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Abstract
In the last several years, there have been several studies about the computational complex-
ity of classical planning assuming that the planner has complete knowledge about the initial
situation. Recently, there have been proposals to use ‘sensing’ actions to plan in the presence of
incompleteness. In this paper we study the complexity of planning in such cases. In our study
we use the action description language A proposed in 1991 by Gelfond and Lifschitz, and its
extensions.

It is known that if we consider only plans of tractable (polynomial) duration, planning in 4 —
with complete information about the initial situation — is NP-complete: even checking whether
a given objective is attainable from a given initial state is NP-complete. In this paper, we show
that the planning problem in the presence of incompleteness is indeed harder: it belongs to the
next level of the complexity hierarchy (in precise terms, it is YoP-complete). To overcome the
complexity of this problem, Baral and Son have proposed several approximations. We show that
under certain conditions, one of these approximations — 0-approximation — makes the problem
NP-complete (thus indeed reducing its complexity).

1 Introduction

In the presence of complete information about the initial situation, a plan — in the sense of classical
planning — is a sequence of actions that takes the agent from the initial situation to a goal state. The
computational complexity of finding a plan in this case has been well-studied [Byl94, ENS95, Lib97].

But often the agent may not have complete information about the initial situation. In that case
there may not exist a single sequence of actions that will take the agent from any of the possible
initial states to a goal state. If we assume that the agent can make the necessary observations
at run-time, then an off-line plan — that is constructed before run-time — can be a conditional
plan, encoding suggestions of different action sequences for different initial states. But often the
agent can only make ‘limited observations’ in some situations. These ‘limited observations’ can
be thought of as ‘sensing’ or ‘knowledge producing’ actions whose execution does not change the
state of the world, but rather changes the agent’s knowledge about the world. In that case the
conditional plans may need to contain these sensing actions. Levesque in [Lev96] gives the example
of making a plan to take a flight. The agent who does not know the departure gate at planning
time, must include the (sensing) action of ‘finding the departure gate number’, to be executed after
he/she gets to the airport and before he/she takes the appropriate branch of action sequences that
take him/her to the right gate.



In this paper, we study the complezity of (propositional) planning in these two cases — with and with-
out sensing actions — when the agent’s knowledge is incomplete. Since the corresponding problems
turn out to be of high complexity, it is important to develop sound lower-complexity approxi-
mations to these problems. In this paper, we describe several such approximations, study their
complezity, and show that, indeed, planning under one of these approzimations (0-approzimation)
is (under certain assumptions) less complezx. Since the main idea behind 0-approximation is similar
to the ideas used in the design of the existing planners developed for planning with incompleteness
[EHW192, KOG92, GB94, GEW96, GW96, PC96, SW98, WAS98, Rin99], we believe that the
complexity results will shed additional light into these planners and also guide the development of
future planners.

Our complexity analysis will be based on an extension [BS98, BS00] of the action description
language A proposed in 1991 by Gelfond and Lifschitz [GL93]. The language A and its successors
have made it easier to understand the fundamentals (such as inertia, ramification, qualification,
concurrency, sensing, etc.) involved in reasoning about actions and their effects on a world, without
getting into the details of particular logics, and we would like to stick to that simplicity principle
here. We now start with a brief description of the language A.

1.1 The language A: brief reminder

In the language A, we start with a finite list of properties (fluents) f1, ..., f, which describe possible
properties of a state. A state is then defined as a finite set of fluents, e.g., {} or {f1, f3}. We are
assuming that we have complete knowledge about the initial state: e.g., {f1, f3s} means that in the
initial state, properties fi and f3 are true, while all the other properties fo, f4,... are false. The
properties of the initial state are described by formulas of the type

initially f,

where f is a fluent literal, i.e., either a fluent f; or its negation —f;.

To describe possible changes of states, we need a finite set of actions. In the language A, the effect
of each action a can be described by formulas of the type

a causes f if fi,..., fm,

where f, f1,..., fm are fluent literals. A reasonably straightforward semantics describes how the
state changes after an action:

o If, before the execution of an action a, fluent literals fi,..., f;, were true, and the domain
description contains a rule “a causes f if f1,..., f;n”, then this rule is activated, and after the
execution of the action a, f becomes true. Thus, for some fluents f;, we will conclude that
the fluent f; holds in the resulting state, and for some other fluents f;, we conclude that the
negation — f; holds in the resulting state.

e If for some fluent f;, no activated rule enables us to conclude that f; is true or false, this
means that the execution of action a does not change the truth of this fluent; therefore, f; is
true in the resulting state if and only if it was true in the old state.

Formally, a domain description D is a finite set of value propositions of the type “initially f” (which
describe the initial state), and a finite set of effect propositions of the type “a causes f if fi,..., fn”



(which describe results of actions). The initial state sy consists of all the fluents f; for which the
corresponding value proposition “initially f;” is contained in the domain description. (Here we are
assuming that we have complete information about the initial situation.) We say that a fluent f;
holds in s if f; € s; otherwise, we say that —f; holds in s. The transition function Resp(a,s) which
describes the effect of an action a on a state s is defined as follows:

e we say that an effect proposition “a causes f if fi,..., f” is activated in a state s if all m
fluent literals fi,..., f,, hold in s;

o we define VI (a,s) as the set of all fluents f; for which a rule “a causes f; if f1,..., fm” is
activated in s;

e similarly, we define V;(A4,S) as the set of all fluents f; for which a rule “a causes —f; if
fi,..., fm” is activated in s;

o if V3 (a,s) NVp (a,s) # 0, we say that the result of the action a is undefined;

e if the result of the action a is defined in a state s (i.e., if V7 (a,s) NV, (a,s) = 0), we define
Resn(a,s) = (s UV (a,5)) \ Vj (a,).

A plan p is defined as a sequence of actions [ai,...,a,,]. The result Resp(p, s) of applying a plan
p to the initial state sg is defined as

Resp(am, Resp(am—1,...,Resp(ai, sp)...))-

The planning problem is: given a domain D and a desired fluent literal f, find a plan which leads
to the state in which f is true.

Comment. In many practical problems, the goal is not a single fluent literal, but a logical combi-
nation of different fluent literals. Problems of propositional planning, in which the goal can be a
propositional combination of fluent literals, can be reformulated in terms of the above definition
and are, thus, covered by this paper. Problems of first order planning, in which the goal can be
a first-order logical statement with quantifiers, are more complex; none of our results and proofs
apply verbatim to such problems.

1.2 An extension of language A which describes sensing actions: brief reminder

The formulation of the extension Ax of A that allows sensing actions — recalled here from [BS98,
BS00] — is based on earlier work of formalizing sensing actions in [Moo85, SL93]. In the domain
description D, in addition to value propositions and effect propositions, we may also have sensing
propositions of the type “a determines f;”. To deal with incomplete information about the real
world, we need to reason with the agent’s knowledge about the world. A k-state is defined as pair
(s, X), where s is the actual state, and ¥ is the set of all possible states where the agent thinks it
may be in. Initially, the set 3y consists of all the states s for which:

e a fluent f; is true (f; € s) if the domain description D contains the proposition “initially f;”;
e a fluent f; is false (f; & s) if the domain description D contains the proposition “initially —f;”.

