Computational Complexity of Planning and Approximate Planning in Presence of Incompleteness

Chitta Baral

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Raul Trejo

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

Part of the Computer Engineering Commons

Comments:
UTEP-CS-99-1d.

Recommended Citation
https://scholarworks.utep.edu/cs_techrep/513

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.
Computational complexity of planning and approximate planning in the presence of incompleteness

Chitta Baral1, Vladik Kreinovich2, and Raúl Trejo2
1Department of Computer Science, Arizona State University
Tempe, AZ, 85287-5406, USA, email chitta@asu.edu
2Department of Computer Science, University of Texas at El Paso,
El Paso, TX 79968, USA, email \{vladik,rtrejo\}@cs.utep.edu

Abstract

In the last several years, there have been several studies about the computational complexity of classical planning assuming that the planner has complete knowledge about the initial situation. Recently, there have been proposals to use ‘sensing’ actions to plan in the presence of incompleteness. In this paper we study the complexity of planning in such cases. In our study we use the action description language \mathcal{A} proposed in 1991 by Gelfond and Lifschitz, and its extensions.

It is known that if we consider only plans of tractable (polynomial) duration, planning in \mathcal{A} – with complete information about the initial situation – is \textbf{NP}-complete: even checking whether a given objective is attainable from a given initial state is \textbf{NP}-complete. In this paper, we show that the planning problem in the presence of incompleteness is indeed harder: it belongs to the next level of the complexity hierarchy (in precise terms, it is $\Sigma_2 \text{P}$-complete). To overcome the complexity of this problem, Baral and Son have proposed several approximations. We show that under certain conditions, one of these approximations – 0-approximation – makes the problem \textbf{NP}-complete (thus indeed reducing its complexity).

1 Introduction

In the presence of complete information about the initial situation, a plan – in the sense of classical planning – is a sequence of actions that takes the agent from the initial situation to a goal state. The computational complexity of finding a plan in this case has been well-studied [Byl94, ENS95, Lib97].

But often the agent may not have complete information about the initial situation. In that case there may not exist a single sequence of actions that will take the agent from any of the possible initial states to a goal state. If we assume that the agent can make the necessary observations at run-time, then an off-line plan – that is constructed before run-time – can be a conditional plan, encoding suggestions of different action sequences for different initial states. But often the agent can only make ‘limited observations’ in some situations. These ‘limited observations’ can be thought of as ‘sensing’ or ‘knowledge producing’ actions whose execution does not change the state of the world, but rather changes the agent’s knowledge about the world. In that case the conditional plans may need to contain these sensing actions. Levesque in [Lev96] gives the example of making a plan to take a flight. The agent who does not know the departure gate at planning time, must include the (sensing) action of ‘finding the departure gate number’, to be executed after he/she gets to the airport and before he/she takes the appropriate branch of action sequences that take him/her to the right gate.
In this paper, we study the complexity of (propositional) planning in these two cases – with and without sensing actions – when the agent’s knowledge is incomplete. Since the corresponding problems turn out to be of high complexity, it is important to develop sound lower-complexity approximations to these problems. In this paper, we describe several such approximations, study their complexity, and show that, indeed, planning under one of these approximations (0-approximation) is (under certain assumptions) less complex. Since the main idea behind 0-approximation is similar to the ideas used in the design of the existing planners developed for planning with incompleteness [EHW+92, KOG92, GB94, GEW96, GW96, PC96, SW98, WAS98, Rin99], we believe that the complexity results will shed additional light into these planners and also guide the development of future planners.

Our complexity analysis will be based on an extension [BS98, BS00] of the action description language \mathcal{A} proposed in 1991 by Gelfond and Lifschitz [GL93]. The language \mathcal{A} and its successors have made it easier to understand the fundamentals (such as inertia, ramification, qualification, concurrency, sensing, etc.) involved in reasoning about actions and their effects on a world, without getting into the details of particular logics, and we would like to stick to that simplicity principle here. We now start with a brief description of the language \mathcal{A}.

1.1 The language \mathcal{A}: brief reminder

In the language \mathcal{A}, we start with a finite list of properties (fl uents) f_1, \ldots, f_n which describe possible properties of a state. A state is then defined as a finite set of fluents, e.g., $\{\}$ or $\{f_1, f_3\}$. We are assuming that we have complete knowledge about the initial state: e.g., $\{f_1, f_3\}$ means that in the initial state, properties f_1 and f_3 are true, while all the other properties f_2, f_4, \ldots are false. The properties of the initial state are described by formulas of the type

initially f,

where f is a fluent literal, i.e., either a fluent f_i or its negation $\neg f_i$.

To describe possible changes of states, we need a finite set of actions. In the language \mathcal{A}, the effect of each action a can be described by formulas of the type

a causes f if f_1, \ldots, f_m,

where f, f_1, \ldots, f_m are fluent literals. A reasonably straightforward semantics describes how the state changes after an action:

- If, before the execution of an action a, fluent literals f_1, \ldots, f_m were true, and the domain description contains a rule “a causes f if f_1, \ldots, f_m”, then this rule is activated, and after the execution of the action a, f becomes true. Thus, for some fluents f_i, we will conclude that the fluent f_i holds in the resulting state, and for some other fluents f_j, we conclude that the negation $\neg f_i$ holds in the resulting state.

- If for some fluent f_i, no activated rule enables us to conclude that f_i is true or false, this means that the execution of action a does not change the truth of this fluent; therefore, f_i is true in the resulting state if and only if it was true in the old state.

Formally, a domain description D is a finite set of value propositions of the type “initially f” (which describe the initial state), and a finite set of effect propositions of the type “a causes f if f_1, \ldots, f_m”
(which describe results of actions). The initial state \(s_0 \) consists of all the fluents \(f_i \) for which the corresponding value proposition “initially \(f_i \)” is contained in the domain description. (Here we are assuming that we have complete information about the initial situation.) We say that a fluent \(f_i \) holds in \(s \) if \(f_i \in s \); otherwise, we say that \(\neg f_i \) holds in \(s \). The transition function \(\text{Res}_D(a, s) \) which describes the effect of an action \(a \) on a state \(s \) is defined as follows:

- we say that an effect proposition “\(a \) causes \(f \) if \(f_1, \ldots, f_m \)” is activated in a state \(s \) if all \(m \) fluent literals \(f_1, \ldots, f_m \) hold in \(s \);
- we define \(V^+_D(a, s) \) as the set of all fluents \(f_i \) for which a rule “\(a \) causes \(f_i \) if \(f_1, \ldots, f_m \)” is activated in \(s \);
- similarly, we define \(V^-_D(A, s) \) as the set of all fluents \(f_i \) for which a rule “\(a \) causes \(\neg f_i \) if \(f_1, \ldots, f_m \)” is activated in \(s \);
- if \(V^+_D(a, s) \cap V^-_D(a, s) \neq \emptyset \), we say that the result of the action \(a \) is undefined;
- if the result of the action \(a \) is defined in a state \(s \) (i.e., if \(V^+_D(a, s) \cap V^-_D(a, s) = \emptyset \)), we define \(\text{Res}_D(a, s) = (s \cup V^+_D(a, s)) \setminus V^-_D(a, s) \).

A plan \(p \) is defined as a sequence of actions \([a_1, \ldots, a_m]\). The result \(\text{Res}_D(p, s) \) of applying a plan \(p \) to the initial state \(s_0 \) is defined as

\[
\text{Res}_D(a_m, \text{Res}_D(a_{m-1}, \ldots, \text{Res}_D(a_1, s_0) \ldots)).
\]

The planning problem is: given a domain \(D \) and a desired fluent literal \(f \), find a plan which leads to the state in which \(f \) is true.

Comment. In many practical problems, the goal is not a single fluent literal, but a logical combination of different fluent literals. Problems of propositional planning, in which the goal can be a propositional combination of fluent literals, can be reformulated in terms of the above definition and are, thus, covered by this paper. Problems of first order planning, in which the goal can be a first-order logical statement with quantifiers, are more complex; none of our results and proofs apply verbatim to such problems.

1.2 An extension of language \(\mathcal{A} \) which describes sensing actions: brief reminder

The formulation of the extension \(\mathcal{A}_K \) of \(\mathcal{A} \) that allows sensing actions – recalled here from [BS98, BS00] – is based on earlier work of formalizing sensing actions in [Moo85, SL93]. In the domain description \(D \), in addition to value propositions and effect propositions, we may also have sensing propositions of the type “\(a \) determines \(f_i \)”. To deal with incomplete information about the real world, we need to reason with the agent’s knowledge about the world. A \(k \)-state is defined as pair \(\langle s, \Sigma \rangle \), where \(s \) is the actual state, and \(\Sigma \) is the set of all possible states where the agent thinks it may be in. Initially, the set \(\Sigma_0 \) consists of all the states \(s \) for which:

- a fluent \(f_i \) is true \((f_i \in s) \) if the domain description \(D \) contains the proposition “initially \(f_i \)”;
- a fluent \(f_i \) is false \((f_i \notin s) \) if the domain description \(D \) contains the proposition “initially \(\neg f_i \)”.

