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CHAPTER 10
Aircraft Integrity and Reliability

Carlos Ferregut!, Roberto A. Osegueda’, Yohans Mendoza',
Vladik Kreinovich!, and Timothy J. Ross?

LFAST Center for Structural Integrity of
Aerospace Systems
University of Texas at El Paso
El Paso, TX 79968, USA
contact email: vladik@cs.utep.edu
2Department of Civil Engineering
University of New Mexico
Albuquerque NM 87131-1351, USA
email ross@unm.edu

Abstract. In his recent paper “Probability theory needs an infusion of fuzzy logic
to enhance its ability to deal with real-world problems”, L. A. Zadeh explains that
probability theory needs an infusion of fuzzy logic to enhance its ability to deal
with real-world problems. In this chapter, we give an example of a real-world
problem for which such an infusion is indeed successful: the problems of aircraft
integrity and reliability.

1 Case Study: Aircraft Structural Integrity. For-
mulation of the Problem

1.1 Aerospace Testing: Why

One of the most important characteristics of the plane is its weight: every
pound shaved off the plane means a pound added to the carrying ability of this
plane. As a result, planes are made as light as possible, with their “skin” as thin
as possible. However, the thinner the layer, the more vulnerable is the resulting



structure to stresses and faults, and a flight is a very stressful experience. There-
fore, even minor faults in the plane’s structure, if undetected, can be disastrous. To
avoid possible catastrophic consequences, before the flight, we must thoroughly
check the structural integrity of the plane.

1.2 Aerospace Testing: How

Some faults, like cracks, holes, etc., are external, and can, therefore, be de-
tected during the visual inspection. However, to detect internal cracks, internal
holes, and other internal faults, we must somehow scan the inside of the thin plate
that forms the skin of the plane. This skin is not transparent to light or to other
electromagnetic radiation; very energetic radiation, e.g., X-rays or gamma-rays,
can go through the metal, but it is difficult to use on such a huge object as a modern
plane.

The one thing that easily penetrates the skin is vibration. Therefore, we can
use sound, ultrasound, etc., to detect the faults. Usually, a wave easily glosses
over obstacles whose size is smaller than its wavelength. Therefore, since we want
to detect the smallest possible faults, we must choose the sound waves with the
smallest possible wavelength, i.e., the largest possible frequency. This frequency
is usually higher than the frequencies that we hear, so it corresponds to ultrasound.

Ultrasonic scans are indeed one of the main non-destructive NDE tools; see,
e.g, [Chimenti, 1997], [Clough et al., 1986], [Grabec et al., 1997], [Mal et al.,
1991], [Viktorov, 1967].

1.3 Aerospace Integrity Testing is Very Time-Consuming and
Expensive

One possibility is to have a point-by-point ultrasound testing, the so called
S-scan. This testing detects the exact locations and shapes of all the faults. Its
main drawback, however, is that since we need to cover every point, we get a very
time-consuming (and therefore, very expensive) testing process.

A faster idea is to send waves through the material so that with each mea-
surement, we will be able to test not just a single point, but the entire line between
the transmitter and the receiver. To make this procedure work, we need signals at
special frequencies called Lamb waves.

There are other testing techniques. All these techniques aim at determining
whether there is a fault, and if there are faults, what is the location and the size
of each fault. All these methods require a lot of computation time. How can we



speed up the corresponding data processing?

2 Our Main Idea of Solving the Problem

2.1 Main ldea

The amount of data coming from the ultrasonic test is huge, and processing
this data takes a lot of time. It is therefore desirable to uncover some structure in
the data and to use this structure to speed up the processing of this data.

The first natural idea is to divide the tested structure into pieces and con-
sider these pieces as different clusters. However, physically, the tested piece is a
solid body, so the observed vibrations of different points are highly correlated and
cannot be easily divides into clusters.

Instead of division in the original space, we propose to make a division,
crudely speaking, in frequency domain, i.e., a division into separate different vi-
bration modes.

For each vibration mode, we can estimate the energy density at each point;
if this measured energy density is higher than in the original (undisturbed) state,
this is a good indication that a fault may be located at this point. The larger the
increase in energy density, the larger the probability of a fault. After we get the
probabilities related to different modes, we must combine them into an overall
probability of having a fault at this particular point.

2.2 Steps Necessary for Implementing the Main Idea

So, our idea leads to following steps:

o first, we must be able to transform the information about the excess energy
of each mode at different point into the probabilities of having a fault at the
corresponding point;

e second, for each point, we must combine the probabilities coming from
different modes into a single probability of a fault.