If neither the proposition “initially f;”, nor the proposition “initially —f;” are in the domain descrip-
tion, then 3, contains some states with f; true and others with f; false. The actual initial state
8¢ can be any state from the set ¥j. The transition function due to action execution is defined as
follows:



e for proper (non-sensing) actions, (s,%) is mapped into
(Resp(a, s), Resp(a, X)), where:

)
— Resp(a,s) is defined as in the case of complete information, and
— Resp(a,X) = {Resp(a,s’) | s’ € X}.

e for a sensing action a which senses fluents fi,..., fr — i.e., for which sensing propositions
“q determines f;” belong to the domain D — the actual state s remains unchanged while ¥ is
down to only those states which have the same values of f; as s: (s,X) — (s,X'), where

Y ={sE€NViQ<i<k— (fies & f; €5))}

Example 1. [BS98, BS00] Consider the following example. We have a door with a lock, and we
have non-sensing actions push_door and flip_lock, and a sensing action check_if _locked. The effect
of these actions can be expressed in Ax by the following effect propositions and sensing proposition:

push_door causes open if —locked, —jammed,;

push_door causes jammed if locked;
flip_lock causes locked if —locked;
flip_lock causes —locked if locked,;
check_if locked determines locked.

The information that our agent has about the initial situation is that the door is not open, and the
lock is not jammed. (The agent does not know if the door is locked or not.)

In this case the two initial k-states are: o1 = (s1,{s1,s2}), and o2 = (s2, {s1, s2}), where s; =
{—open, ~jammed, locked}, and sy = {—open, ~jammed, ~locked}.

Based on our definition we now have the following:

Resp(check_if locked,o1) = (s1,{s1})-

Resp(check_if locked,oq) = (s2,{s2})-

Resp(push_door,o1) =
({—open, jammed, locked}, {{—open, jammed,locked}, {open, ~jammed, —locked})

Resp(push_door, oq) =
({open, ~jammed, —locked}, {{—open, jammed, locked}, {open, ~jammed, —locked})

Resp(fliplock,o1) = o9

Resp(flipdock,oq) = 01 O

In the presence of sensing, an action plan may no longer be a pre-determined sequence of actions:
if one of these actions is sensing, then the next action may depend on the result of that sensing. In
general, the choice of a next action may depend on the results of all previous sensing actions. Such
an action plan is called a conditional plan.

Example 2. For example, the agent in Example 1 would need the following conditional plan to
achieve its goal of opening the door:



check_i f locked;
if —locked then push_door else flip_lock; push_door. a

It has been speculated that adding sensing actions increases the computational complexity of the
problem. In this paper, we show that the corresponding planning problem is indeed harder: it
belongs to the next level of the complexity hierarchy (in precise terms, it is 3oP-complete).

1.3 The notion of a 0-approximation

To overcome the complexity of this problem, Baral and Son [BS97] have proposed several approx-
imations, whose plans are always correct but which can miss a plan. The first approximation —
called 0-approzimation — is as follows: An a-state (approximate state) s is a finite set of fluent
literals (i.e., fluents and their negations). The initial a-state sy consists of all the fluent literals f
for which the corresponding value proposition “initially f” is contained in the domain description.
We say that:

o 3 fluent f; is true in s if f; € s;
o 3 fluent f; is false in s if —f; € s;
e a fluent f; is unknown in s if neither f; € s, not —f; € s.

The transition function Resp(a,s) which describes the effect of a proper action a on an a-state s
is defined as follows:

e we say that an effect proposition “a causes f if fi,..., fin” is activated in an a-state s if all
m fluent literals fq,..., f;, hold in s;

e we say that an effect proposition “a causes f if f1,..., fi,” is possibly activated in an a-state
s if all m fluent literals fi, ..., f,, possibly hold in s (i.e., are either true or unknown in s);

‘a causes [ if f1,...,[fm”

[

e we define Vp(a,s) as the set of all fluent literals f for which a rule
is activated in s;

e we define V},(a, s) as the set of all fluent literals f for which a rule “a causes f if f1,..., fn”
is possibly activated in s;

e we then define Resp(a,s) as
{f1(f €5V fEeVp(as)&~f &Vpa,s)}.

For sensing actions, the result of applying a to an a-state s results in a set of a-states each of which
can be obtained by simply adding, to the a-state, the fluent literals that may turn out to be true
as a result of this sensing action.

Example 3. Let us now consider how we can use 0-approximation with the story in Examples 1
and 2.

e The initial a-state will be s = {—jammed, —open}.

e Executing a sensing action leads to two possible states, depending on whether the door is
locked or not:
Resp(check_iflocked, s) = {{—~jammed, ~open,locked},{—~jammed, ~open, —locked}}



Resp(fliplock, {—jammed, —open,locked}) = {—~jammed, —open, —locked}

Resp(push_door, {—jammed, ~open, —locked}) = {—jammed, open, —locked}

From the above it can be easily shown that the plan in Example 2 can also be verified as a
plan that achieves the goal of making the door open, if we use the approximation.

Resp(push_door, {—~jammed, —open}) = {}

The above skeptical reasoning is important and necessary for the soundness result. The
intuition behind the skeptical reasoning is as follows. Initially the agent knows the lock is not
jammed and the door is not open and has no idea if the door is locked or not. In that case
there are two possibilities: either the door is locked, or it is not locked. In the first case, if the
agent executes push_door, then the lock gets jammed and the door remains unopened; in the
second case, after execution of push_door, the door opens and the lock remains unjammed.
Since the agent does not have a way to distinguish between the two, a safe way is for it to
conclude that it will not know if the lock will be jammed and if the door will be open after
executing push_door.

In the above formulation of Resp(a,s) the notion of ‘possibly activated’ and its use in V},
are respounsible for the above described skeptical reasoning. O

We are very optimistic about the practicality of 0-approximation. One of the main reasons for this
optimism is the similarity between the ideas of 0-approximation [BS00] and semi-heuristic ideas
underlying practically useful planners UWL, SADL, etc., described in [GB94, GW96]; for example,
[GW96] states that:

“In UWL (and in SADL) individual literals have truth values expressed in three valued logic:
T, F, U (unknown).”

Similarly, Goldman and Boddy in [GB94] use a single model to represent both the world and the
planners knowledge about the world; this is similar to the notion of a 0-approximation, where we
also have a single model [BS00].

To transform our optimism into practically useful tools, we must further analyze the relationship
between O-approximation and the extant planners. A first step in this analysis has been taken in
[BS00].

2 Results

2.1 What kind of planning problems we are interested in

Informally speaking, we are interested in the following problem:

e given a domain description (i.e., the description of the initial state and of possible conse-
quences of different actions) and a goal (i.e., a fluent which we want to be true),

e determine whether it is possible to achieve this goal (i.e., whether there exists a plan which
achieves this goal).



We are interested in analyzing the computational complezity of the planning problem, i.e., analyzing
the computation time which is necessary to solve this problem.

Ideally, we want to find cases in which the planning problem can be solved by a tractable algorithm,
i.e., by an algorithm ¢/ whose computational time #;;(w) on each input w is bounded by a polynomial
p(Jw|) of the length |w| of the input w: ty(z) < p(Jw|) (this length can be measured bit-wise
or symbol-wise). Problems which can be solved by such polynomial-time algorithms are called
problems from the class P (where P stands for polynomial-time). If we cannot find a polynomial-
time algorithm, then at least we would like to have an algorithm which is as close to the class of
tractable algorithms as possible.