If neither the proposition “initially \(f_i \)”, nor the proposition “initially \(\neg f_i \)” are in the domain description, then \(\Sigma_0 \) contains some states with \(f_i \) true and others with \(f_i \) false. The actual initial state \(s_0 \) can be any state from the set \(\Sigma_0 \). The transition function due to action execution is defined as follows:
• for proper (non-sensing) actions, \(\langle s, \Sigma \rangle\) is mapped into
\(\langle \text{Res}_D(a, s), \text{Res}_D(a, \Sigma) \rangle\), where:
 - \(\text{Res}_D(a, s)\) is defined as in the case of complete information, and
 - \(\text{Res}_D(a, \Sigma) = \{ \text{Res}_D(a, s') \mid s' \in \Sigma \}\).

• for a sensing action \(a\) which senses fluents \(f_1, \ldots, f_k\) – i.e., for which sensing propositions “\(a\) determines \(f_i\)” belong to the domain \(D\) – the actual state \(s\) remains unchanged while \(\Sigma\) is down to only those states which have the same values of \(f_i\) as \(s\): \(\langle s, \Sigma \rangle \rightarrow \langle s, \Sigma' \rangle\), where

\[
\Sigma' = \{ s' \in \Sigma \mid \forall i (1 \leq i \leq k \rightarrow (f_i \in s' \leftrightarrow f_i \in s)) \}
\]

Example 1. [BS98, BS00] Consider the following example. We have a door with a lock, and we have non-sensing actions \textit{push door} and \textit{flip lock}, and a sensing action \textit{check if locked}. The effect of these actions can be expressed in \(\mathcal{A}_K\) by the following effect propositions and sensing proposition:

\[
\begin{align*}
\textit{push door} & \text{ causes open if } \neg \text{locked}, \neg \text{jammed}; \\
\textit{push door} & \text{ causes jammed if locked;} \\
\textit{flip lock} & \text{ causes locked if } \neg \text{locked}; \\
\textit{flip lock} & \text{ causes } \neg \text{locked if locked;} \\
\textit{check if locked} & \text{ determines locked.}
\end{align*}
\]

The information that our agent has about the initial situation is that the door is not open, and the lock is not jammed. (The agent does not know if the door is locked or not.)

In this case the two initial k-states are: \(\sigma_1 = \langle s_1, \{ s_1, s_2 \} \rangle\), and \(\sigma_2 = \langle s_2, \{ s_1, s_2 \} \rangle\), where \(s_1 = \{ \neg \text{open}, \neg \text{jammed}, \text{locked} \}\), and \(s_2 = \{ \neg \text{open}, \neg \text{jammed}, \neg \text{locked} \}\).

Based on our definition we now have the following:

\[
\begin{align*}
\text{Res}_D(\text{check if locked}, \sigma_1) &= \langle s_1, \{ s_1 \} \rangle, \\
\text{Res}_D(\text{check if locked}, \sigma_2) &= \langle s_2, \{ s_2 \} \rangle, \\
\text{Res}_D(\text{push door}, \sigma_1) &= \langle \{ \neg \text{open}, \text{ja\text{mmed}}, \text{locked} \}, \{ \neg \text{open}, \text{ja\text{mmed}}, \text{locked} \}, \{ \text{open}, \neg \text{ja\text{mmed}}, \neg \text{locked} \} \rangle \\
\text{Res}_D(\text{push door}, \sigma_2) &= \langle \{ \text{open}, \neg \text{ja\text{mmed}}, \neg \text{locked} \}, \{ \neg \text{open}, \text{ja\text{mmed}}, \text{locked} \}, \{ \text{open}, \neg \text{ja\text{mmed}}, \neg \text{locked} \} \rangle \\
\text{Res}_D(\text{flip lock}, \sigma_1) &= \sigma_2 \\
\text{Res}_D(\text{flip lock}, \sigma_2) &= \sigma_1
\end{align*}
\]

□

In the presence of sensing, an action plan may no longer be a pre-determined sequence of actions: if one of these actions is sensing, then the next action may depend on the result of that sensing. In general, the choice of a next action may depend on the results of all previous sensing actions. Such an action plan is called a conditional plan.

Example 2. For example, the agent in Example 1 would need the following conditional plan to achieve its goal of opening the door:
check_if_locked;
if ~locked then push_door else flip_lock; push_door.

It has been speculated that adding sensing actions increases the computational complexity of the
problem. In this paper, we show that the corresponding planning problem is indeed harder: it
belongs to the next level of the complexity hierarchy (in precise terms, it is Σ_2^P-complete).

1.3 The notion of a 0-approximation

To overcome the complexity of this problem, Baral and Son [BS97] have proposed several approx-
imations, whose plans are always correct but which can miss a plan. The first approximation –
called 0-approximation – is as follows: An a-state (approximate state) s is a finite set of fluent
literals (i.e., fluents and their negations). The initial a-state s_0 consists of all the fluent literals f
for which the corresponding value proposition “initially f” is contained in the domain description.
We say that:

- a fluent f_i is true in s if $f_i \in s$;
- a fluent f_i is false in s if $\neg f_i \in s$;
- a fluent f_i is unknown in s if neither $f_i \in s$, not $\neg f_i \in s$.

The transition function $Res_D(a, s)$ which describes the effect of a proper action a on an a-state s
is defined as follows:

- we say that an effect proposition “a causes f if f_1, \ldots, f_m” is activated in an a-state s if all
 m fluent literals f_1, \ldots, f_m hold in s;
- we say that an effect proposition “a causes f if f_1, \ldots, f_m” is possibly activated in an a-state
 s if all m fluent literals f_1, \ldots, f_m possibly hold in s (i.e., are either true or unknown in s);
- we define $V_D(a, s)$ as the set of all fluent literals f for which a rule “a causes f if f_1, \ldots, f_m”
is activated in s;
- we define $V_D'(a, s)$ as the set of all fluent literals f for which a rule “a causes f if f_1, \ldots, f_m”
is possibly activated in s;
- we then define $Res_D(a, s)$ as

\[\{ f \mid (f \in s \lor f \in V_D(a, s)) \land f \notin V_D'(a, s) \} \]

For sensing actions, the result of applying a to an a-state s results in a set of a-states each of which
can be obtained by simply adding, to the a-state, the fluent literals that may turn out to be true
as a result of this sensing action.

Example 3. Let us now consider how we can use 0-approximation with the story in Examples 1
and 2.

- The initial a-state will be $s = \{ \neg jammed, \neg open \}$.
- Executing a sensing action leads to two possible states, depending on whether the door is
 locked or not:

$Res_D(\text{check if locked, } s) = \{ \{ \neg jammed, \neg open, \neg locked \}, \{ \neg jammed, \neg open, \neg locked \} \}$
• \(Res_D(\text{flip_lock}, \{-\text{jammed}, -\text{open}, \text{locked}\}) = \{-\text{jammed}, -\text{open}, -\text{locked}\} \)

• \(Res_D(\text{push_door}, \{-\text{jammed}, -\text{open}, -\text{locked}\}) = \{-\text{jammed}, \text{open}, -\text{locked}\} \)

• From the above it can be easily shown that the plan in Example 2 can also be verified as a plan that achieves the goal of making the door open, if we use the approximation.

• \(Res_D(\text{push_door}, \{-\text{jammed}, -\text{open}\}) = \{} \)

The above skeptical reasoning is important and necessary for the soundness result. The intuition behind the skeptical reasoning is as follows. Initially the agent knows the lock is not jammed and the door is not open and has no idea if the door is locked or not. In that case there are two possibilities: either the door is locked, or it is not locked. In the first case, if the agent executes \(\text{push_door} \), then the lock gets jammed and the door remains unopened; in the second case, after execution of \(\text{push_door} \), the door opens and the lock remains unjammed. Since the agent does not have a way to distinguish between the two, a safe way is for it to conclude that it will not know if the lock will be jammed and if the door will be open after executing \(\text{push_door} \).

In the above formulation of \(Res_D(a, s) \) the notion of ‘possibly activated’ and its use in \(V_D \) are responsible for the above described skeptical reasoning.

We are very optimistic about the practicality of 0-approximation. One of the main reasons for this optimism is the similarity between the ideas of 0-approximation [BS00] and semi-heuristic ideas underlying practically useful planners UWL, SADL, etc., described in [GB94, GW96]; for example, [GW96] states that:

“In UWL (and in SADL) individual literals have truth values expressed in three valued logic:

\[T, F, U \text{ (unknown).} \]

Similarly, Goldman and Boddy in [GB94] use a single model to represent both the world and the planners knowledge about the world; this is similar to the notion of a 0-approximation, where we also have a single model [BS00].

To transform our optimism into practically useful tools, we must further analyze the relationship between 0-approximation and the extant planners. A first step in this analysis has been taken in [BS00].

2 Results

2.1 What kind of planning problems we are interested in

Informally speaking, we are interested in the following problem:

• given a domain description (i.e., the description of the initial state and of possible consequences of different actions) and a goal (i.e., a fluent which we want to be true),

• determine whether it is possible to achieve this goal (i.e., whether there exists a plan which achieves this goal).
We are interested in analyzing the \textit{computational complexity} of the planning problem, i.e., analyzing the computation time which is necessary to solve this problem.

