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Abstract

Strassen’s 1969 algorithm for fast matrix multiplication [2] is based on the possibility to
multiply two 2 x 2 matrices A and B by using 7 multiplications instead of the usual 8. The
corresponding formulas are an important part of any algorithms course, but, unfortunately, even
in the best textbook expositions (see, e.g., [1]), they look very ad hoc. In this paper, we show
that the use of natural symmetries can make these formulas more natural.

Outline. The goal of this paper is to show that the use of symmetries can make Strassen’s formulas
for multiplying two 2 x 2 matrices A and B in 7 multiplications more natural. To achieve this goal,
we will first describe two relevant symmetries: the first one is more straightforward, the second
one is slightly more implicit. Then, we use these symmetries to select 7 combinations of matrix
elements. Finally, we use the same symmetries to pair the combinations corresponding to A and B
with each other and thus, to come up with Strassen’s formulas.

First symmetry: renaming axes. From the mathematical viewpoint, a 2 x 2 matrix

A (an a12)
az1  G22

describes a linear transformation of a 2-dimensional space into itself; the product of two matrices
corresponds to the composition of two linear transformations. In this interpretation, the elements
of the matrix describe the coordinates of the results Ae; and Ae, of applying this transformation to
the unit vectors e; = (1,0) and e3 = (0, 1) corresponding to the natural axes: Ae; = a11-€1+a9;-€2,
and Aes = aq2 - €1 + ag2 - €2. From this geometric viewpoint what matters is the transformation
itself, while the order in which we describe the axes is irrelevant. If we change this order, we get new
unit vectors €] = er(;, where (1) = 2 and 7(2) = 1. In the new axes, the same transformation
is represented by a new matrix A" = 7(A) with aj; = ay(n(j). Similarly, the transformation
corresponding to the matrix B is represented, in the new axes, by the similarly permuted matrix
B' = 7(B) with b}; = bz (;)r(j), and the product matrix C = A-B (corresponding to the composition
of the two transformations) takes the form C' = 7(C) with ¢}; = cr(i)r(j)-

From the algebraic viewpoint, transformation to the new axes means an index permutation
1 <> 2. Since the matrix product does not change under the index permutation 1 <> 2, it is natural
to look for formulas for matrix multiplication which do not change under this transformation either.



Second symmetry: inverse transformations. The second natural symmetry comes from con-
sidering the inverse transformations A=!, B~1, and C~!, namely, from the fact that if A- B = C,

then C~' = B~'. A~!. For a 2 x 2 matrix, the inverse is known to be equal to A~ = ﬁ - A,

where |A| denotes the determinant of the matrix A, and

def [ @ —a
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—a a1l
is a transposition of a matrix formed by minors. The determinants are easy to handle, since
they satisfy the equality |C| = |A| - |B|. So, the above inverse-transformation property can be
reformulated as follows: if A- B = C, then By, - A, = Ch,.
The transformation from A to A,, consists of swapping diagonal elements a1 and a9 and
changing the signs of non-diagonal elements a12 and ag;. Thus, it is reasonable to require that the
formulas for matrix multiplication be invariant under this transformation.

Selecting seven linear combinations: general idea. We want to select seven linear combina-
tions of the matrix elements in such a way that the multiplication of A and B can be reduced to
multiplying each of seven combinations of elements of A by one of the seven similar combinations
of the elements of B. Let us show how the above symmetries can help in this selection.

Selecting seven linear combinations: first preliminary consideration. A general linear
combination k11 - a11 + ... + koo - asg requires 4 multiplications to compute. Since our goal is to
reduce the overall number of multiplications, we only want linear combinations which do not require
multiplications at all, i.e., linear combinations which can be computed by using only addition and
subtraction.

Since the ultimate goal is to reduce the computation time, we should also minimize the number
of additions and subtractions. It is therefore reasonable to consider only the simplest possible linear
combinations, each of which is either one of the matrix’s elements, or a sum of two elements, or a
difference between two elements.

Selecting seven linear combinations: second preliminary consideration. In linear algebra,
we often need to fictitiously enlarge a matrix to a larger one by adding zeros. This is how, e.g.,
Strassen’s algorithm is used for matrices of size n x n with n # 2*: we add 0’s so that the size
becomes 2%, and then apply Strassen’s method.

In particular, an arbitrary real number a — i.e., a 1 X 1 matrix — can be represented as a 2 X 2
matrix if we just “pad” it with zeros:

a 0
(6 o)

The product of matrices thus obtained from the numbers a and b is exactly the padded number
a - b. Thus, real numbers and their multiplication can be viewed as a degenerate case of matrices.
In this degenerate case, the number is the element a1;.

It is therefore reasonable to require that, first, the value a1; itself be one of the linear combina-
tions, and second, that all other basic linear combinations turn into a,; when the situation becomes
degenerate.

In view of the first preliminary consideration, this second condition means that these combina-

tions are of the type a11 + ai; or a11 — a;j, for some ¢ and j.
Selecting seven linear combinations: actual selection. We have already required that aq;
should be one of these combinations. Since we want the set of all combinations to be permutation-
invariant, the result agy of applying the 1 <> 2 permutation to ai; should also be one of the
combinations. So, we already have two of them:

ail az2- (1)



One of the combinations should include an element a12. Due to the second preliminary considera-
tion, this combination should be either of the type a11 + a2 or a11 —a12. Without losing generality,
we select aj; + a12 (the combination a1y — a9 leads to similar formulas).