Since we are operating in a time-bounded environment, we should worry not only about the time
for computing the plan, but we should also worry about the time that it takes to actually implement
the plan. If a (sequential) action plan consists of a sequence of 22" actions, then this plan is not
tractable. It is therefore reasonable to restrict ourselves to tractable plans, i.e., to plans u whose
duration T'(u) is bounded by a polynomial p(|w|) of the input w.

For conditional plans, the actual sequence of actions may depend on the situation; we require that
for every possible sequence of actions, the total number of consequent actions is bounded by a
polynomial p(|w|), i.e., informally, that the “plan executions” are of polynomial size.

With this tractability in mind, we can now formulate the above planning problem in precise terms:
e given: a polynomial p(n) > n, a domain description D (i.e., the description of the initial state

and of possible consequences of different actions) and a goal f (i.e., a fluent which we want
to be true),

e determine whether it is possible to tractably achieve this goal, i.e., whether there exists a
tractable-duration plan u (with T'(u) < p(|D])) which achieves this goal.

We are interested in analyzing the computational complexity of this planning problem.

2.2 Complexity of the planning problem for situations with complete informa-
tion

For situations with complete information, the above planning problem is NP-complete:
Theorem 1. For situations with complete information, the planning problem is NP-complete.
Comments.

e This result is similar to the result of Liberatore [Lib97]. The main difference is that Liberatore

considers arbitrary queries from the language A, while we only consider queries about the
existence of a tractable action plan.

e The result of Liberatore is preceded by the results of Bylander [Byl94] and Erol et al. [ENS95]
where they study complexity of STRIPS. Here we use A and its extensions instead of STRIPS
since, to the best of our knowledge, there has not been any formal treatment of extensions of
STRIPS dealing with sensing actions.

e For reader’s convenience, all the proofs are placed in the special (last) section.

e Some of this paper’s results were first announced in [BKT99].



e The problem remains NP-complete even if we consider planning problems with a fixed finite
number of actions: even with two actions. If we only allow a single action, then there is no
planning any more: the only possible plan is, in any state, to apply this only possible action
and check whether we have achieved our goal yet; the corresponding “planning” problem is,
of course, solvable in polynomial time.

2.3 Useful complexity notions

For situations with incomplete information, the planning problem is more complicated — actually,
this problem belongs to the next levels of the polynomial hierarchy; see the exact results below.
For precise definitions of the polynomial hierarchy, see, e.g., [Pap94]. Crudely speaking, a decision
problem is a problem of deciding whether a given input w satisfies a certain property P (i.e., in
set-theoretic terms, whether it belongs to the corresponding set S = {w | P(w)}).

e A decision problem belongs to the class P if there is a tractable (polynomial-time) algorithm
for solving this problem.

e A problem belongs to the class NP if the formula w € S (equivalently, P(w)) can be rep-
resented as JuP(u,w), where P(u,w) is a tractable property, and the quantifier runs over
words of tractable length (i.e., of length limited by some given polynomial of the length of
the input). The class NP is also denoted by £;P to indicate that formulas from this class
can be defined by adding 1 existential quantifier (hence ¥ and 1) to a polynomial predicate
(P).

e A problem belongs to the class coNP if the formula w € S (equivalently, P(w)) can be
represented as YuP(u,w), where P(u,w) is a tractable property, and the quantifier runs over
words of tractable length (i.e., of length limited by some given polynomial of the length of
the input). The class coNP is also denoted by II; P to indicate that formulas from this class
can be defined by adding 1 universal quantifier (hence II and 1) to a polynomial predicate
(hence P).

e For every positive integer k, a problem belongs to the class ;P if the formula w € S (equiv-
alently, P(w)) can be represented as JuiVus ... P(u1,ug,...,ux,w), where P(uy,...,ug,w)
is a tractable property, and all & quantifiers run over words of tractable length (i.e., of length
limited by some given polynomial of the length of the input).

e Similarly, for every positive integer k, a problem belongs to the class IIP if the formula
w € S (equivalently, P(w)) can be represented as VuiJus...P(ui,us,...,us, w), where
P(ui,...,ux,w) is a tractable property, and all k£ quantifiers run over words of tractable
length (i.e., of length limited by some given polynomial of the length of the input).

o All these classes ;P and II;P are subclasses of a larger class PSPACE formed by problems
which can be solved by a polynomial-space algorithm. It is known (see, e.g., [Pap94]) that
this class can be equivalently reformulated as a class of problems for which the formula w € S
(equivalently, P(w)) can be represented as Yui3us ... P(u,us, ..., ug,w), where the number
of quantifiers k is bounded by a polynomial of the length of the input, P(u1,...,ug, w) is
a tractable property, and all & quantifiers run over words of tractable length (i.e., of length
limited by some given polynomial of the length of the input).



A problem is called complete in a certain class if, crudely speaking, this is the toughest problem in
this class (so that any other general problem from this class can be reduced to it by a polynomial-
time reduction). It is still not known (2000) whether we can solve any problem from the class
NP in polynomial time (i.e., in precise terms, whether NP=P). However, it is widely believed
that we cannot, i.e., that NP#P. It is also believed that to solve a NP-complete or a coNP-
complete problem, we need exponential time ~ 2", and that solving a complete problem from one
of the second-level classes %5 or II;P requires more computation time than solving NP-complete
problems (and solving complete problems from the class PSPACE takes even longer).

2.4 Complexity of the planning problem for situations with incomplete infor-
mation: situations with no sensing actions

Let us start our analysis with the case of no sensing.

Theorem 2. For situations with incomplete information and without sensing, the planning problem
15 DoP-complete.

The problem remains Yo P-complete even if we consider the planning problems with a fixed finite
number of actions: even with two actions.

Theorem 3. For situations with incomplete information and without sensing, the 0-approzimation
to the planning problem is NP-complete.

In other words, the use of 0-approximation cuts off one level from the complexity. So, for this
problem, O-approximation is indeed computationally very efficient.

This reduction is in good accordance with our intuitive understanding of this problem and its
(-approximation:

e In the case of complete information, to represent a state, we must know which fluents are
true and which are false. Therefore, a state can be uniquely described by a subset of the set
of all the fluents — namely, the subset consisting of those fluents which are true in this state.
The total number of states is therefore equal to the total number of such subsets, i.e., to 2
(where F' is the total number of fluents).

e In the case of incomplete information, we, in general, do not know the state of the system.
So, the state of our knowledge is represented by a k-state [BS98, BS00]. It can be easily shown
[BS98, BS00] that the number of all possible k-states is 22" +F

¢ In (Q-approximation, an a-state is represented by stating which fluents are true, which are
false, and which are unknown. For each of F' fluents, there are three different possibilities,
so, in total, in this approximation, we have 3f possible a-states.

So, going from a full problem to its 0-approximation decreases the number of possible “states” from
doubly exponential 22" *F to singly exponential 3. Since planning involves analyzing different
possible states, it is no wonder that for 0-approximation, the computation time should also be
smaller. Again, this argument is not a proof of Theorem 3, but this argument makes the result of
Theorem 3 intuitively reasonable.



2.5 Complexity of the planning problem for situations with incomplete infor-
mation: situations with sensing

Let us now consider what will happen if we allow sensing actions.

Theorem 4. For situations with incomplete information and with sensing, the planning problem
is PSPACE-complete.