Ideally, we want to find cases in which the planning problem can be solved by a \textit{tractable} algorithm, i.e., by an algorithm \mathcal{U} whose computational time $t_\mathcal{U}(w)$ on each input w is bounded by a polynomial $p(|w|)$ of the length $|w|$ of the input w: $t_\mathcal{U}(x) \leq p(|w|)$ (this length can be measured bit-wise or symbol-wise). Problems which can be solved by such \textit{polynomial-time} algorithms are called problems from the class P (where P stands for \textit{polynomial-time}). If we cannot find a polynomial-time algorithm, then at least we would like to have an algorithm which is as close to the class of tractable algorithms as possible.

Since we are operating in a time-bounded environment, we should worry not only about the time for \textit{computing} the plan, but we should also worry about the time that it takes to actually \textit{implement} the plan. If a (sequential) action plan consists of a sequence of $2^{|P|}$ actions, then this plan is not tractable. It is therefore reasonable to restrict ourselves to \textit{tractable} plans, i.e., to plans u whose duration $T(u)$ is bounded by a polynomial $p(|w|)$ of the input w.

For conditional plans, the actual sequence of actions may depend on the situation; we require that for every possible sequence of actions, the total number of consequent actions is bounded by a polynomial $p(|w|)$, i.e., informally, that the “plan executions” are of polynomial size.

With this tractability in mind, we can now formulate the above planning problem in precise terms:

- **given:** a polynomial $p(n) \geq n$, a domain description D (i.e., the description of the initial state and of possible consequences of different actions) and a goal f (i.e., a fluent which we want to be true),

- **determine** whether it is possible to tractably achieve this goal, i.e., whether there exists a tractable-duration plan u (with $T(u) \leq p(|D|)$) which achieves this goal.

We are interested in analyzing the \textit{computational complexity} of this planning problem.

2.2 \textbf{Complexity of the planning problem for situations with complete information}

For situations with complete information, the above planning problem is NP-complete:

\textbf{Theorem 1.} \textit{For situations with complete information, the planning problem is NP-complete.}

\textbf{Comments.}

- This result is similar to the result of Liberatore [Lib97]. The main difference is that Liberatore considers arbitrary queries from the language \mathcal{A}, while we only consider queries about the existence of a tractable action plan.

- The result of Liberatore is preceded by the results of Bylander [Byl94] and Erol et al. [ENS95] where they study complexity of STRIPS. Here we use \mathcal{A} and its extensions instead of STRIPS since, to the best of our knowledge, there has not been any \textit{formal treatment} of extensions of STRIPS dealing with sensing actions.

- For reader’s convenience, all the proofs are placed in the special (last) section.

- Some of this paper’s results were first announced in [BKT99].
• The problem remains \(\textbf{NP} \)-complete even if we consider planning problems with a fixed finite number of actions: even with \textit{two} actions. If we only allow a single action, then there is no planning any more: the only possible plan is, in any state, to apply this only possible action and check whether we have achieved our goal yet; the corresponding “planning” problem is, of course, solvable in polynomial time.

2.3 Useful complexity notions

For situations with incomplete information, the planning problem is more complicated – actually, this problem belongs to the next levels of the polynomial hierarchy; see the exact results below. For precise definitions of the polynomial hierarchy, see, e.g., [Pap94]. Crudely speaking, a decision problem is a problem of deciding whether a given input \(w \) satisfies a certain property \(P \) (i.e., in set-theoretic terms, whether it belongs to the corresponding set \(S = \{ w \mid P(w) \} \)).

• A decision problem belongs to the class \(\textbf{P} \) if there is a tractable (polynomial-time) algorithm for solving this problem.

• A problem belongs to the class \(\textbf{NP} \) if the formula \(w \in S \) (equivalently, \(P(w) \)) can be represented as \(\exists u P(u, w) \), where \(P(u, w) \) is a tractable property, and the quantifier runs over words of tractable length (i.e., of length limited by some given polynomial of the length of the input). The class \(\textbf{NP} \) is also denoted by \(\Sigma_1 \textbf{P} \) to indicate that formulas from this class can be defined by adding 1 existential quantifier (hence \(\Sigma \) and 1) to a polynomial predicate (\(\textbf{P} \)).

• A problem belongs to the class \(\textbf{coNP} \) if the formula \(w \in S \) (equivalently, \(P(w) \)) can be represented as \(\forall u P(u, w) \), where \(P(u, w) \) is a tractable property, and the quantifier runs over words of tractable length (i.e., of length limited by some given polynomial of the length of the input). The class \(\textbf{coNP} \) is also denoted by \(\Pi_1 \textbf{P} \) to indicate that formulas from this class can be defined by adding 1 universal quantifier (hence \(\Pi \) and 1) to a polynomial predicate (\(\textbf{P} \)).

• For every positive integer \(k \), a problem belongs to the class \(\Sigma_k \textbf{P} \) if the formula \(w \in S \) (equivalently, \(P(w) \)) can be represented as \(\exists u_1 \forall u_2 \ldots P(u_1, u_2, \ldots, u_k, w) \), where \(P(u_1, \ldots, u_k, w) \) is a tractable property, and all \(k \) quantifiers run over words of tractable length (i.e., of length limited by some given polynomial of the length of the input).

• Similarly, for every positive integer \(k \), a problem belongs to the class \(\Pi_k \textbf{P} \) if the formula \(w \in S \) (equivalently, \(P(w) \)) can be represented as \(\forall u_1 \exists u_2 \ldots P(u_1, u_2, \ldots, u_k, w) \), where \(P(u_1, \ldots, u_k, w) \) is a tractable property, and all \(k \) quantifiers run over words of tractable length (i.e., of length limited by some given polynomial of the length of the input).

• All these classes \(\Sigma_k \textbf{P} \) and \(\Pi_k \textbf{P} \) are subclasses of a larger class \(\textbf{PSPACE} \) formed by problems which can be solved by a polynomial-space algorithm. It is known (see, e.g., [Pap94]) that this class can be equivalently reformulated as a class of problems for which the formula \(w \in S \) (equivalently, \(P(w) \)) can be represented as \(\forall u_1 \exists u_2 \ldots P(u_1, u_2, \ldots, u_k, w) \), where the number of quantifiers \(k \) is bounded by a polynomial of the length of the input, \(P(u_1, \ldots, u_k, w) \) is a tractable property, and all \(k \) quantifiers run over words of tractable length (i.e., of length limited by some given polynomial of the length of the input).
A problem is called \textit{complete} in a certain class if, crudely speaking, this is the toughest problem in this class (so that any other general problem from this class can be reduced to it by a polynomial-time reduction). It is still not known (2000) whether we can solve any problem from the class \textbf{NP} in polynomial time (i.e., in precise terms, whether \textbf{NP}=\textbf{P}). However, it is widely believed that we cannot, i.e., that \textbf{NP} \neq \textbf{P}. It is also believed that to solve a \textbf{NP}-complete or a \textbf{coNP}-complete problem, we need exponential time \(\approx 2^n\), and that solving a complete problem from one of the second-level classes \(\Sigma_2\textbf{P}\) or \(\Pi_2\textbf{P}\) requires more computation time than solving \textbf{NP}-complete problems (and solving complete problems from the class \textbf{PSPACE} takes even longer).

2.4 Complexity of the planning problem for situations with incomplete information: situations with no sensing actions

Let us start our analysis with the case of no sensing.

\textbf{Theorem 2.} For situations with incomplete information and without sensing, the planning problem is \(\Sigma_2\textbf{P}\)-complete.

The problem remains \(\Sigma_2\textbf{P}\)-complete even if we consider the planning problems with a fixed finite number of actions: even with two actions.

\textbf{Theorem 3.} For situations with incomplete information and without sensing, the 0-approximation to the planning problem is \textbf{NP}-complete.

In other words, the use of 0-approximation cuts off one level from the complexity. So, for this problem, 0-approximation is indeed computationally very efficient.

This reduction is in good accordance with our intuitive understanding of this problem and its 0-approximation:

- In the case of complete information, to represent a state, we must know which fluents are true and which are false. Therefore, a state can be uniquely described by a subset of the set of all the fluents – namely, the subset consisting of those fluents which are true in this state. The total number of states is therefore equal to the total number of such subsets, i.e., to \(2^F\) (where \(F\) is the total number of fluents).

- In the case of incomplete information, we, in general, do not know the state of the system. So, the state of our knowledge is represented by a \textit{k-state} [BS98, BS00]. It can be easily shown [BS98, BS00] that the number of all possible k-states is \(2^{2^F+F}\).

- In 0-approximation, an a-state is represented by stating which fluents are true, which are false, and which are unknown. For each of \(F\) fluents, there are three different possibilities, so, in total, in this approximation, we have \(3^F\) possible a-states.

So, going from a full problem to its 0-approximation decreases the number of possible “states” from doubly exponential \(2^{2^F+F}\) to singly exponential \(3^F\). Since planning involves analyzing different possible states, it is no wonder that for 0-approximation, the computation time should also be smaller. Again, this argument is \textit{not} a proof of Theorem 3, but this argument makes the result of Theorem 3 intuitively reasonable.
2.5 Complexity of the planning problem for situations with incomplete information: situations with sensing

Let us now consider what will happen if we allow sensing actions.