To make the first step more accurate, we should take into consideration not only
the value of the excess energy, but also the value of the original mode-related
energy. For example, if the original energy at some point is 0, this means that the
vibrations corresponding to this mode have zero amplitude at this point; in other
words, this mode does not affect our point at all and therefore, cannot give us any



information about the faults at this point. Similarly, points with small mode energy
can give little information about the presence of the fault. So, when computing the
probability of a fault in different points based on different modes, we must take
into consideration not only the excess energy, but also the original mode energy at
this point.

To apply our idea, we must know:

¢ the function which transforms the value of the excess energy (and of the
original mode energy) into the probability of a fault, and

¢ the combination function which transforms probabilities coming from dif-
ferent modes into a single probability.

2.3 We Do Not Have Sufficient Statistical Data, So We Must
Use Expert Estimates

Ideally, we should get all these probability functions from the experiments;
however, in real-life, we do not have enough statistics to get reliable estimates for
probabilities; we have to complement the statistics with expert estimates. In other
words, we must use intelligent methods for non-destructive testing as described,
e.g., in [Ferregut et al., 1997].

2.4 Soft Computing

One of the most natural formalisms for describing expert estimates is fuzzy
theory, which together with neural networks, genetic algorithms, simulated an-
nealing, etc., form a combined intelligent methodology called soft computing.
Therefore, in our chapter, we will be using methods of soft computing (including
fuzzy).

2.5 The Choice of Transformation and Combination Functions
is Very Important

The quality of fault detection essentially depend on the choice of these meth-
ods:

o for some choices of a transformation function and of a combination method,
we get a very good fault detection,

o while for others, the quality of detection is much worse.



It is therefore desirable to find the optimal transformation and combination func-
tions.

2.6 How Can We Solve the Corresponding Optimization Prob-
lem

This optimization problem is very hard, for two reasons:

o first, due to the presence of expert uncertainty, it is difficult to formulate this
problem as a precise mathematical optimization problem;

e second, even when we succeed in formalizing this problem, it is usually a
complicated non-linear optimization problem which is extremely difficult
to solve by using traditional optimization techniques.

In our previous work (see, e.g., [Nguyen et al., 1997]), we have developed a gen-
eral methodology for finding the optimal uncertainty representation. In this paper,
we show how this general methodology can be used to find the optimal uncertainty
representations for this particular problem. Namely:

o the problem of assigning probability to excess energy is solved similarly to
problem of finding the best simulated annealing technique, and

o the problem of finding the best approximation to the probability of detection
(POD) curve (describing the dependence of probability of detection on the
mode energy, see [Barbier et al., 1993], [Gros 1997], [Hovey et al., 1988])
is solved similarly to the problem of finding the best activation function in
neural networks.

¢ we also have a solution to the probability combination problem; it turns out
that under certain reasonable conditions, probability combination methods
can be described by so-called Frank’s t-norms; this problem is solved using
fuzzy techniques.

The results of this chapter have been partly published in conference proceedings
[Koshelevaetal., 1999], [Krishna et al., 1999], [Osegueda, Mendoza, et al., 1999],
[Ross et al., 1999], [Yam et al., 1999].



3 How to Determine Probabilities From Observed
Values of Excess Energy: Optimal Way (Use of
Simulated Annealing)

3.1 An Expression For Probabilities

For every point z, we estimate the value of the excess energy J(z) at this
point. We want to transform these values into the probabilities p(z) that different
points contain the fault.

The larger the value of J(z), the more probable it is that the point z contains
a fault, i.e., the larger the value p(z). So, a natural first guess would be to take
p(z) = f(J(z)) for some increasing function f(z).

However, this simple first guess does not work: In many applications, there
is usually only one fault. As a result, the total probability Zp(x) that a fault is

T

located somewhere should be equal to 1. If we simply take p(z) = f(J(z)), then
this condition is not satisfied. In order to satisfy this condition, we must normalize
the values f(J(z)), i.e., consider the probabilities

p(z) = L@ (1)

S W)

Which function f(z) should we choose? This question is very important, because
numerical experiments show that different choices lead to drastically different ef-
ficiency of the resulting method; so, to increase detection rate, we would like to
choose the best possible function f(z).