Comment. By a “planning problem”, we understand the problem of finding a tractable plan. It is
worth mentioning that the computational complexity of the planning problem strongly depends on
how we define the notion of a tractable plan:

e In this paper, we describe tractable plans as plans u of tractable (polynomial) duration T'(u).

e Alternatively, instead of simply restricting the duration T'(u) of a plan u by a polynomial
p(|D|) of the length |D| of the problem’s input D, we could also require that the length
|u| of the total description of a conditional plan u should also be tractable (i.e., we could
also restrict the length |u| of the total description of a conditional plan by ¢(|D|) for some
polynomial g(n)).

Intuitively, this alternative restriction would be a much stronger restriction on the plan: indeed, a
conditional plan of tractable duration n can have branching at every step; in this case, we have 2"
possible action sequences which can require an exponential (intractable) length to record. Rintanen
has shown [Rin99] that if we follow this alternative definition and define a tractable plan as a plan
of tractable length, then the planning problem becomes [IoP-complete. O

Since the planning problem is of high computational complexity, it is reasonable to look for ap-
proximations. We have already seen that for planning with incomplete information, the use of
0-approximation drastically decreases the computational complexity. It turns out that if we al-
low unlimited sensing, then the planning problem becomes so much more complicated that 0-
approximation is not helping anymore:

Theorem 5. For situations with incomplete information and with sensing, the 0-approximation to
the planning problem is PSPACE-complete.

The proofs of Theorems 4 and 5 are similar to [Lit97]. As one can see from the proofs, both the
planning problem itself and its 0-approximation remain PSPACE-complete even if we consider
the planning problems with a fixed finite number of actions: even with two proper actions and a
single sensing action which reveals the truth value of only one fluent — but we are allowed to repeat
this sensing action at different moments of time.

Although 0-approximation does not help by itself, it helps if combined with some reasonable as-
sumptions about the desired conditional plan. Indeed, in our definitions, we allowed the unlimited
number of sensing actions. This makes sense in many real life control and planning situations where
it is desirable to monitor the environment continuously, and to make sensing actions all the time.
This necessity is caused by the fact that in many real-life situations, the consequences of each action
are only known with a certain probability; so, even if we know the exact initial state, and we know
what exactly actions have been performed, we are still not sure what the resulting state is, so we
need to constantly monitor the situation to find out the actual state. In this paper, we consider the
situations in which the result of each action is uniquely determined by this action and by the initial
state. In such idealized situations, there is no such need for a constant monitoring. It therefore
makes sense to allow only a limited repetition of sensing actions in an action plan. With such a
limitation, the complexity of planning drops back, and 0-approximation starts helping again:
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Definition 1. Let k be a positive integer.
e We say that a sensing action is k-limited if it reveals the values of no more than k fluents.
e We say that an action plan is k-bounded if it has no more than k sensing actions.

Theorem 6. For any given k, for situations with incomplete information and with k-limited sensing
actions, the problem of checking the existence of a k-bounded action plan is YoP-complete.

Theorem 7. For any given k, for situations with incomplete information and with k-limited
sensing actions, the problem of checking the ezistence of a k-bounded 0-approzimation action plan
is NP-complete.

Comments.

e The same result holds if instead of assuming that &k is a constant, we allow k to grow as
log(|D]) (i-e., as a square root of the logarithm of the length of the input).

e A difficulty with the general situation with incomplete information comes from the fact that
we do not know the ezact states, i.e., we do not know the values of all the fluents. It is
therefore reasonable to analyze the situations with full sensing, i.e., situations in which, for
every fluent f;, we have a sensing action check; which reveals the value of this fluent. Full
sensing does make the planning problem simpler, although not so simple that 0-approximation
would help.

Theorem 8. For situations with incomplete information and with full sensing, the planning prob-
lem is IIoP-complete.

Theorem 9. For situations with incomplete information and with full sensing, the 0-approzimation
to the planning problem is IIsP-complete.

These results can be represented by the following table:

exact 0-approximation
planning

complete NP-complete NP-complete
information (Theorem 1)
partial information, Y.oP-complete NP-complete
no sensing (Theorem 2) (Theorem 3)
limited number Y.oP-complete NP-complete
of sensing actions (Theorem 6) (Theorem 7)
unlimited number PSPACE- PSPACE-
of sensing actions complete (Th. 4) | complete (Th. 5)
partial information, II,P-complete II,P-complete
full sensing (Theorem 8) (Theorem 9)
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unlimited number
of sensing actions
PSPACE-complete

v hY
full sensing limited sensing
II,P-complete Y.oP-complete
vd

0-approximation or
complete information
NP-complete

2.6 Auxiliary result: 1-approximation is coNP-complete

In addition to 0-approximation, the authors of [BS97, BS98, BS00] considered other types of approx-
imations, including the so-called 1-approzimation. In 1-approximation, partial states are defined in
the same manner as for O-approximation: i.e., as lists of fluents and their negations. However, for
an incomplete a-state s, the result of a (proper) action a on the s is defined differently. Namely,
incompleteness of an a-state means that there exists a fluent f; whose value in s is unknown, i.e.,
for which neither this fluent f; nor its negation —f; belongs to s. If we add to s, for each such fluent
fi, either f; or —f;, we get a complete state s’ D s which completes the original incomplete state
s. Since the original a-state s was incomplete, there exist several different complete states s’ which
completes s in this sense. To check whether a fluent literal f is true after applying the action a to
the a-state s, we do the following:

e we form all possible complete states s’ which complete s;

e we apply the action s to all these complete states s’; as a result, we get a collection of resulting
states Resp(a, s');

e finally, we check whether f is true in all these resulting states Resp(a, s').

If a fluent literal f is true in all these resulting states, then we say that f is true after applying the
action a to the a-state s.

Then, as a new a-state Resp(a, s), we take the set of all fluent literals which are true after applying a.

In this section, we will show that the use of this new definition increases the computational complex-
ity of an approximation. Namely, while for 0-approximation, computing the next a-state Resp(a, s)
was a polynomial-time procedure, for 1-approximation, computing the next state is already a coNP-
complete problem:

Theorem 10. (l-approximation) The problem of checking, for a given a-state s, for a given action
a, and for a given fluent f, whether f is true in Resp(a,s), is coNP-complete.

Comments.

e An w-approximation is defined in a similar manner, except that in an w-approximation, the
result Resp(a,s) is defined not after a single action a, but after a sequence of proper actions
between two sensing actions. In the particular case when there is exactly one proper action
between the two sensing actions, w-approximation reduces to l-approximation. Therefore,
w-approximation is also at least as complicated as coNP-complete problems.
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e These results show that if we want an approximation to decrease the computational complex-
ity of the planning problem, then (at least from the viewpoint of the worst-case complexity)
0-approximation is preferable to 1-approximation and w-approximation.

2.7 Conclusion and plans for future work: from complexity results to practical
planning

This paper describes some computational complexity results on a propositional action description
language that allows for sensing and incomplete information about the initial state.

In particular, this paper shows that adding sensing to the propositional planning problem makes
it PSPACE-complete even if there is a polynomial limit on the duration of the action plan. One
implication is that the conditional plan can be exponentially long. Various approximations and
restrictions on sensing are considered. These typically put the problem on the first or second level
of the polynomial hierarchy (completeness for NP, coNP, XoP or II,P).

These complexity results lead to a natural question: Is sensing simply a hard problem we have to
live with or are there some algorithms/heuristics/approximations that help us solve at least some
instances of the problem? The notion of 0-approximation somewhat addresses this question.