Theorem 4. For situations with incomplete information and with sensing, the planning problem is PSPACE-complete.

Comment. By a “planning problem”, we understand the problem of finding a tractable plan. It is worth mentioning that the computational complexity of the planning problem strongly depends on how we define the notion of a tractable plan:

- In this paper, we describe tractable plans as plans \(u \) of tractable (polynomial) duration \(T(u) \).
- Alternatively, instead of simply restricting the duration \(T(u) \) of a plan \(u \) by a polynomial \(p(|D|) \) of the length \(|D| \) of the problem’s input \(D \), we could also require that the length \(|u| \) of the total description of a conditional plan \(u \) should also be tractable (i.e., we could also restrict the length \(|u| \) of the total description of a conditional plan by \(q(|D|) \) for some polynomial \(q(n) \)).

Intuitively, this alternative restriction would be a much stronger restriction on the plan: indeed, a conditional plan of tractable duration \(n \) can have branching at every step; in this case, we have \(2^n \) possible action sequences which can require an exponential (intractable) length to record. Rintanen has shown [Rin99] that if we follow this alternative definition and define a tractable plan as a plan of tractable length, then the planning problem becomes \(\Pi_2P \)-complete. \(\square \)

Since the planning problem is of high computational complexity, it is reasonable to look for approximations. We have already seen that for planning with incomplete information, the use of 0-approximation drastically decreases the computational complexity. It turns out that if we allow unlimited sensing, then the planning problem becomes so much more complicated that 0-approximation is not helping anymore:

Theorem 5. For situations with incomplete information and with sensing, the 0-approximation to the planning problem is PSPACE-complete.

The proofs of Theorems 4 and 5 are similar to [Lit97]. As one can see from the proofs, both the planning problem itself and its 0-approximation remain PSPACE-complete even if we consider the planning problems with a fixed finite number of actions: even with two proper actions and a single sensing action which reveals the truth value of only one fluent – but we are allowed to repeat this sensing action at different moments of time.

Although 0-approximation does not help by itself, it helps if combined with some reasonable assumptions about the desired conditional plan. Indeed, in our definitions, we allowed the unlimited number of sensing actions. This makes sense in many real-life control and planning situations where it is desirable to monitor the environment continuously, and to make sensing actions all the time. This necessity is caused by the fact that in many real-life situations, the consequences of each action are only known with a certain probability; so, even if we know the exact initial state, and we know what exactly actions have been performed, we are still not sure what the resulting state is, so we need to constantly monitor the situation to find out the actual state. In this paper, we consider the situations in which the result of each action is uniquely determined by this action and by the initial state. In such idealized situations, there is no such need for a constant monitoring. It therefore makes sense to allow only a limited repetition of sensing actions in an action plan. With such a limitation, the complexity of planning drops back, and 0-approximation starts helping again:
Definition 1. Let k be a positive integer.

- We say that a sensing action is k-limited if it reveals the values of no more than k fluents.
- We say that an action plan is k-bounded if it has no more than k sensing actions.

Theorem 6. For any given k, for situations with incomplete information and with k-limited sensing actions, the problem of checking the existence of a k-bounded action plan is $\Sigma_2\text{P}$-complete.

Theorem 7. For any given k, for situations with incomplete information and with k-limited sensing actions, the problem of checking the existence of a k-bounded 0-approximation action plan is NP-complete.

Comments.

- The same result holds if instead of assuming that k is a constant, we allow k to grow as $\sqrt{\log(|D|)}$ (i.e., as a square root of the logarithm of the length of the input).
- A difficulty with the general situation with incomplete information comes from the fact that we do not know the exact states, i.e., we do not know the values of all the fluents. It is therefore reasonable to analyze the situations with full sensing, i.e., situations in which, for every fluent f_i, we have a sensing action check$_i$ which reveals the value of this fluent. Full sensing does make the planning problem simpler, although not so simple that 0-approximation would help.

Theorem 8. For situations with incomplete information and with full sensing, the planning problem is $\Pi_2\text{P}$-complete.

Theorem 9. For situations with incomplete information and with full sensing, the 0-approximation to the planning problem is $\Pi_2\text{P}$-complete.

These results can be represented by the following table:

<table>
<thead>
<tr>
<th></th>
<th>exact planning</th>
<th>0-approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete information</td>
<td>NP-complete (Theorem 1)</td>
<td>NP-complete</td>
</tr>
<tr>
<td>partial information, no sensing</td>
<td>$\Sigma_2\text{P}$-complete (Theorem 2)</td>
<td>NP-complete (Theorem 3)</td>
</tr>
<tr>
<td>limited number of sensing actions</td>
<td>$\Sigma_2\text{P}$-complete (Theorem 6)</td>
<td>NP-complete (Theorem 7)</td>
</tr>
<tr>
<td>unlimited number of sensing actions</td>
<td>PSPACE-complete (Th. 4)</td>
<td>PSPACE-complete (Th. 5)</td>
</tr>
<tr>
<td>partial information, full sensing</td>
<td>$\Pi_2\text{P}$-complete (Theorem 8)</td>
<td>$\Pi_2\text{P}$-complete (Theorem 9)</td>
</tr>
</tbody>
</table>
unlimited number
of sensing actions
\(\text{PSPACE}\)-complete

\(\leftarrow \)

full sensing
limited sensing
\(\Pi_2 \text{P}\)-complete
\(\Sigma_2 \text{P}\)-complete

\(\leftarrow \)

0-approximation or
complete information
\(\text{NP}\)-complete

2.6 Auxiliary result: 1-approximation is \text{coNP}\)-complete

In addition to 0-approximation, the authors of [BS97, BS98, BS00] considered other types of approximations, including the so-called 1-approximation. In 1-approximation, partial states are defined in the same manner as for 0-approximation: i.e., as lists of fluents and their negations. However, for an incomplete a-state \(s \), the result of a (proper) action \(a \) on the \(s \) is defined differently. Namely, incompleteness of an a-state means that there exists a fluent \(f_i \) whose value in \(s \) is unknown, i.e., for which neither this fluent \(f_i \) nor its negation \(\neg f_i \) belongs to \(s \). If we add to \(s \), for each such fluent \(f_i \), either \(f_i \) or \(\neg f_i \), we get a complete state \(s' \supset s \) which completes the original incomplete state \(s \). Since the original a-state \(s \) was incomplete, there exist several different complete states \(s' \) which completes \(s \) in this sense. To check whether a fluent literal \(f \) is true after applying the action \(a \) to the a-state \(s \), we do the following:

- we form all possible complete states \(s' \) which complete \(s \);
- we apply the action \(s \) to all these complete states \(s' \); as a result, we get a collection of resulting states \(\text{Res}_D(a, s') \);
- finally, we check whether \(f \) is true in all these resulting states \(\text{Res}_D(a, s') \).

If a fluent literal \(f \) is true in all these resulting states, then we say that \(f \) is true after applying the action \(a \) to the a-state \(s \).

Then, as a new a-state \(\text{Res}_D(a, s) \), we take the set of all fluent literals which are true after applying \(a \).

In this section, we will show that the use of this new definition increases the computational complexity of an approximation. Namely, while for 0-approximation, computing the next a-state \(\text{Res}_D(a, s) \) was a polynomial-time procedure, for 1-approximation, computing the next state is already a \text{coNP}\)-complete problem:

Theorem 10. (1-approximation) The problem of checking, for a given a-state \(s \), for a given action \(a \), and for a given fluent \(f \), whether \(f \) is true in \(\text{Res}_D(a, s) \), is \text{coNP}\)-complete.

Comments.

- An \(\omega \)-approximation is defined in a similar manner, except that in an \(\omega \)-approximation, the result \(\text{Res}_D(a, s) \) is defined not after a single action \(a \), but after a sequence of proper actions between two sensing actions. In the particular case when there is exactly one proper action between the two sensing actions, \(\omega \)-approximation reduces to 1-approximation. Therefore, \(\omega \)-approximation is also at least as complicated as \text{coNP}\)-complete problems.
• These results show that if we want an approximation to decrease the computational complexity of the planning problem, then (at least from the viewpoint of the worst-case complexity) 0-approximation is preferable to 1-approximation and ω-approximation.

2.7 Conclusion and plans for future work: from complexity results to practical planning

This paper describes some computational complexity results on a propositional action description language that allows for sensing and incomplete information about the initial state.

In particular, this paper shows that adding sensing to the propositional planning problem makes it PSPACE-complete even if there is a polynomial limit on the duration of the action plan. One implication is that the conditional plan can be exponentially long. Various approximations and restrictions on sensing are considered. These typically put the problem on the first or second level of the polynomial hierarchy (completeness for NP, coNP, $\Sigma_2\text{P}$ or $\Pi_2\text{P}$).

These complexity results lead to a natural question: Is sensing simply a hard problem we have to live with or are there some algorithms/heuristics/approximations that help us solve at least some instances of the problem? The notion of 0-approximation somewhat addresses this question.