3.2 Best In What Sense?

What do we mean by “the best”? It is not so difficult to come up with differ-
ent criteria for choosing a function f(z):

¢ We may want to choose the function f(z) for which the resulting fault loca-
tion error is, on average, the smallest possible P(f) — min (i.e., for which
the quality of the answer is, on average, the best).

e We may also want to choose the function f(z) for which the average com-
putation time C'(f) is the smallest (average in the same of some reasonable
probability distribution on the set of all problems).



At first glance, the situation seems hopeless: we cannot estimate these numer-
ical criteria even for a single function f(z), so it may look like we therefore
cannot undertake an even more ambitious task of finding the optimal function
f(2). Hopefully, the situation is not as hopeless as it may seem, because there
is a symmetry-based formalism (actively used in the foundations of fuzzy, neural,
genetic computations, see, e.g., [Nguyen et al., 1997]) which will enable us to find
the optimal function f(z) for our situation too. (Our application will be mathe-
matically similar to the optimal choice of a non-linear scaling function in genetic
algorithms [Kreinovich et al., 1993], [Nguyen et al., 1997].)

Before we make a formal definition, let us make two comments.

The first comment is that our goal is to find probabilities. Probabilities are al-
ways non-negative numbers, so the function f(z) must also take only non-negative
values.

The second comment is that all we want from the function f(z) is the prob-
abilities. These probabilities are computed according to the formula (1). From
this expression (1), one can easily see that if we multiply all the values of this
function f(z) by an arbitrary constant C, i.e., if we consider a new function
f(z) = C - f(2), then this new function will lead (after the normalization in-
volved in (1)), to exactly the same values of the probabilities. Thus, whether we
choose f(z) or f(z) = C - f(z), does not matter. So, what we are really choosing
is not a single function f(z), but a family of functions {C - f(z)} (characterized
by a parameter C' > 0).

In the following text, we will denote families of functions by capital letters,
suchas F, F', G, etc.

3.3 An Optimality Criterion Can Be Non-Numeric

Traditionally, optimality criteria are numerical, i.e., to every family F', we
assign some value J(F') expressing its quality, and choose a family for which
this value is minimal (i.e., when J(F) < J(G) for every other alternative G).
However, it is not necessary to restrict ourselves to such numeric criteria only.

For example, if we have several different families F' that have the same av-
erage location error P(F'), we can choose between them the one that has the
minimal computational time C'(F"). In this case, the actual criterion that we use to
compare two families is not numeric, but more complicated: A family F} is better
than the family F if and only if either P(Fy) < P(Fy), or P(Fy) = P(F3) and
C(F1) < C(F3).



The only thing that a criterion must do is to allow us, for every pair of families
(F1, F»), to make one of the following conclusions:

e the first family is better with respect to this criterion (we’ll denote it by
Fy = Fy,or F» < Fy);

o with respect to the given criterion, the second family is better (F» > F1);

e with respect to this criterion, the two families have the same quality (we’ll
denote it by Fy ~ Fy);

e this criterion does not allow us to compare the two families.

Of course, it is necessary to demand that these choices be consistent. For example,
if 1 = Fyand Fy > F3 then Fy > F3.

3.4 Optimality Criterion Must Be Final

A natural demand is that this criterion must choose a unique optimal family
(i.e., a family that is better with respect to this criterion than any other family).
The reason for this demand is very simple.

If a criterion does not choose any family at all, then it is of no use.

If several different families are the best according to this criterion, then we
still have the problem of choosing the best among them. Therefore we need
some additional criterion for that choice, like in the above example: If several
families Fy, F>, ... turn out to have the same average location error (P(F}) =
P(F,) = ...), we can choose among them a family with minimal computation
time (C(F;) — min).

So what we actually do in this case is abandon that criterion for which there
were several “best” families, and consider a new “composite” criterion instead: F}
is better than F» according to this new criterion if either it was better according to
the old criterion, or they had the same quality according to the old criterion and
Fy is better than F5 according to the additional criterion.

In other words, if a criterion does not allow us to choose a unique best family,
it means that this criterion is not final, we’ll have to modify it until we come to a
final criterion that will have that property.



3.5 The Criterion Must Not Change If We Change the Mea-
suring Unit for Energy

The exact mathematical form of a function f(z) depends on the exact choice
of units for measuring the excess energy z = J(z). If we replace this unit by a
new unit that is A times larger, then the same physical value that was previously
described by a numerical value J(z) will now be described, in the new units, by a
new numerical value f(x) = J(z)/\

How will the expression for f(z) change if we use the new units? In terms
of J(z), we have J(z) = A- J(z). Thus, if we change the measuring unit for
energy, the same probabilities p(z) ~ f(J(x)) that was originally represented by
a function f(z), will be described, in the new units, as p(z) ~ f(A- J(z)),ie.,as

p(z) ~ J(J(z)), where f(z) = f(\-2).