We strongly believe that, although planning under O-approximation is still NP-hard, the ideas
behind 0-approximation can lead to a solution of many practical instances of the planning problem.
This belief is prompted by the fact that many successful planners (see, e.g., [GB94, GW96] and
discussion above), in effect, assume or depend on 0-approximation in some way or another.

To transform this belief into practically useful tools, we must further analyze the relationship
between (O-approximation and the extant planners. A first step in this analysis has been taken in
[BS00].

3 Proofs

Proof of Theorem 1.! Before we start the actual proof, let us comment on the relation between
the duration and the length of a plan. In general, these are two different notions, and a polynomial
restriction on a duration does not necessarily mean that the length of a plan is also polynomially
restricted (see the comment after the formulation of Theorem 4). However, for situations without
sensing, this difference, in effect, disappears. Indeed, since we do not acquire any new information,
at any given moment of time, for any conditional plan, we can pre-determine which action we will
be choosing. So, without sensing, for a given initial state, we will be only using one branch of this
conditional plan. Therefore, it makes sense to only keep this branch, and thus, to consider only
sequential plans. For such plans u, the duration 7'(u) of the plan coincides with its length |u], i.e.,
with the total number of actions which constitute this plan. Thus, for situations with complete
information, the polynomial restriction on the plan’s duration T'(u) < p(|w|) means that we have
a spolynomial restriction on the plan’s length |u| < p(Jw|). Now, we are ready for the actual proof.

First, let us show that for situations with complete information, the planning problem belongs to
the class NP. Indeed, for a given situation w, checking whether a successful plan exists or not means
checking the validity of the formula Ju P(u,w), where P(u,w) stands for “the plan u succeeds for a

'Even though similar results already exist [Byl94, Lib97, ENS95], we present this proof here as it will be used in
our later proofs.
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situation w”. To prove that the planning problem belongs to the class NP, it is therefore sufficient
to prove the following two statements:

e the quantifier runs only over words u of tractable length, and
e the property P(u,w) can be checked in polynomial time.

The first statement immediately follows from the fact that in this paper, we are considering only
plans of polynomial (tractable) duration, i.e., in this case, sequential plans u whose length |u] is
bounded by a polynomial of the length |w| of the input w: |u| < p(|w|), where p(n) is a given
polynomial. So, the quantifier runs over words of tractable length.

Let us now prove the second statement. Once we have a plan u of tractable length, we can check
its successfulness in a situation w as follows:

e we know the initial state sg;

e take the first action from the action plan uw and apply it to the state sg; as a result, we get
the state si;

e take the second action from the action plan u and apply it to the state s1; as a result, we get
the state so; etc.

At the end, we check whether in the final state, the desired fluent is indeed true. On each step
of this construction, the application of an action to a state requires linear time; in total, there
are polynomial number of steps in this construction. Therefore, this checking indeed requires
polynomial time.

So, the planning problem indeed belongs to the class NP. Let us show that it is NP-complete.
To show it, we will prove that the known NP-complete problem — the propositional satisfiability
problem — can be reduced to this problem. In the propositional satisfiability problem, the input
is a propositional formula F, i.e., any expression which can be obtained from Boolean (“true”—
“false”) variables z1, ..., z, by using propositional operations & (“and”), V (“or”), and = (“not”).
The problem is to check whether the given formula F' is satisfiable, i.e., whether there exist values
Z1,...,T, which make the formula F' true. Let us show how, for each propositional formula F,
we can design a planning problem whose solvability is equivalent to satisfiability of the original
formula F'.

To simplify the desired reduction to a planning problem, let us first re-formulate the propositional
formula F' in a more constructive (action-like) way. Namely, when the values z1, ..., z, are chosen,
then for these values, checking the validity of the formula F' is straightforward: a computer can
check this validity in polynomial (even linear) time. Let us describe, step by step, how the computer
will do this checking. In other words, let us parse the formula F. Let us denote the intermediate
results of this computation by z,, 41, Zn42, - .. For example, if F' is the formula (z1 V z2)&(z1 V —z2),
then a possible parsing of this formula is as follows:

e we start with the values z; and z9;
e then, we compute the first disjunction z3 := x1 V x2;
e then, we compute the negation x4 := —xo;

e after that, we are ready to compute the second disjunction x5 := x1 V x4;
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e finally, we compute the truth value of the resulting formula as the conjunction of the two
disjunctions: zg := r3&xs.

In general, we start with the variables z1,...,z,, and then, for k =n + 1,
n+ 2,..., we compute the value of z; in one of the three possible ways:

e cither as zy := ) &z, for some values f(k) < k and s(k) < k;
® or as zy 1= Ty V Tyy) for some values f(k) < k and s(k) < k;
e or as zp := T () for some value f(k) < k.

Based on this parsing representation of the original propositional formula, we can construct the
desired planning situation. Let z denote the last value in the parsing construction. In our planning
situation, we will have two actions: a and ¢~, and 2N + 1 fluents z1,...,zN, S0, S1,---,SN-

The intended meaning of these fluents and actions is as follows: In our designed plan, in the first n
actions, we select the values of the variables z1, . .., z,, and then, in the remaining N —n actions, we
simulate the computation of the formula F'. The meaning of the fluent s; is “we are at moment 7”.

Initially, sq is true and all other fluents are false. The goal of the plan is to make z true.

Two groups of rules describe the effects of actions. Rules from the first group describe the selection
of the truth values; it also reflects the fact that each action increases time by one:

a causes z; if s;_1;

a causes s; if 8;_1;
a causes —s; 1 if 8; 1;
a~ causes —z; if s;_1;
a~ causes s; if s;_1;
a~ causes —s;_1 if s;_1.
Here, i takes values from 1 to n.

Rules from the second group describe the computation process. For every k from n 4+ 1 to N,
depending on which operation computes zj, in terms of z ;) and z,(y), we get the following set of
rules:

o if zp 1= x 1) &xy(1), then we add the following rules:
a causes Ty if Skflamf(k),xs(k);

a causes —xy if g1, T ppy;
a causes ~Tg If Sk_1, T y(k);
a causes sy, if sp_1;

a causes —Sg_1 If Sp_1.
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o if zp :=Ty4) V Tyr), then we add the following rules:
a causes Ty if Sg_1,T(x);

a causes T if Sk_1,Tyk);
a causes Ty If Sg_1, 2T f(k), TTs(k);
a causes si if sp_1;

a causes —Sg_1 If Sp_1.
e finally, if zy := -z (), then we add the following rules:
a causes Ty, if sg_1, Tfp);

a causes —xy if sk 1,Tf(k);
a causes s if sp_1;

a causes —Sp_1 if Sp_1.

At the beginning, sq is true, and all other “temporal” variables s; are false. One can easily check
that if we apply any action (a or ™) to a state in which s; is true and all other “temporal” variables
sj, j # i, are false, then in the resulting state, s;; is true, and all other temporal variables are
false. So, by induction, we can prove that all accessible states are like that. If we are in a state
in which s; is true and s; is false for every j # 4, we will say that we are at moment of time i. In
these terms any action increases the time by one. Thus, a possible plan can include no more than
N actions; hence, the length of any possible plan does not exceed the length of the input data.

Actions performed at moments of time 1 through n select the truth values of the propositional
variables z1,...,z,. One can easily see that on each step k£ > n, the only action we can apply is
the action a, and, as a result of this action, we compute the truth value of the auxiliary variable
zj, and increase the time by one.