We strongly believe that, although planning under 0-approximation is still NP-hard, the ideas behind 0-approximation can lead to a solution of many practical instances of the planning problem. This belief is prompted by the fact that many successful planners (see, e.g., [GB94, GW96] and discussion above), in effect, assume or depend on 0-approximation in some way or another.

To transform this belief into practically useful tools, we must further analyze the relationship between 0-approximation and the extant planners. A first step in this analysis has been taken in [BS00].

3 Proofs

Proof of Theorem 1.\footnote{Even though similar results already exist [Byl94, Lib97, ENS95], we present this proof here as it will be used in our later proofs.} Before we start the actual proof, let us comment on the relation between the duration and the length of a plan. In general, these are two different notions, and a polynomial restriction on a duration does not necessarily mean that the length of a plan is also polynomially restricted (see the comment after the formulation of Theorem 4). However, for situations without sensing, this difference, in effect, disappears. Indeed, since we do not acquire any new information, at any given moment of time, for any conditional plan, we can pre-determine which action we will be choosing. So, without sensing, for a given initial state, we will be only using one branch of this conditional plan. Therefore, it makes sense to only keep this branch, and thus, to consider only sequential plans. For such plans u, the duration $T(u)$ of the plan coincides with its length $|u|$, i.e., with the total number of actions which constitute this plan. Thus, for situations with complete information, the polynomial restriction on the plan’s duration $T(u) \leq p(|w|)$ means that we have a polynomial restriction on the plan’s length $|u| \leq p(|w|)$. Now, we are ready for the actual proof.

First, let us show that for situations with complete information, the planning problem belongs to the class NP. Indeed, for a given situation w, checking whether a successful plan exists or not means checking the validity of the formula $\exists u P(u, w)$, where $P(u, w)$ stands for “the plan u succeeds for a
situation w”. To prove that the planning problem belongs to the class NP, it is therefore sufficient to prove the following two statements:

- the quantifier runs only over words u of tractable length, and
- the property $P(u, w)$ can be checked in polynomial time.

The first statement immediately follows from the fact that in this paper, we are considering only plans of polynomial (tractable) duration, i.e., in this case, sequential plans u whose length $|u|$ is bounded by a polynomial of the length $|w|$ of the input w: $|u| \leq p(|w|)$, where $p(n)$ is a given polynomial. So, the quantifier runs over words of tractable length.

Let us now prove the second statement. Once we have a plan u of tractable length, we can check its successfullness in a situation w as follows:

- we know the initial state s_0;
- take the first action from the action plan u and apply it to the state s_0; as a result, we get the state s_1;
- take the second action from the action plan u and apply it to the state s_1; as a result, we get the state s_2; etc.

At the end, we check whether in the final state, the desired fluent is indeed true. On each step of this construction, the application of an action to a state requires linear time; in total, there are polynomial number of steps in this construction. Therefore, this checking indeed requires polynomial time.

So, the planning problem indeed belongs to the class NP. Let us show that it is NP-complete. To show it, we will prove that the known NP-complete problem – the propositional satisfiability problem – can be reduced to this problem. In the propositional satisfiability problem, the input is a propositional formula F, i.e., any expression which can be obtained from Boolean (“true”– “false”) variables x_1, \ldots, x_n by using propositional operations & (“and”), \lor (“or”), and \neg (“not”). The problem is to check whether the given formula F is satisfiable, i.e., whether there exist values x_1, \ldots, x_n which make the formula F true. Let us show how, for each propositional formula F, we can design a planning problem whose solvability is equivalent to satisfiability of the original formula F.

To simplify the desired reduction to a planning problem, let us first re-formulate the propositional formula F in a more constructive (action-like) way. Namely, when the values x_1, \ldots, x_n are chosen, then for these values, checking the validity of the formula F is straightforward: a computer can check this validity in polynomial (even linear) time. Let us describe, step by step, how the computer will do this checking. In other words, let us parse the formula F. Let us denote the intermediate results of this computation by x_{n+1}, x_{n+2}, \ldots For example, if F is the formula $(x_1 \lor x_2) \& (x_1 \lor \neg x_2)$, then a possible parsing of this formula is as follows:

- we start with the values x_1 and x_2;
- then, we compute the first disjunction $x_3 := x_1 \lor x_2$;
- then, we compute the negation $x_4 := \neg x_2$;
- after that, we are ready to compute the second disjunction $x_5 := x_1 \lor x_4$;
• finally, we compute the truth value of the resulting formula as the conjunction of the two disjunctions: $x_6 := x_3 & x_5$.

In general, we start with the variables x_1, \ldots, x_n, and then, for $k = n + 1$, $n + 2, \ldots$, we compute the value of x_k in one of the three possible ways:

• either as $x_k := x_f(k) \& x_s(k)$ for some values $f(k) < k$ and $s(k) < k$;
• or as $x_k := x_f(k) \lor x_s(k)$ for some values $f(k) < k$ and $s(k) < k$;
• or as $x_k := \neg x_f(k)$ for some value $f(k) < k$.

Based on this parsing representation of the original propositional formula, we can construct the desired planning situation. Let x_N denote the last value in the parsing construction. In our planning situation, we will have two actions: a and a^-, and $2N + 1$ fluents $x_1, \ldots, x_N, s_0, s_1, \ldots, s_N$.

The intended meaning of these fluents and actions is as follows: In our designed plan, in the first n actions, we select the values of the variables x_1, \ldots, x_n, and then, in the remaining $N - n$ actions, we simulate the computation of the formula F. The meaning of the fluent s_i is “we are at moment i”.

Initially, s_0 is true and all other fluents are false. The goal of the plan is to make x_N true.

Two groups of rules describe the effects of actions. Rules from the first group describe the selection of the truth values; it also reflects the fact that each action increases time by one:

- a causes x_i if s_{i-1};
- a causes s_i if s_{i-1};
- a causes $\neg s_{i-1}$ if s_{i-1};
- a^- causes s_i if s_{i-1};
- a^- causes $\neg s_i$ if s_{i-1};
- a^- causes $\neg s_{i-1}$ if s_{i-1}.

Here, i takes values from 1 to n.

Rules from the second group describe the computation process. For every k from $n + 1$ to N, depending on which operation computes x_k in terms of $x_f(k)$ and $x_s(k)$, we get the following set of rules:

• if $x_k := x_f(k) & x_s(k)$, then we add the following rules:
 - a causes x_k if $s_{k-1}, x_f(k), x_s(k)$;
 - a causes $\neg x_k$ if $s_{k-1}, \neg x_f(k)$;
 - a causes $\neg x_k$ if $s_{k-1}, \neg x_s(k)$;
 - a causes s_k if s_{k-1};
 - a causes $\neg s_{k-1}$ if s_{k-1}.
• if \(x_k := x_{f(k)} \lor x_{s(k)} \), then we add the following rules:

\[
\text{a causes } x_k \text{ if } s_{k-1}, x_{f(k)}; \\
\text{a causes } x_k \text{ if } s_{k-1}, x_{s(k)}; \\
\text{a causes } \neg x_k \text{ if } s_{k-1}, \neg x_{f(k)}, \neg x_{s(k)}; \\
\text{a causes } s_k \text{ if } s_{k-1}; \\
\text{a causes } \neg s_{k-1} \text{ if } s_{k-1}.
\]

• finally, if \(x_k := \neg x_{f(k)} \), then we add the following rules:

\[
\text{a causes } x_k \text{ if } s_{k-1}, \neg x_{f(k)}; \\
\text{a causes } \neg x_k \text{ if } s_{k-1}, x_{f(k)}; \\
\text{a causes } s_k \text{ if } s_{k-1}; \\
\text{a causes } \neg s_{k-1} \text{ if } s_{k-1}.
\]

At the beginning, \(s_0 \) is true, and all other “temporal” variables \(s_i \) are false. One can easily check that if we apply any action (\(a \) or \(a^{-} \)) to a state in which \(s_i \) is true and all other “temporal” variables \(s_j, j \neq i, \) are false, then in the resulting state, \(s_{i+1} \) is true, and all other temporal variables are false. So, by induction, we can prove that all accessible states are like that. If we are in a state in which \(s_i \) is true and \(s_j \) is false for every \(j \neq i \), we will say that we are at moment of time \(i \). In these terms any action increases the time by one. Thus, a possible plan can include no more than \(N \) actions; hence, the length of any possible plan does not exceed the length of the input data.

Actions performed at moments of time 1 through \(n \) select the truth values of the propositional variables \(x_1, \ldots, x_n \). One can easily see that on each step \(k > n \), the only action we can apply is the action \(a \), and, as a result of this action, we compute the truth value of the auxiliary variable \(x_k \) and increase the time by one.

The variable \(x_N \) is originally false. The only rules which can make it true require than we have \(s_{N-1} \) true; if we apply any action in a state in which \(s_{N-1} \) is true, we get a state in which \(s_N \) is true. So, the only way for \(x_N \) to be true is for \(s_N \) to be true as well.