There is no reason why one choice of unit should be preferable to the other.
Therefore, it is reasonable to assume that the relative quality of different families
should not change if we simply change the units, i.e., if the family F" is better than
a family G, then the transformed family F’ should also be better than the family G.

We are now ready for the formal definitions.

3.6 Definitions and the Main Result

Definition 1. Let f(z) be a differentiable strictly increasing function from real
numbers to non-negative real numbers. By a family that corresponds to this func-
tion f(z), we mean a family of all functions of the type f(z) = C - f(z), where
C > 0 is an arbitrary positive real number. (Two families are considered equal if
they coincide, i.e., consist of the same functions.)

In the following text, we will denote the set of all possible families by ®.

Definition 2. By an optimality criterion, we mean a consistent pair (<, ~) of
relations on the set ® of all alternatives which satisfies the following conditions,
forevery F,G,H € ®:

(1) ifF < GandG < HthenF < H;

() F
(3) lfF GthenG F;

(4) if F ~GandG ~ H then F ~ H;
(5) ifF <GandG ~ H thenF < H;
(6) if F~GandG < H thenF < H;
(M) IfF <GthenG A FandF +G.



Comment. The intended meaning of these relations is as follows:
e F' < (G means that with respect to a given criterion, G is better than F;

e F' ~ @ means that with respect to a given criterion, F' and G are of the
same quality.

Under this interpretation, conditions (1)—(7) have simple intuitive meaning; e.g.,
(1) means that if G is better than F', and H is better than G, then H is better
than F'.

Definition 3.

o We say that an alternative F' is optimal (or best) with respect to a criterion
(=, ~) if for every other alternative G either F' = G or F' ~ G.

o We say that a criterion is final if there exists an optimal alternative, and this
optimal alternative is unique.

Definition 4. Let A > 0 be a positive real number.

e By a \-rescaling of a function f(x) we mean a function f(z) = f(\ - z).

e By a \-rescaling Ry (F) of a family of functions F' we mean the family
consisting of X-rescalings of all functions from F'.

Definition 5. We say that an optimality criterion on ® is unit-invariant if for every
two families F' and G and for every number A > 0, the following two conditions
are true:

i) if F' is better than G in the sense of this criterion (i.e., F' = G), then
R\(F) > RA(G),

i) if F is equivalent to G in the sense of this criterion (i.e., F ~ G), then
RA(F) ~ RA(G).

Theorem 1. If a family F is optimal in the sense of some optimality criterion that
is final and unit-invariant, then every function f(z) from this family F' has the
form C - z* for some real numbers C' and a.

Comment. Experiments show that for non-destructive testing, the best choice is
ar~1.
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4 How to Determine the Probability of Detection
(POD): Optimal Way (Use of Neural Networks)

In the previous section, we assumed that the probability of having a fault at a
certain point 2 depends only on the value of the excess energy J(z) at this point
x. This assumption, however, is not always true. For example, if at some point
z, the energy E(z) of the original (no-fault) vibration mode is equal to 0, this
means that this point does not participate in this vibration mode at all; therefore,
from observing this vibration mode, we cannot deduce whether there is a fault at
this point or not. Similarly, if the strain energy E(x) is small, this means that this
point z is barely moving and hardly participating in the vibration. Therefore, this
vibration mode is barely affected by the presence or absence of the fault at this
point.

With this in mind, we can say that the probability p(x) which we described
in the previous section is not the “absolute” probabilities of a fault at a point
x based on this mode, but rather a conditional probability that there is fault
P(fault|C) — under the condition C' that the analysis of this mode can detect
a fault at a point z. The actual probability P(fault) of detecting a fault from
the measurements related to this mode can be therefore computed as a product
P(fault) = P(fault|C) - P(C).

We already know how to compute P(fault|C)). Therefore, to compute the
desired probability P(fault), we must find the probability P(C') that the analysis
of this mode can detect a fault at a given point z. We have already mentioned that
this detection probability depends on the energy E(x) of the original vibration
mode at the point z: P(fault) = p(E(x)): if E = 0, then p(E) = 0; if E is
small, then p(E) is small; if E is large enough, then p(E) is close to 1. Let us
describe this Probability of Detection (POD) dependence p(E).