Since we require that the set of selected combinations be invariant with respect to both sym-
metries, we conclude that together with this combination, we must have a combination ags + a9
which is obtained from this one by permutation:

a1 + aq2 a9 + ao1,

as well as the combinations which are obtained from these ones by using the second symmetry
(swapping diagonal elements a1; and ag and changing the signs of non-diagonal elements a2 and

a21):
a1l + ag a2 + ao1

(2)

We already have 244 = 6 combinations described by the formulas (1) and (2). To complete our
list of seven combination, we must therefore pick one more. Since the list of combinations must be
invariant, this seventh combination must not change under both transformations. Since the second
transformation changes the sign of non-diagonal elements a15 and as1, this seventh combination
cannot contain these elements; so the desired combination must contain only diagonal elements a1
and age. Thus, this combination is equal either to the sum a17 + ag2 or to the difference a11 — a9
between the diagonal elements. The difference does change under swap, so the only invariant
combination is the sum:

a22 — Q12 a11 — a1

a1 + ag9. (3)

Pairing the combinations: symmetry requirements. This combination should be invariant
under the permutation 7, so if we pair a combination a with a combination b, then the result 7(a)
of applying the 1 <> 2 to a should be paired with 7 (b).

Similarly, this combination should be invariant under the second symmetry A — A,,, so if
we pair a combination ¢ with a combination b, then the A-combination A which is similar to
by, must be paired with the B-combination of which is similar to a,,. (The second symmetry is
slightly more difficult to describe than permutation invariance because for permutation, we have
7(A) - 7(B) = 7(A - B), while for the second symmetry, we have (A - B)~! = B~! - A~! hence
By, -Am=(A-B)y.)

Pairing the combinations: plan. Our seven combinations form three groups: a group of one
(described by the formula (3)), a group of two (described by the formula (1)), and a group of
four (described by the formula (2)). It is natural to start with the smallest group (3), then pair
combinations from the next smallest group (1), and conclude with the pairing for the largest group
(2).

Pairing the combination (3). Let us first find out what is paired with the combination a =
a11 + age. The pairing should be permutation-invariant, so if a is paired with b, then 7(a) should
be paired with 7(b). The combination a11 + ag2 is permutation-invariant (7(a) = a), so if we pair a
with b, we should also pair a with 7(b). Since we want to pair each of the seven A-combinations with
one of the seven similar B-combinations and vice versa, each A-combination gets paired with only
one B-combination. Thus, we must have 7(b) = b. In other words, the paired combination b must
also be permutation-invariant. Among our seven combinations (1)—(3), only one is permutation-
invariant: (3). Thus, the combination ai; 4 ag2 must be paired with the similar combination
b11 + baa. As a result, we get the first product from Strassen’s algorithm:

(@11 + a22) - (b1 + ba2). (4)



Pairing the combinations (1). Now, we go to the next largest group (1). Let us start by deciding
what to pair a1; with. We already used one B-combination, so we can, in principle, pair a1; with
six remaining B-combinations. Which of them should we choose? We can dismiss a pairing of a1;
with byo since the product a1 - b2 does not occur in any of the four elements of the product matrix
cij = a1+ byj + a;o - by; and is, therefore, useless. So, we are left with five pairing possibilities.

Up to now, the selection of combinations and the pairing of combination was uniquely deter-
mined by symmetries. Now is the first time when symmetry is not sufficient. We have to explicitly
mention that only one of the five pairings leads to fast matrix multiplication: the pairing of a1y
with 1)22 — b12:

a1 - (ba2 — b12). (5)
From the viewpoint of simplicity, the fact that we have to use a non-symmetry argument can be
perceived as a negative. The positive side is that this is the only use of non-symmetries in the
selection of pairings; for all other combinations, pairing follows from symmetries. Indeed, due to
permutation-invariance, the result aoo of permuting a1 should be paired with b;; — boy:

az - (b1 — ba1). (6)
Similarly, if we apply the second symmetry to the combination (5), we conclude that the combina-

tion bee (which is the B-analogue of (a11)m, = ag2) should be paired with the combination a11 + a12
— which is the B-analogue of (baa — b12)m = b11 + b12. As a result, we get the following pairing:

(@11 + a12) - boa. (7)
If we apply the second symmetry to the combination (6), we get the pairing
(ag2 + a21) - by1. (8)

Pairing the remaining combinations (2). After the pairing (4)—(8), we have two un-paired
A-combinations asy — a12 and a11 — ag1, and two un-paired B-combinations bi1 + b12 and boo + bo1.
Which should we pair with which? Let us start with finding a pair for a11 — ao1. Pairing this
combination with bos — b1 would be useless, because neither of the four products a11 - bog, a11 - b1,
a1 - bao, and aoq - bey occurs in the definition of any of the four elements of the product matrix.
Thus, we must pair a11 — a1 with biq + bo1:

(@11 — ag1) - (b11 + bay). 9)

Now, we only have one A-combination and one B-combination left, so we must pair them with each
other:

(age — a12) - (ba2 + b12). (10)
Conclusion. We got the formulas (4)—(10) which are exactly Strassen’s formulas.
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