Since each action increases time by one, no matter what sequence of actions we choose, if we have reached \(s_N \) this means that we have also computed the truth value \(x_N \) of the original formula \(F \). Thus, the only way for \(x_N \) to be true is for the original formula \(F \) to be true under the chosen Boolean values \(x_1, x_2, \ldots, x_n \). So, if the above planning problem is solvable, then the propositional formula \(F \) is satisfiable. Vice versa, if the formula \(F \) is satisfiable, i.e., is true for some propositional values \(x_1, \ldots, x_n \), then we can choose these values in our first \(n \) actions, and hence, get the solution to our planning problem.

Thus, the solvability of our planning problem is indeed equivalent to the satisfiability of the original formula \(F \). The reduction is proven, and therefore, the planning problem is \(\text{NP}-\text{complete} \).

Proof of Theorem 2. First of all, let us show that for situations with incomplete information and no sensing actions, the planning problem belongs to the class \(\Sigma_3 \text{P} \). Indeed, incomplete information means that the initial values of some fluents are unknown. For such problems, the existence of a successful action plan means the existence of an action plan \(U_1 \) for which, for every set of values
u_2 of the unknown fluents, the plan leads to a success. In mathematical terms, the existence of a successful plan can be thus written as a formula $\exists u_1 \forall u_2 P(u_1, u_2, w)$, where the predicate $P(u_1, u_2, w)$ describes the fact that for the planning problem w and for the values u_2 of initially unknown fluents, the plan u_1 leads to a success. Now, to prove that this problem belongs to the class $\Sigma_2\mathbf{P}$, we must show that the quantifiers run over variables of tractable length, and that the predicate $P(u_1, u_2, w)$ is tractable.

The quantifier u_1 runs over plans and is, therefore, tractable; the quantifier u_2 runs over sets of values of fluents; each set of values is tractable (its length is equal to the number of unknown fluents), so this quantifier is also tractable. Finally, if we know the values u_2 of all the initially unknown fluents, and if we know the sequence of actions u_1, then we can easily check, step-by-step, whether for these values of fluents, the given sequence of actions leads to a success (this can be done exactly as in the proof of Theorem 1). Therefore, the predicate $P(u_1, u_2, w)$ is tractable. So, the planning problem indeed belongs to the class $\Sigma_2\mathbf{P}$.

To prove that the planning problem is $\Sigma_2\mathbf{P}$-complete, we will show that we can reduce, to the planning problem, a problem known to be $\Sigma_2\mathbf{P}$-complete: namely, the problem of checking, for a given propositional formula F with the variables $x_1, \ldots, x_m, x_{m+1}, \ldots, x_n$, whether

$$\exists x_1 \ldots \exists x_m \forall x_{m+1} \ldots \forall x_n F.$$

The reduction will be similar to the one from Theorem 1, with two exceptions:

- In the planning problem constructed in the proof of Theorem 1, we assumed that initially, all the variables x_i were false. In the new reduction, we assume that only the variables x_1, \ldots, x_m are initially false, and that the values of the remaining variables x_{m+1}, \ldots, x_n are initially unknown.

- Correspondingly, rules from the first group (which generate the values x_i) are only constructed for the values $i \leq m$; for i from $m+1$ to n, we have, instead, “dummy” rules which simply increase time by one:

$$a \text{ causes } s_i \text{ if } s_{i-1};$$

$$a \text{ causes } \neg s_{i-1} \text{ if } s_{i-1}.$$

As in the proof of Theorem 1, the only way to make x_N true is to go through a sequence of N actions, in the first m of which we choose the truth values of the propositional variables x_1, \ldots, x_m, and in the last $N - n$ of which we compute the truth value of the original formula F using the selected values of x_1, \ldots, x_m, and the original (unknown) values of the propositional variables x_{m+1}, \ldots, x_n. Therefore, the existence of a successful action plan is equivalent to the possibility of choosing the values x_1, \ldots, x_m for which, for all possible values of x_{m+1}, \ldots, x_n, the formula F is true. In other words, the existence of an action plan is equivalent to the validity of the formula $\exists x_1 \ldots \exists x_m \forall x_{m+1} \ldots \forall x_n F$. The reduction is proven, and so the planning problem in indeed $\Sigma_2\mathbf{P}$-complete.

Proof of Theorem 3. In 0-approximation, the existence of a successful action plan is equivalent to $\exists u P(u, w)$. In this approximation, at any given moment of time, the a-state is described by a finite set of fluents and their negations, and, if we know the previous a-state and the action, then we can find the next a-state in linear time. Therefore, in 0-approximation, as in the proof of Theorem 1, we can check the successfulness of a given action plan u for a given initial a-state.
w in polynomial time. Since the predicate $P(u, w)$ can be checked in polynomial time, and the quantifier $\exists u$ runs over words of polynomial length, the planning problem belongs to the class \textbf{NP}.

The fact that it is \textbf{NP}-complete follows from the fact that for the particular case of complete information, 0-approximation coincides with the original planning problem, and for complete information, as we have shown in the proof of Theorem 1, the planning problem is indeed \textbf{NP}-complete. The theorem is proven.

Proof of Theorem 4. The proofs of this theorem and Theorem 5 are similar to [Lit97].

First of all, let us show that if we allow sensing, then for situations with incomplete information, the planning problem belongs to the class \textbf{PSPACE}. Indeed, the existence of an action plan of a (tractable) length L can be reformulated as follows: there exists a first action u_1, such that for every possible sensing result u_2 of this first action (if it is a sensing action), there exists a second action u_3, such that for every possible result u_4 of this second action (if it is a sensing action), there exists a third action u_5, etc., such that at the end, we get the desired value of the goal fluent (for all possible values of still un-sensed fluents). In mathematical terms, the existence of a plan can be thus re-written as

$$\exists u_1 \forall u_2 \exists u_3 \forall u_4 \ldots \forall u_k P(u_1, \ldots, u_k, w),$$

where u_1, \ldots, u_{k-1} represent actions and results of sensing actions, and u_k runs over all possible values of un-sensed (unknown) fluents.

In this construction, we have two quantifiers per action in an action plan + one extra quantifier at the end. Therefore, in total, we have $k = 2L + 1$ quantifiers; since L is tractable (i.e., bounded by a polynomial of the length of the input), the total number $k = 2L + 1$ of quantifiers is tractable too.

Therefore, to prove that this problem belongs to the class \textbf{PSPACE}, it is sufficient to show that the predicate $P(u_1, \ldots, u_k, w)$ is tractable, i.e., that if we know u_1, \ldots, u_k, and w, then we can check, in polynomial time, whether this predicate is true. Once we know u_1, \ldots, u_k, w, it means that we know the initial situation, and we know the values of all the fluents, both sensed (from u_2, u_4, etc.), and un-sensed (from u_k), and that we know the actual sequence of actions (the first action is u_1, the second is u_3, etc.). Since we know the values of all the fluents, and we know the action plan, we can check, in tractable time, whether this particular action plan leads to success in this particular initial complete-information state. Thus, the predicate $P(u_1, \ldots, u_k, w)$ is indeed polynomial-time, and the planning problem indeed belongs to the class \textbf{PSPACE}.

To prove that the planning problem is \textbf{PSPACE}-complete, we will show that we can reduce, to the planning problem, a problem known to be \textbf{PSPACE}-complete: namely, the problem of checking, for a given propositional formula F with the variables $x_1, \ldots, x_m, x_{m+1}, \ldots, x_n$, the validity of the formula

$$\exists x_1 \forall x_2 \exists x_3 \forall x_4 \ldots F.$$

This reduction will be a modification of the reduction which we used in our proof of Theorem 1. As in that proof, we will start with parsing the formula F; let x_N denote the last value in the parsing construction.

- In addition to two proper actions a and a^-, i.e., actions which actually change the state, we have a third action: a sensing action d which senses the value of the fluent x_1.

- In addition to $2N + 1$ fluents $x_1, x_2, x_N, s_0, s_1, \ldots, s_N$, we have additional fluents $s_{1,5}, s_{3,5}, \ldots, s_{i,5}, \ldots$ for all odd integers i between 1 and n.

18
The new fluents represent “intermediate” moments of time:

- the moment 1.5 is intermediate between moments 1 and 2;
- the moment 3.5 is intermediate between moments 3 and 4; etc.

so that

\[1 < 1.5 < 2 < 3 < 3.5 < 4 < 5 < \ldots < n. \]

As in the proof of Theorem 1, the goal of the plan is to make \(x_N \) true. Initially:

- \(s_0 \) is true;
- all other fluents \(s_i \) are false;
- all fluents \(x_1, \ldots, x_n \) are unknown; and
- all fluents \(x_{n+1}, \ldots, x_N \) are false.

As in the proof of Theorem 1, two groups of rules describe the effects of actions. Rules from the first group describe the selection of the truth values \(x_1, \ldots, x_n \); they also reflect the fact that each action moves us to the next moment of time. Rules corresponding to odd-numbered variables \(x_{2i+1} \), \(i = 0, 1, \ldots \) (i.e., variables \(x_1, x_3, \ldots \)) are similar to the ones used in the proof of Theorem 1:

\[
\begin{align*}
a \text{ causes } x_{2i+1} & \text{ if } s_{2i}; \\
a \text{ causes } s_{2i+1} & \text{ if } s_{2i}; \\
a \text{ causes } -s_{2i} & \text{ if } s_{2i}; \\
a^- \text{ causes } -x_{2i+1} & \text{ if } s_{2i}; \\
a^- \text{ causes } s_{2i+1} & \text{ if } s_{2i}; \\
a^- \text{ causes } -s_{2i} & \text{ if } s_{2i}.
\end{align*}
\]

Here, \(i \) takes all integer values from 0 to \([n/2]\) (i.e., all integer values \(i \) for which \(1 \leq 2i + 1 \leq n \)).