The variable z is originally false. The only rules which can make it true require than we have
sny—1 true; if we apply any action in a state in which sy_1 is true, we get a state in which sy is
true. So, the only way for xn to be true is for sy to be true as well.

Since each action increases time by one, no matter what sequence of actions we choose, if we have
reached sy this means that we have also computed the truth value zx of the original formula F.
Thus, the only way for zx to be true is for the original formula F' to be true under the chosen
Boolean values z1,...,z,. So, if the above planning problem is solvable, then the propositional
formula F is satisfiable. Vice versa, if the formula F is satisfiable, i.e., is true for some propositional
values z1, ..., Ty, then we can choose these values in our first n actions, and hence, get the solution
to our planning problem.

Thus, the solvability of our planning problem is indeed equivalent to the satisfiability of the original
formula F'. The reduction is proven, and therefore, the planning problem is NP-complete.

Proof of Theorem 2. First of all, let us show that for situations with incomplete information and
no sensing actions, the planning problem belongs to the class %3P. Indeed, incomplete information
means that the initial values of some fluents are unknown. For such problems, the existence of a
successful action plan means the existence of an action plan w; for which, for every set of values
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uo of the unknown fluents, the plan leads to a success. In mathematical terms, the existence
of a successful plan can be thus written as a formula Ju;Vus P(ui,us,w), where the predicate
P(u1,ug,w) describes the fact that for the planning problem w and for the values uy of initially
unknown fluents, the plan u; leads to a success. Now, to prove that this problem belongs to the
class 9P, we must show that the quantifiers run over variables of tractable length, and that the
predicate P(u1,u9,w) is tractable.

The quantifier u; runs over plans and is, therefore, tractable; the quantifier us runs over sets of
values of fluents; each set of values is tractable (its length is equal to the number of unknown
fluents), so this quantifier is also tractable. Finally, if we know the values ug of all the initially
unknown fluents, and if we know the sequence of actions u1, then we can easily check, step-by-step,
whether for these values of fluents, the given sequence of actions leads to a success (this can be
done exactly as in the proof of Theorem 1). Therefore, the predicate P(ui,u9,w) is tractable. So,
the planning problem indeed belongs to the class 32P.

To prove that the planning problem is ¥oP-complete, we will show that we can reduce, to the
planning problem, a problem known to be ¥oP-complete: namely, the problem of checking, for a
given propositional formula F' with the variables z1, ..., Zu, Tm+1,- - -, Tn, Whether

dzy ... 3z Vemyr .. Vo, F.
The reduction will be similar to the one from Theorem 1, with two exceptions:

e In the planning problem constructed in the proof of Theorem 1, we assumed that initially, all

the variables z; were false. In the new reduction, we assume that only the variables z1,...,Z
are initially false, and that the values of the remaining variables Zp,t1,...,T, are initially
unknown.

e Correspondingly, rules from the first group (which generate the values z;) are only constructed
for the values i < m; for ¢ from m + 1 to n, we have, instead, “dummy” rules which simply
increase time by one:

a causes s; if s;_1;

a causes —s; 1 if 8;_1.

As in the proof of Theorem 1, the only way to make zy true is to go through a sequence of N
actions, in the first m of which we choose the truth values of the propositional variables z1, ..., Tm,
and in the last N — n of which we compute the truth value of the original formula F' using the
selected values of z1,..., 2, and the original (unknown) values of the propositional variables
Tm+1,---,Tn. Lherefore, the existence of a successful action plan is equivalent to the possibility of
choosing the values z1,...,z,, for which, for all possible values of z,,+1,...,%Z,, the formula F is
true. In other words, the existence of an action plan is equivalent to the validity of the formula
Jz1 ... 3z Vemqt - . . Vo, F. The reduction is proven, and so the planning problem in indeed ¥,P-
complete.

Proof of Theorem 3. In 0-approximation, the existence of a successful action plan is equivalent
to JuP(u,w). In this approximation, at any given moment of time, the a-state is described by
a finite set of fluents and their negations, and, if we know the previous a-state and the action,
then we can find the next a-state in linear time. Therefore, in 0-approximation, as in the proof
of Theorem 1, we can check the successfulness of a given action plan u for a given initial a-state
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w in polynomial time. Since the predicate P(u,w) can be checked in polynomial time, and the
quantifier Ju runs over words of polynomial length, the planning problem belongs to the class NP.

The fact that it is NP-complete follows from the fact that for the particular case of complete
information, 0-approximation coincides with the original planning problem, and for complete infor-
mation, as we have shown in the proof of Theorem 1, the planning problem is indeed NP-complete.
The theorem is proven.

Proof of Theorem 4. The proofs of this theorem and Theorem 5 are similar to [Lit97].

First of all, let us show that if we allow sensing, then for situations with incomplete information,
the planning problem belongs to the class PSPACE. Indeed, the existence of an action plan of
a (tractable) length L can be reformulated as follows: there exists a first action uy, such that for
every possible sensing result ug of this first action (if it is a sensing action), there exists a second
action ug, such that for every possible result u4 of this second action (if it is a sensing action), there
exists a third action us, etc., such that at the end, we get the desired value of the goal fluent (for
all possible values of still un-sensed fluents). In mathematical terms, the existence of a plan can be
thus re-written as
HU1VUQ3’U,3V’U4 e VukP(ul, ey Uy w),

where u1,...,u;_1 represent actions and results of sensing actions, and u; runs over all possible
values of un-sensed (unknown) fluents.

In this construction, we have two quantifiers per action in an action plan + one extra quantifier at
the end. Therefore, in total, we have k = 2L + 1 quantifiers; since L is tractable (i.e., bounded by a
polynomial of the length of the input), the total number k = 2L + 1 of quantifiers is tractable too.

Therefore, to prove that this problem belongs to the class PSPACE, it is sufficient to show that
the predicate P(uq,...,us, w) is tractable, i.e., that if we know w1,...,ux, and w, then we can
check, in polynomial time, whether this predicate is true. Once we know wujq,...,us,w, it means
that we know the initial situation, and we know the values of all the fluents, both sensed (from
ug, U4, etc.), and un-sensed (from wuy), and that we know the actual sequence of actions (the first
action is uj, the second is ug, etc.). Since we know the values of all the fluents, and we know the
action plan, we can check, in tractable time, whether this particular action plan leads to success
in this particular initial complete-information state. Thus, the predicate P(uq, ..., ug,w) is indeed
polynomial-time, and the planning problem indeed belongs to the class PSPACE.

To prove that the planning problem is PSPACE-complete, we will show that we can reduce, to the
planning problem, a problem known to be PSPACE-complete: namely, the problem of checking,
for a given propositional formula F' with the variables z1,...,Zm, Tm+1,- .-, Zn, the validity of the
formula

Jdz1VzoIdxsVay ... F.

This reduction will be a modification of the reduction which we used in our proof of Theorem 1. As
in that proof, we will start with parsing the formula F’; let 5 denote the last value in the parsing
construction.

e In addition to two proper actions a and a~, i.e., actions which actually change the state, we
have a third action: a sensing action d which senses the value of the fluent z.

e In addition to 2N + 1 fluents =zi,...,%n,S0,81,---,5N, Wwe have additional fluents
$1.5,53.5, - -85, ... tor all odd integers ¢ between 1 and n.
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The new fluents represent “intermediate” moments of time:

e the moment 1.5 is intermediate between moments 1 and 2;

e the moment 3.5 is intermediate between moments 3 and 4; etc.

so that
1<15<2<3<35<4<b<...<n.