Our application will be mathematically similar to the optimal choice of an
activation function in neural networks [Nguyen et al., 1997].)

4.1 The POD Function Must Be Smooth and Monotonic

If we change the energy E slightly, the probability p(E) of detecting the fault
should not change drastically. Thus, we expect the dependency p(E) to be smooth
(differentiable).

For a POD function, the probability of detection should be equal to 0 when
the point is not affected by the vibration (£ = 0) and should be equal to 1 when the
point is highly affected (E — oc). The larger the energy E, the more probable
it is that we will be able to find the fault; thus, the dependence p(E) should be

11



monotonic.

4.2  We Must Choose a Family of Functions, Not a Single Func-
tion

For practical applications, we need the function p(E) which would determine
the probability that if a point with an energy E is presented to a certain NDE
technique, then the corresponding fault will be detected. In order to determine this
function empirically, we must have a statistics of samples which were presented
to this techniques and for which, later on, the fault was discovered; from this
statistics, we can determine the desired probability.

This probability, however, depends on how we select the samples presented
to the NDE techniques. For example, most structures are inspected visually before
using a more complicated NDE technology. Some aerospace structures are easier
to inspect visually, so we can detect more faults visually, and only harder-than-
usual faults are presented to the NDE technique; as a result of this pre-selection,
for such structures, the success probability p( E) is lower than in other cases. Other
structures are more difficult to inspect visually; for these structures, all the faults
(including easy-to-detect ones) are presented to the NDE techniques, and the suc-
cess probabilities p(E) will be higher.

In view of this pre-selection, for one and the same NDE technique we may
have different POD functions depending on which structures we apply it to. So,
instead of looking for a single function p(E), we should look for a family of POD
functions which correspond to different pre-selections.

How are different functions from this family related to each other? Pre-
selection means, in effect, that we are moving from the original unconditional
detection probability to the conditional probability, under the condition that this
particular sample has been pre-selected. In statistics, the transformation from an
unconditional probability Py(H;) of a certain hypothesis H; to its conditional
probability P(H;|S) (under the condition S that a sample was pre-selected) is
described by the Bayes formula

_ P(S|H) - Py(Hy)
P(H,|S) = Ej P(S|HJ) ‘OP()(HJ').

In mathematical terms, the transformation from p(E) = Po(H;) to p(E) =

P(H;|S) is fractionally linear, i.e., has the form p(E) — p(E)
where

_key+l
o) =y

for some real numbers &, I, m, and n. So, instead of looking for a single function
p(E), we should look for a family of functions {p(p(E))}, where p(E) is a fixed

12



function and ¢ (y) are different fractionally linear transformations. In the follow-
ing text, when we say “a family of functions”, we will mean a family of this very

type.

Similarly to the previous section, we are looking for a family which is opti-
mal with respect to some final optimality criterion, and it is reasonable to require
that this criterion should not change if we change the measuring unit for energy.
Thus, we arrive at the following definitions:

4.3 Definition and the Main Result

Definition 6.

e By a probability function, we mean a smooth monotonic function p(E) de-
fined for all E > 0 for which p(0) =0 and p(E) — 1 as E — oc.

e By afamily of functions we mean the set of functions that is obtained from
a probability function p(E) by applying fractionally linear transformations.

Theorem 2. If a family F' is optimal in the sense of some optimality criterion that
is final and unit-invariant, then every function p from the family F' is equal to

A-EF

p(E) = m (2)

for some A and 8 > 0.

5 How To Combine Probabilities (Use Of Fuzzy
Techniques)

Based on the formulas given in the previous two sections, we can determine, for
each point 2 and for each mode 4, the probability p;(z) that, based on this mode,
there is a fault at this point z. Since there are several modes, we must therefore
combine, for each point z, these probabilities p;(x) into a single probability p(z)
that there is a fault structure at this point. In this section, we show how different
techniques can help to find the best combination.

13



5.1 Traditional Probabilistic Approach: Maximum Entropy

For each point z, after we get the probabilities p;(z) (1 < ¢ < n) that
this point has a fault in it, we must combine these n probabilities into a single
probability p(z) that there is a fault. A fault is there if it is detected by one of the
modes, i.e., if it is detected by the 1-st mode, or detected by the 2-nd mode, etc. In
other words, if p;(x) is a probability of the event D; “a fault at point x is detected
by i-th mode”, then p(x) is the probability of the disjunction D, V ...V D,,.

