.

References