As in the proof of Theorem 1, the goal of the plan is to make xzy true. Initially:
® s is true;
e all other fluents s; are false;
e all fluents z1,...,z, are unknown; and

e all fluents z,41,...,zN are false.

As in the proof of Theorem 1, two groups of rules describe the effects of actions. Rules from the
first group describe the selection of the truth values z1,...,z,; they also reflect the fact that each
action moves us to the next moment of time. Rules corresponding to odd-numbered variables z9;1,
i=0,1,... (i.e., variables z1, 3, ...) are similar to the ones used in the proof of Theorem 1:

a causes To;j i1 if S9;;
a causes o1 If So;;
a causes —so; if s9;;
a” causes —To; 1 if s9;;
a~ causes Sg; i1 if So;;
a~ causes —Sy; if So;.
Here, 7 takes all integer values from 0 to [n/2] (i.e., all integer values ¢ for which 1 < 27+ 1 < n).

Rules corresponding to each even-numbered variable z9;, 7 = 1,2,..., include three steps whose
goal is to detect (“sense”) the value of this variable by using the sensing action d:

o first, we swap the variable z9; with the variable z1, thus enabling d to measure the value of
what is now z;1 (and what was originally z9;);

e then, we actually sense the value of 21 (which we will be able to later use in selecting further
action); and

e finally, we swap back the values z1 and xo;.
The rules corresponding to the first swap are as follows:
a causes I if T2y 82;—1;
a causes —xq If —T9;, S9; 1]

a Causes To; if T1,82—15
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a causes x9y; if L1, 82—13
a causes so; 1.5 If S9j_1;
a causes —sg;_1 If S9;_1.

The rule corresponding to sensing is simple:
d determines 7.
Finally, the rules corresponding to swap back are as follows:
a causes x1 if T9;, S9;,_15;

a causes —x1 If —T9;, S9; 1.5;
a causes To; if T1,82i—1.55
a causes —xy; If =1, S89;,_15;
a causes so; if 89;_1.5;

a causes —S9;_1.5 If S2;_1.5.

Rules from the second group describe the computation process; these rules are the same as in the
proof of Theorem 1.

Let us show that in this situation, the existence of a successful plan is equivalent to the validity of
the original propositional formula with quantifiers.

Indeed, if the original propositional formula with quantifiers is true, this means that there exists
z1 such that for every x2, there exists 3, etc., for which the formula F is true (i.e., for which zn
is “true”). Here, ;1 is a constant (“true” or “false”), z3 may depend on z2, x5 may depend on x5
and x4, etc. In other words, there exists:

e a value z1;
e a value z3(z2) which depends on the previous value zo;
e a value z5(z2,z4) which may depend on the previous values z2 and x4, etc.

for which, for all possible values of z9, x4, . . ., the formula F(z1, z9,...) is true (this reformulation is
called a skolemization of the original formula with quantifiers). Therefore, we can use the following
action plan to succeed:

o first, at moment 0, we select a or a~ depending on whether the “existing” value of z1 is “true”
or “false”;

e then, we use the swap sequence to exchange zo and z;, measure the truth value of x;, and
swap back; as a result, we know the truth value of the variable xo;

e depending on the sensed value of z2, we select a or a~ depending on whether z3(z2) is true
or false;

e then, we apply two swaps and sensing to sense the value of the variable x4, etc.

e after the moment s,, we apply the same action (action a) N —n times to compute the truth
value zn =“true” of the formula F'.
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Vice versa, let us assume that for our planning domain, there exists a successful action plan,
i.e., an action plan which makes the desired fluent zy always true. As in the proof of The-
orem 1, the only way to make zx true is to go through a sequence of all moments of time,
80,51551.5y 82y -« 58, Sntls---,SN, and the only way to go through this sequence of moments of
time is to perform the corresponding actions. In particular, for z,...,z,, we must perform all the
selecting actions and all the swaps. Of course, there is no necessity to perform the sensing actions,
but since performing a sensing action does not change the actual state, we can always add these
sensing actions to the action plan without changing the successfulness of this plan. So, without
losing generality, we can assume that in the successful action plan, we are sensing the values of all
the variables x2, x4, ... In short, this action plan does the following;:

e In the first action, we perform either the action a which leads to z1, or the action a~ which
leads to —z1. In other words, in the first action, we select a truth value of the variable z;.

e Then, we measure xo, and we select a truth value of the variable z3. In this selection, we can
use our knowledge about z9; so, the selected value is, in general, a function of zo: z3(x2). (If
we do not use zo, this simply means that we are using a constant function which does not
depend on z2 at all.)

o After that, we measure x4 and select z5. In this selection, we can use our knowledge about
the values x5 and x4, so, in general, the selected value z5 is a function of zo and z4: x5 =

x5(T2, T4)-
.
e After we have selected and sensed the values z1, - .., z,, the resulting actions simply simulate
the process of computing the truth value (zy) of the propositional formula F(z1,...,z,).
The success of the action plan means that for all possible values z2, x4, . . ., the formula

F(CEl,.’I)Q,$3(CE2),$4,.’L'5(.T2,.’L‘4),$6, .. )

is true. This means exactly that there exists 21 such that for every zo, there exists an z3, for which,
for all x4, etc., the formula F(x1,x9,x3,...) is true. In other words, the existence of a successful
action plan means that the original propositional formula with quantifiers is true.

Since we have already proven the implication in the other direction, we can thus conclude that the
existence of a successful action plan is equivalent to the truth of the original propositional formula.
The reduction is proven, and so the planning problem is indeed PSPA CE-complete.

Proof of Theorem 5. This result can be proven in a way which is similar to the proof of
Theorem 4:

e As in that proof, we can show that the 0-approximation to the planning problem belongs to
the class PSPACE.

e The fact that it is PSPACE-complete follows from the observation that in the planning
situation described (for reduction purposes) in the proof of Theorem 4, at any given moment
of time, our knowledge consists exactly in knowing the values of some fluents, while other
fluents can take arbitrary values. In other words, for this situation, every action plan is also
0-approximate, so the existence of a successful action plan for this problem is equivalent to
the existence of a successful 0-approzimate action plan.
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The theorem is proven.

Proof of Theorem 6. Let us first show that the planning problem belongs to the class 35P.
Indeed, the existence of a successful plan can be written as JuiVug P(ui,ue, w), where u; is an
action plan, and ug is the set of initial values of all initially unknown fluents. Here, as in the proof
of Theorem 4, uy runs over words of tractable length and P(u1,u2,w) is a tractable predicate. The
only difference is with uq:

e previously (in the proof of Theorem 4), the action plan was simply a sequence of actions,
while

e now, an action plan can have some sensing actions inside, and the results of these sensing
actions determine the following action.

Each sensing action senses no more than £ different fluents. Each fluent can have two different
values, so after sensing, we have < 2% different sensing results. So:

o If we have a single sensing action in an action plan, the conditional action plan branches itself
into < 2* possible branches (unconditional plans).

e If we have two sensing actions, then each of < 2F branches formed after the first sensing action
can, by itself, branch into < 2¥ sub-branches, making it a total of < 2* . 28 = 22% branches.

e We are allowing a total of < k sensing actions in each action plan, so we have < 2% ... ..
. 2 .
2F (k times) = 2*° possible branches.