In general, if we only know the probabilities of events D;, then it is not
possible to uniquely determine the probability of the disjunction; to select a unique
probability, we use a maximum entropy approach. The idea of this approach is as
follows: to find the probabilities of all possible logical combinations of the events
D;, it is sufficient to determine the probabilities of all 2™ events W of the type
D& ...&Déem, wheree; € {—,+}, D} means D;, and D;” means its negation
—-D;. So, we must determine the probabilities p(W) so that Y p(W) = 1, and
for every 4, the sum of p(W) for all events for which D; is true is equal to p;(z).
There are many distribution of this type; we select the one for which the entropy
— > p(W) - log(p(W)) takes the largest possible value.

For this distribution, the desired probability of the disjunction is equal to

n

p(z) =1 - [J (1 - pi(2)) (see, e.g., [Kreinovich et al., 1996]).

i=1

5.2 Traditional Approach Is Not Always Sufficient

From the statistical viewpoint, the MaxEnt formula corresponds to the case
in which all modes are statistically independent. In reality, the detection errors
in different modes can be caused by the same cause and therefore, these are not
necessarily independent.

If we knew the correlation between these errors, then we could use traditional
statistical methods to combine the probabilities p;(x). In reality, however, we typ-
ically do not have sufficient information about the correlation between the compo-
nents. So, we need to find a new method of fusing probabilities p; (z), . . . , pn(z)
corresponding to different modes.

5.3 Main ldea: Describe General Combination Operations

We must choose a method for combining probabilities. In mathemati-
cal terms, we must describe, for every n, a function, which, takes n numbers

14



Di,---,pn € [0,1] as inputs and returns the “fused” (combined) probability
fn(pla e 5p'n)'

This description if further complicated by the fact that the division into modes
is rather subjective; e.g., for three close modes, we can

e either divide the vibration into these three modes 1, 2, and 3;

e or divide the vibration into two mode 3 and a “macromode” {1, 2} combin-
ing modes 1 and 2,

e ordivide itinto 1 and {2, 3}.

Depending on the division, we get different expressions for the resulting proba-
bility:

o If we divide the vibration into three modes, the resulting probability is p =
f3(p1,p2,p3).

o If we divide the vibration into two macromodes {1, 2} and 3, then for the
first macromode, we get p12 = fa(p1,p2), and thus, p = fa(pi2,p3) =
f2(f2(p1,p2),p3).

o Similarly, if we divide the vibration into two macromodes 1 and {2, 3},
then for the second macromode, we get pas = fa(p2,ps3), and thus, p =

fa(p1,p23) = fo(p1, f2(p2,p3)).

The resulting probability should not depend on the (subjective) subdivision into

modes. As a result, we should get f3(p17p27p3) = f?(f?(p17p2)7p3) =
f2(p1, f2(p2,p3)). In other words, we can make two conclusions:

e First, the combination function for arbitrary n > 2 can be expressed
in terms of a combination function corresponding to n = 2, as

In(p1,--pn) = fo(p1, fa(p2,- -5 f2(Pr1,Pn) - - )

e Second, the function fo which describes the combination of two proba-
bilities should be associative (i.e., f2(a, f2(b,¢)) = f2(f2(a,b),c) for all
a,b,c € [0,1]).

Associativity is a reasonably strong property, but associativity alone is not suffi-
cient to determine the operation f2(a, b), because there are many different asso-
ciate combination operations. Hopefully, there is another property which we can
use. To describe this property, let us recall that for fault detection, the function
f2(p1,p2) has the following meaning:

e p; is the probability P(D,) of the event D, defined as “the first mode de-
tected a fault”;

e po is the probability P(D,) of the event D, defined as “the second mode
detected a fault”; and
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e fa(p1,p2) is the probability P(D; Vv D,) that one of the two modes detected
a fault.

So far, our main goal was to detect a fault; this problem is difficult because faults
are small and therefore, they only show up on one of the modes. Different faults
present different danger to the aerospace structure: small fault can be potentially
dangerous, but if they are small enough they may not require grounding the plane.
On the other hand, large faults are definitely dangerous. Therefore, in addition to
detecting all the faults, we would like to know which of them are large (if any).
A large fault is probably causing strong changes in all vibration modes. Thus,
we can expect a large fault if we have detected a fault in all the modes. In other
words, in this problem, we are interested in the value P(D1&D,). From the
probability theory, we know that P(D1&D2) = P(D1) + P(D2) — P(D1 V D5),
i.e., P(D1&D3) = p1 + p2 — fa(p1,p2). We can describe this expression as
P(D1V D3) = g2(p1,p2), Where g2(a,b) = a+ b — fa(a,b).