Rules corresponding to each even-numbered variable \(x_{2i} \), \(i = 1, 2, \ldots \), include three steps whose goal is to detect (“sense”) the value of this variable by using the sensing action \(d \):

- first, we swap the variable \(x_{2i} \) with the variable \(x_1 \), thus enabling \(d \) to measure the value of what is now \(x_1 \) (and what was originally \(x_{2i} \));
- then, we actually sense the value of \(x_1 \) (which we will be able to later use in selecting further action); and
- finally, we swap back the values \(x_1 \) and \(x_{2i} \).

The rules corresponding to the first swap are as follows:

\[
\begin{align*}
a \text{ causes } x_1 & \text{ if } x_{2i}, s_{2i-1}; \\
a \text{ causes } -x_1 & \text{ if } -x_{2i}, s_{2i-1}; \\
a \text{ causes } x_{2i} & \text{ if } x_1, s_{2i-1};
\end{align*}
\]
\[a \text{ causes } \neg x_{2i} \text{ if } \neg x_1, s_{2i-1}; \]
\[a \text{ causes } s_{2i-1.5} \text{ if } s_{2i-1}; \]
\[a \text{ causes } \neg s_{2i-1} \text{ if } s_{2i-1}. \]

The rule corresponding to sensing is simple:

\[d \text{ determines } x_1. \]

Finally, the rules corresponding to swap back are as follows:

\[a \text{ causes } x_{1} \text{ if } x_{2i}, s_{2i-1.5}; \]
\[a \text{ causes } \neg x_{1} \text{ if } \neg x_{2i}, s_{2i-1.5}; \]
\[a \text{ causes } x_{2i} \text{ if } x_{1}, s_{2i-1.5}; \]
\[a \text{ causes } \neg x_{2i} \text{ if } \neg x_{1}, s_{2i-1.5}; \]
\[a \text{ causes } s_{2i} \text{ if } s_{2i-1.5}; \]
\[a \text{ causes } \neg s_{2i-1.5} \text{ if } s_{2i-1.5}. \]

Rules from the second group describe the computation process; these rules are the same as in the proof of Theorem 1.

Let us show that in this situation, the existence of a successful plan is equivalent to the validity of the original propositional formula with quantifiers.

Indeed, if the original propositional formula with quantifiers is true, this means that there exists \(x_1 \) such that for every \(x_2 \), there exists \(x_3, \ldots \), for which the formula \(F \) is true (i.e., for which \(x_N \) is “true”). Here, \(x_1 \) is a constant (“true” or “false”), \(x_3 \) may depend on \(x_2 \), \(x_5 \) may depend on \(x_2 \) and \(x_4 \), etc. In other words, there exists:

- a value \(x_1 \);
- a value \(x_3(x_2) \) which depends on the previous value \(x_2 \);
- a value \(x_5(x_2, x_4) \) which may depend on the previous values \(x_2 \) and \(x_4 \), etc.

for which, for all possible values of \(x_2, x_4, \ldots \), the formula \(F(x_1, x_2, \ldots) \) is true (this reformulation is called a skolemization of the original formula with quantifiers). Therefore, we can use the following action plan to succeed:

- first, at moment 0, we select \(a \) or \(a^- \) depending on whether the “existing” value of \(x_1 \) is “true” or “false”;
- then, we use the swap sequence to exchange \(x_2 \) and \(x_1 \), measure the truth value of \(x_1 \), and swap back; as a result, we know the truth value of the variable \(x_2 \);
- depending on the sensed value of \(x_2 \), we select \(a \) or \(a^- \) depending on whether \(x_3(x_2) \) is true or false;
- then, we apply two swaps and sensing to sense the value of the variable \(x_4 \), etc.
- after the moment \(s_n \), we apply the same action (action \(a \)) \(N - n \) times to compute the truth value \(x_N = \text{“true”} \) of the formula \(F \).
Vice versa, let us assume that for our planning domain, there exists a successful action plan, i.e., an action plan which makes the desired fluent \(x_N \) always true. As in the proof of Theorem 1, the only way to make \(x_N \) true is to go through a sequence of all moments of time, \(s_0, s_1, s_{1.5}, s_2, \ldots, s_n, s_{n+1}, \ldots, s_N \), and the only way to go through this sequence of moments of time is to perform the corresponding actions. In particular, for \(x_1, \ldots, x_n \), we must perform all the selecting actions and all the swaps. Of course, there is no necessity to perform the sensing actions, but since performing a sensing action does not change the actual state, we can always add these sensing actions to the action plan without changing the successfulness of this plan. So, without losing generality, we can assume that in the successful action plan, we are sensing the values of all the variables \(x_2, x_4, \ldots \). In short, this action plan does the following:

- In the first action, we perform either the action \(a \) which leads to \(x_1 \), or the action \(a^- \) which leads to \(\neg x_1 \). In other words, in the first action, we select a truth value of the variable \(x_1 \).

- Then, we measure \(x_2 \), and we select a truth value of the variable \(x_3 \). In this selection, we can use our knowledge about \(x_2 \); so, the selected value is, in general, a function of \(x_2 \): \(x_3 = x_3(x_2) \). (If we do not use \(x_2 \), this simply means that we are using a constant function which does not depend on \(x_2 \) at all.)

- After that, we measure \(x_4 \) and select \(x_5 \). In this selection, we can use our knowledge about the values \(x_2 \) and \(x_4 \), so, in general, the selected value \(x_5 \) is a function of \(x_2 \) and \(x_4 \): \(x_5 = x_5(x_2, x_4) \).

- …

- After we have selected and sensed the values \(x_1, \ldots, x_n \), the resulting actions simply simulate the process of computing the truth value \((x_N) \) of the propositional formula \(F(x_1, \ldots, x_n) \).

The success of the action plan means that for all possible values \(x_2, x_4, \ldots \), the formula

\[
F(x_1, x_2, x_3(x_2), x_4, x_5(x_2, x_4), x_6, \ldots)
\]

is true. This means exactly that there exists \(x_1 \) such that for every \(x_2 \), there exists an \(x_3 \), for which, for all \(x_4 \), etc., the formula \(F(x_1, x_2, x_3, \ldots) \) is true. In other words, the existence of a successful action plan means that the original propositional formula with quantifiers is true.

Since we have already proven the implication in the other direction, we can thus conclude that the existence of a successful action plan is equivalent to the truth of the original propositional formula. The reduction is proven, and so the planning problem is indeed \(\text{PSPACE} \)-complete.

Proof of Theorem 5. This result can be proven in a way which is similar to the proof of Theorem 4:

- As in that proof, we can show that the 0-approximation to the planning problem belongs to the class \(\text{PSPACE} \).

- The fact that it is \(\text{PSPACE} \)-complete follows from the observation that in the planning situation described (for reduction purposes) in the proof of Theorem 4, at any given moment of time, our knowledge consists exactly in knowing the values of some fluents, while other fluents can take arbitrary values. In other words, for this situation, every action plan is also 0-approximate, so the existence of a successful action plan for this problem is equivalent to the existence of a successful 0-approximate action plan.

21
The theorem is proven.

Proof of Theorem 6. Let us first show that the planning problem belongs to the class Σ_2^p. Indeed, the existence of a successful plan can be written as $\exists u_1 \forall u_2 P(u_1, u_2, w)$, where u_1 is an action plan, and u_2 is the set of initial values of all initially unknown fluents. Here, as in the proof of Theorem 4, u_2 runs over words of tractable length and $P(u_1, u_2, w)$ is a tractable predicate. The only difference is with u_1:

- previously (in the proof of Theorem 4), the action plan was simply a sequence of actions, while
- now, an action plan can have some sensing actions inside, and the results of these sensing actions determine the following action.

Each sensing action senses no more than k different fluents. Each fluent can have two different values, so after sensing, we have $\leq 2^k$ different sensing results. So:

- If we have a single sensing action in an action plan, the conditional action plan branches itself into $\leq 2^k$ possible branches (unconditional plans).
- If we have two sensing actions, then each of $\leq 2^k$ branches formed after the first sensing action can, by itself, branch into $\leq 2^k$ sub-branches, making it a total of $\leq 2^k \cdot 2^k = 2^{2k}$ branches.
- We are allowing a total of $\leq k$ sensing actions in each action plan, so we have $\leq 2^k \cdot \ldots \cdot 2^k (k \text{ times}) = 2^{k^2}$ possible branches.