To describe a conditional action plan, we describe all action sequences which correspond to different
branches. The length of each branch is polynomial (i.e., it is bounded by a polynomial of the length
lw| of the input), and the number of branches is limited by a constant (2¥”) which does not depend
on the length of the input at all. Therefore, the total length |u1| of this description u; is bounded
by a polynomial of |w|. So, the first quantifier also runs over words of tractable length. Therefore,
the problem indeed belongs to the class >5P.

We have already proven (in Theorem 4) that for the particular case of no sensing, the planning
problem is ¥sP-complete. Therefore, this more general problem is Y9P-complete as well. The
theorem is proven.

Proof of Theorem 7. This proof is related to the proof of Theorem 5 in the same way that the
proof of Theorem 6 was related to the proof of Theorem 4: first, we prove that the 0-approximate
planning problem belongs to the class NP — by using the same coding u; of the conditional plans
as in the proof of Theorem 6, and then we observe that since a particular case (no-sensing) of this
problem is NP-complete, this general problem is NP-complete as well.

Proof of Theorem 8. First of all, let us show that for full sensing, the planning problem belongs
to the class IIoP. Indeed, since sensing actions do not change the state of a system, there is no harm
in applying them first, and thus, determining the values of all the fluents. For each revealed initial
state, we have an unconditional action plan. Thus, the existence of a successful conditional action
plan for situations with full sensing means that for every initial state u1, there is an (unconditional)
action plan ue which leads to a success. In mathematical terms, the existence of a successful plan
can be thus written as a formula Vu;3us P(u1,us, w), where the predicate P(u1,us,w) describes
the fact that for the planning problem w and for the values u; of initially unknown fluents, the
plan uo leads to a success. As in the proof of Theorem 2, we can prove that the quantifiers run
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over variables of tractable length, and that the predicate P(u1,us,w) is tractable. Thus, for the
case of full sensing, the planning problem indeed belongs to the class II;P.

To prove that the planning problem is IIoP-complete, we will show that we can reduce, to the
planning problem, a problem known to be IIoP-complete: namely, the problem of checking, for a
given propositional formula F’ with the variables z1,...,Zm, Tm+1, - - ., Tn, whether

Vri...VepIzmyr ...z, F.
The reduction will be similar to the one from Theorem 1, with three exceptions:

e In addition to two proper actions, we also have m sensing actions check;, 1 < i < m, which
sense the values of the variables z1, ..., Zp,.

e In the planning problem constructed in the proof of Theorem 1, we assumed that initially, all
the variables x; were initially false. In the new reduction, we assume that only the variables
ZTm+1,-- -, Ty are initially false, and that the values of the remaining variables z1, ..., z,, are
initially unknown.

e Correspondingly, rules from the first group (which generate the values z;) are only constructed
for the values i > m; for 7 from 1 to m, we have, instead, “dummy” rules which simply increase
time by one:

a causes s; if 8;_1;

a causes —s;_1 if 8;_1,

and the “sensing” rules
check; determines z;.

As in the proof of Theorem 1, the only way to make zy true is to go through a sequence of N
actions:

e in the first m of these actions, we sense the truth values of the variables x1, ..., T;

e in the next n — m of these actions, we choose the truth values of the propositional variables
Tm+1,-- -, Tn; in this choice, we can use the “measured” values of z1,...,2n;

e finally, in the last N —n actions, we compute the truth value of the original formula F using
the “sensed” truth values of the propositional variables z1,...,z,,, and the selected truth
values of the propositional variables z,,4+1,...,Zn.

Therefore, the existence of a successful action plan is equivalent to the possibility that for every
possible combination of the values z1, ..., Ty, we can choose the values 41, ..., 2, for which the
formula F' is true. In other words, the existence of an action plan is equivalent to the validity of
the formula Vz; ...Vz,3T541 - .. 3z, F. The reduction is proven, and so the planning problem is
indeed IIsP-complete.

Proof of Theorem 9. We already know, from Theorem 8, that for full sensing, the planning
problem is IIs P-complete. To prove that the the existence of a 0-approximate plan is IIsP-complete,
it is therefore sufficient to show that for situations with full sensing, the existence of a successful
action plan is equivalent to the existence of a 0-approximate action plan.
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In one direction this implication is trivial: it is known [BS97, BS98, BS00] that a successful 0-
approximate action plan is a particular case of a successful plan. Thus, if there exists a successful
0-approximate plan, this means that there exists a successful plan.

Vice versa, let us assume that there exists a successful (conditional) action plan. Since we have a
situation with full sensing, we can, in principle, do the following:

o first, we sense all the fluents, thus determining completely the initial state;

e then, we follow the sequence of actions which is recommended by the original conditional plan
for this particular initial state.

For complete states, every plan is a 0-approximate plan. Therefore, what we described is a successful
0-approximate plan.

The equivalence between the existence of a successful plan and the existence of a successful 0-
approximate plan is thus proven, and therefore, the 0-approximation to the planning problem is
indeed IIsP-complete.

Proof of Theorem 10. First, let us show that this problem belongs to the class coNP. Indeed,
the fact that f is true is Resp(a, s) can be reformulated as VuP(u, w), where u runs over all possible
complete states completing the partial state s, and P(u,w) means that the predicate f is true in
the result of applying a to the complete state u. Here, the quantifier runs over complete states —
i.e., words of tractable length, and the predicate P(u,w) can also be easily checked in polynomial
time. Thus, this problem indeed belongs to the class coNP.

To prove that this problem is coNP-complete, let us reduce, to this problem, a problem known to
be coNP-complete: namely, the problem of checking whether a given propositional formula F' with
n propositional variables z1,...,x, is a tautology, i.e., whether it is true for all possible values of its
variables z1,...,2,. It is known that this problem is coNP-complete even if we restrict ourselves
to propositional formulas of the special type: namely, to 3- CNF formulas, i.e., formulas of the type
C1&Cr& ... & C), where each “clause” C; is of the type p V ¢ V r, with p, ¢, and r being literals
(i.e., propositional variables z; or their negations).

Let us now show how we can reduce an instance of a CNF-tautology problem to checking whether f
holds in Resp(a, s). Let C1 & Cy & ... & Cy, be a formula F with propositional variables z1, ..., z,.
Then, we define a planning situation with n + 1 fluents f,z1,...,z,. In the initial state s, f is
true, and fluents z1,...,z, are unknown. We have k rules which describe the result of the action
a — one rule for each clause Cj. Namely, for each clause pV q V r, we have a rule

a causes —f if —=p, g, .

Let us show that f is true in Resp(a, s) if and only if the original formula F is a tautology. Indeed,
initially f was true; the only reason for it to stop being true is if for some complete state u which
completes s, we get —f, i.e., if for some values of the variables z1,...,z,, for one of the clauses
C; =pVqVr, we have —p & —~q & —r. But this conjunction is exactly the negation of the clause, so,
in other words, f is not true in Resp(a, s) if and only if for some values of the variables z1, ..., z,,
one of the clauses is false.

Therefore, f is true in Resp(a,s) if and only if for every choice of the variables z1,...,z,, all
clauses C; are true — which is equivalent to saying that the original formula C1 & ... & C} is true.
So, f is true in Resp(a, s) if and only if the original formula is a tautology. The reduction is proven,
and so our problem is indeed coNP-complete.
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