Similar to the case of “or”-combination of different components, we can de-
scribe the probability P(D;& D2& D3) (that all three modes detect a fault) in two
different ways:

e eitheras P((D1&D»)&D3) = g2(g2(p1,p2),p3),
e oras P(D1&(D2&Ds)) = g2(92(p1,p2), p3).

The expression for P(D1&D-& D3) should not depend on how we compute it,
and therefore, we should have g>(g2(p1, p2),p3) = g2(p1,92(p2,p3)). In other
words, not only the function f2(a, b) should be associative, but also the function
g2(a,b) = a+ b — f(a,b) should be associative.

5.4 The Notions of T-Norms and T-Conorms

In the above text, we described everything in terms of combining probabili-
ties. However, from the mathematical viewpoint, the resulting requirements were
exactly the requirements traditionally used for combining membership values in
fuzzy approach (see, e.g., [Klir Yuan, 1995], [Nguyen et al., 1999]):

e The function f>(p1, p2) which describes the degree of truth of the statement
D, V D, provided that we know the degrees of truth for statement Dy and
D5, is a t-conorm.

e The function g2 (p1, p2) which describes the degree of truth of the statement
D& Ds, provided that we know the degrees of truth for statement D, and
D», is at-norm.
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5.5 Main Result: Frank’s T-Norms

Functions f(a,b) for which both the function itself and the expression
g(a,b) = a + b — f(a,b) are associative have been classified in [Frank, 1979].
These functions (called Frank’s t-conorms) are described by a formula

(s'7 — i);(fl_b - 1)] 7

f2(a,b) =1 —log, [1 +

the corresponding t-norms are:

(s@—l)-(sb—l)],

la) = log, |1+ =)0

for some constant s. As a particular case of this general formula, we get the
expression1 — (1 —a) - (1 —b) (fors — 1).

Thus, to combine the probabilities p;(x) coming from different modes, we
should use Frank’s t-conorms.

Comment. Fuzzy techniques have been successfully used in nondestructive testing
in particular (for a latest survey, see, e.g., [Ferregut et al. 1997]) and in damage
assessment in general (see, e.g., [Terano et al., 1987], [Ulieru et al., 1993]).

The fact that for probabilistic data, we get similar formulas, makes us hope
that this algebraic approach will be able to combine probabilistic and fuzzy data.

6 Preliminary Results

As a case study, we applied the new method to the problem of non-destructive
evaluation of structural integrity of Space Shuttle’s vertical stabilizer. To prove
the applicability of our method, we applied this techniques to measurement results
for pieces with known fault locations.

The value s was determined experimentally so as to achieve the best perfor-
mance; it turned out that the best value is s ~ 1 (corresponding to the independent
modes). For this value s, our method detected all the faults in ~ 70% of the cases,
much larger proportion than with any previously known techniques (for details,
see [Andre, 1999], [Osegueda, Revilla, 1999], [Pereyra et al., 1999], [Stubbs et
al., 1998]).

For other values of s, we got an even better detection, but at the expense of
false alarms.

17



We are currently trying different data fusion techniques (as described, e.g.,
in [Gros, 1997]) to further improve the method’s performance.

7 Alternative Approach to Fusing Probabilities:
Fuzzy Rules

7.1 Main Problems with the Above Approach

There are two main problems with the above approach:

o first, due to the fact that we used several different (and reasonably com-
plicated) formalisms, the resulting computational models are rather time-
consuming and not very intuitive;

e second, although we got better fault detection that all previously known
methods, but there is a still quite some room for improvement.

7.2 The Use of Fuzzy Rules

The main problem we face is the problem of complexity of the computa-
tional models we use. Complex models are justified in such areas as fundamental
physics, when simpler first approximation models have been tried and turned out
not exactly adequate. However, in our case, the computational models are chosen
not because simpler models have been tried, but because these complex models
were the only ones which we could find which fit our data and are consistent with
the expert knowledge.

The very fact that a large part of our knowledge comes from expert esti-
mates, which have a high level of uncertainty, makes us believe that within this
uncertainty, we can find simpler computational models which will work equally
well. How can we find such models?