To describe a conditional action plan, we describe all action sequences which correspond to different branches. The length of each branch is polynomial (i.e., it is bounded by a polynomial of the length $|w|$ of the input), and the number of branches is limited by a constant (2^{k^2}) which does not depend on the length of the input at all. Therefore, the total length $|u_1|$ of this description u_1 is bounded by a polynomial of $|w|$. So, the first quantifier also runs over words of tractable length. Therefore, the problem indeed belongs to the class Σ_2^p.

We have already proven (in Theorem 4) that for the particular case of no sensing, the planning problem is Σ_2^p-complete. Therefore, this more general problem is Σ_2^p-complete as well. The theorem is proven.

Proof of Theorem 7. This proof is related to the proof of Theorem 5 in the same way that the proof of Theorem 6 was related to the proof of Theorem 4: first, we prove that the 0-approximate planning problem belongs to the class NP — by using the same coding u_1 of the conditional plans as in the proof of Theorem 6, and then we observe that since a particular case (no-sensing) of this problem is NP-complete, this general problem is NP-complete as well.

Proof of Theorem 8. First of all, let us show that for full sensing, the planning problem belongs to the class Π_2^p. Indeed, since sensing actions do not change the state of a system, there is no harm in applying them first, and thus, determining the values of all the fluents. For each revealed initial state, we have an unconditional action plan. Thus, the existence of a successful conditional action plan for situations with full sensing means that for every initial state u_1, there is an (unconditional) action plan u_2 which leads to a success. In mathematical terms, the existence of a successful plan can be thus written as a formula $\forall u_1 \exists u_2 P(u_1, u_2, w)$, where the predicate $P(u_1, u_2, w)$ describes the fact that for the planning problem w and for the values u_1 of initially unknown fluents, the plan u_2 leads to a success. As in the proof of Theorem 2, we can prove that the quantifiers run
over variables of tractable length, and that the predicate $P(u_1, u_2, w)$ is tractable. Thus, for the case of full sensing, the planning problem indeed belongs to the class Π_2^P.

To prove that the planning problem is Π_2^P-complete, we will show that we can reduce, to the planning problem, a problem known to be Π_2^P-complete: namely, the problem of checking, for a given propositional formula F with the variables $x_1, \ldots, x_m, x_{m+1}, \ldots, x_n$, whether

$$\forall x_1 \ldots \forall x_m \exists x_{m+1} \ldots \exists x_n F.$$

The reduction will be similar to the one from Theorem 1, with three exceptions:

- In addition to two proper actions, we also have m sensing actions $check_i$, $1 \leq i \leq m$, which sense the values of the variables x_1, \ldots, x_m.

- In the planning problem constructed in the proof of Theorem 1, we assumed that initially, all the variables x_i were initially false. In the new reduction, we assume that only the variables x_{m+1}, \ldots, x_n are initially false, and that the values of the remaining variables x_1, \ldots, x_m are initially unknown.

- Correspondingly, rules from the first group (which generate the values x_i) are only constructed for the values $i > m$; for i from 1 to m, we have, instead, “dummy” rules which simply increase time by one:

 - a causes s_i if s_{i-1};

 - a causes $\neg s_{i-1}$ if s_{i-1},

 and the “sensing” rules

 $$\text{check}_i \text{ determines } x_i.$$

As in the proof of Theorem 1, the only way to make x_N true is to go through a sequence of N actions:

- in the first m of these actions, we sense the truth values of the variables x_1, \ldots, x_m;

- in the next $n - m$ of these actions, we choose the truth values of the propositional variables x_{m+1}, \ldots, x_n; in this choice, we can use the “measured” values of x_1, \ldots, x_m;

- finally, in the last $N - n$ actions, we compute the truth value of the original formula F using the “sensed” truth values of the propositional variables x_1, \ldots, x_m, and the selected truth values of the propositional variables x_{m+1}, \ldots, x_n.

Therefore, the existence of a successful action plan is equivalent to the possibility that for every possible combination of the values x_1, \ldots, x_m, we can choose the values x_{m+1}, \ldots, x_n for which the formula F is true. In other words, the existence of an action plan is equivalent to the validity of the formula $\forall x_1 \ldots \forall x_m \exists x_{m+1} \ldots \exists x_n F$. The reduction is proven, and so the planning problem is indeed Π_2^P-complete.

Proof of Theorem 9. We already know, from Theorem 8, that for full sensing, the planning problem is Π_2^P-complete. To prove that the the existence of a 0-approximate plan is Π_2^P-complete, it is therefore sufficient to show that for situations with full sensing, the existence of a successful action plan is equivalent to the existence of a 0-approximate action plan.
In one direction this implication is trivial: it is known \[BS97, \ BS98, \ BS00 \] that a successful 0-
approximate action plan is a particular case of a successful plan. Thus, if there exists a successful
0-approximate plan, this means that there exists a successful plan.

Vice versa, let us assume that there exists a successful (conditional) action plan. Since we have a
situation with full sensing, we can, in principle, do the following:

- first, we sense all the fluents, thus determining completely the initial state;
- then, we follow the sequence of actions which is recommended by the original conditional plan
 for this particular initial state.

For complete states, every plan is a 0-approximate plan. Therefore, what we described is a successful
0-approximate plan.

The equivalence between the existence of a successful plan and the existence of a successful 0-
approximate plan is thus proven, and therefore, the 0-approximation to the planning problem is
indeed \(\Pi_2P \)-complete.

Proof of Theorem 10. First, let us show that this problem belongs to the class \(\text{coNP} \). Indeed,
the fact that \(f \) is true is \(\text{Res}_D(a, s) \) can be reformulated as \(\forall u P(u, w) \), where \(u \) runs over all possible
complete states completing the partial state \(s \), and \(P(u, w) \) means that the predicate \(f \) is true in
the result of applying \(a \) to the complete state \(u \). Here, the quantifier runs over complete states –
i.e., words of tractable length, and the predicate \(P(u, w) \) can also be easily checked in polynomial
time. Thus, this problem indeed belongs to the class \(\text{coNP} \).

To prove that this problem is \(\text{coNP} \)-complete, let us reduce, to this problem, a problem known to
be \(\text{coNP} \)-complete: namely, the problem of checking whether a given propositional formula \(F \) with
\(n \) propositional variables \(x_1, \ldots, x_n \) is a tautology, i.e., whether it is true for all possible values of its
variables \(x_1, \ldots, x_n \). It is known that this problem is \(\text{coNP} \)-complete even if we restrict ourselves
to propositional formulas of the special type: namely, to 3-CNF formulas, i.e., formulas of the type
\(C_1 \land C_2 \land \ldots \land C_k \), where each “clause” \(C_i \) is of the type \(p \lor q \lor r \), with \(p, q, \) and \(r \) being literals
(i.e., propositional variables \(x_i \) or their negations).

Let us now show how we can reduce an instance of a CNF-tautology problem to checking whether \(f \)
holds in \(\text{Res}_D(a, s) \). Let \(C_1 \land C_2 \land \ldots \land C_k \) be a formula \(F \) with propositional variables \(x_1, \ldots, x_n \).
Then, we define a planning situation with \(n + 1 \) fluents \(f, x_1, \ldots, x_n \). In the initial state \(s \), \(f \) is
true, and fluents \(x_1, \ldots, x_n \) are unknown. We have \(k \) rules which describe the result of the action
\(a \) – one rule for each clause \(C_j \). Namely, for each clause \(p \lor q \lor r \), we have a rule

\[
\text{a causes } \neg f \text{ if } \neg p, \neg q, \neg r.
\]

Let us show that \(f \) is true in \(\text{Res}_D(a, s) \) if and only if the original formula \(F \) is a tautology. Indeed,
initially \(f \) was true; the only reason for it to stop being true is if for some complete state \(u \) which
completes \(s \), we get \(\neg f \), i.e., if for some values of the variables \(x_1, \ldots, x_n \), for one of the clauses
\(C_j \equiv p \lor q \lor r \), we have \(\neg p \land \neg q \land \neg r \). But this conjunction is exactly the negation of the clause, so,
in other words, \(f \) is not true in \(\text{Res}_D(a, s) \) if and only if for some values of the variables \(x_1, \ldots, x_n \),
one of the clauses is false.

Therefore, \(f \) is true in \(\text{Res}_D(a, s) \) if and only if for every choice of the variables \(x_1, \ldots, x_n \), all
clauses \(C_j \) are true – which is equivalent to saying that the original formula \(C_1 \land \ldots \land C_k \) is true.
So, \(f \) is true in \(\text{Res}_D(a, s) \) if and only if the original formula is a tautology. The reduction is proven,
and so our problem is indeed \(\text{coNP} \)-complete.
Acknowledgments. This work was supported in part by NASA under cooperative agreements NCC5-97 and NCC5-209, by NSF grants No. DUE-9750858 and IRI-9501577, by United Space Alliance, grant No. NAS 9-20000 (PWO C0C67713A6), by Future Aerospace Science and Technology Program (FAST) Center for Structural Integrity of Aerospace Systems, effort sponsored by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant number F49620-95-1-0518, and by the National Security Agency under Grants No. MDA904-98-1-0564 and MDA904-98-1-0561.

The authors are greatly thankful to the anonymous referees for their valuable comments, and to Jussi Rintanen and Joel Galloway for useful suggestions.

References

25