A similar situation, when unnecessarily complex models were produced by
the existing techniques, started the field of fuzzy logic. Namely, L. Zadeh pro-
posed to use, instead of traditional analytical models, new simplified models based
on the direct formalization of expert’s knowledge.

In view of the success of fuzzy techniques, it is reasonable to use a similar
approach in fault detection as well. Let us first describe the corresponding rules.
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7.3 Expert Rules for Fault Detection

For each location, as a result of the measurements, we get five different values
of the excess energy F1, . .., E5 which correspond to 5 different modes. An expert
can look at these values and tell whether we have a definite fault here, or a fault
with a certain degree of certainty, or definitely no fault at all.

Before we formulate the expert rules, we should note that for each node,
the absolute values of excess energy are not that characteristic because, e.g., a
slight increase or decrease in the original activation can increase or decrease all the
values of the excess energy, while the fault locations remain the same. Therefore,
it is more reasonable to look at relative values of the excess energy. Namely,
for each mode 4, we compute the mean square average o; of all the values, and
then divide all values of the excess energy by this means square value to get the
corresponding relative value of the excess energy z; = J;/o;.

In accordance with the standard fuzzy logic methodology, we would like to
describe some of these values as “small positive” (S P), some as “large positive”
(LP), etc. To formalize these notions, we must describe the corresponding mem-
bership functions pusp(z) and urp(z).

Some intuition about the values z; comes from the simplified situation in
which the values of excess energy .J; are random, following a normal distribution
with 0 average. In this simplified situation, the mean square value ¢; is (practi-
cally) equal to the standard deviation of this distribution. For normal distributions,
deviations which exceed 20; are rare and are therefore usually considered to be
definitely large; on the hand, deviations which are smaller than the average o;
are, naturally, definitely small. Deviations J; > 20; correspond to the values
x; = J;/o; > 2, and deviations J; < o; correspond to z; = J;/o; < 1. There-
fore, can conclude that values z; > 2 are definitely large, and positive values
x; < 1 are definitely small.

So, for the fuzzy notion “small”, we know that:

e values from O to 1 are definitely small, i.e., usp(z;) = 1 for these values,
and

e values 2 and larger are definitely not small, i.e., usp(z;) = 0 for these
values.

These formulas determine the value of the membership function for all positive
values of z;, except for the values from 1 to 2. In accordance with the standard
fuzzy techniques, we use the simplest — linear — interpolation to define usp(z;)
for values from this interval, i.e., we take usp(z;) = 2 — z; forz; € [1,2].

Similarly, we define the membership function for “large” as follows:
/,LLP(.’E,') =0forz; € [0, 1], [I,LP(J?,') =g; —1forz; € [1, 2], and /},Lp(xi) =1
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forz; > 2.

Similarly, we describe the membership functions corresponding to “small
negative” (SN) and “large negative” (LN): in precise terms, for z; < 0, we set
psn (z:) = psp(|zi]) and pon (@) = pre(|zi).

This takes care of fuzzy terms used in the condition of expert rules. To de-
scribe the conclusion, we determined that experts use 5 different levels of cer-
tainty, from level 1 to level 5 (absolute certainty). We can identify these levels
with numbers from 0.2 to 1.

Now, we are ready to describe the rules.

1. If the “total” excess energy x1 + . . . + x5 attains its largest possible value,
or is close to the largest possible value (by < 0.06), then we definitely have a fault
at this location (this conclusion corresponds to level 5).

2. Ifall 5 modes show increase, then we have a level 4 certainty that there is
a fault at this location.

3. If 4 modes show increase, and one mode shows small or large decrease,
then level 4.

4. If 3 modes show increase and 2 show small decreases then level 4.

5. If 3 modes show increase, and we have either 1 small and 1 large decrease,
or 2 large decreases, then level 3.

6. If 2 modes show large increase and 3 modes show small decrease, then
level 3.

7. If2 modes show large increase, 1 or 2 modes show large decrease, and the
rest show decrease, then level 2.

8. If1 mode shows large increase, 1 mode shows small increase, and 3 modes
show small decrease, then level 2.

9. In all other cases, level 1.

7.4 The Problem With This Rule Base and How We Solve It

The technique of fuzzy modeling and fuzzy control enables us to translate
rule bases (like the one above) into an algorithm which transforms the inputs
z1,--.,T, iNto a (defuzzified) value of the output y. In principle, we can ap-
ply this technique to our rule base, but the problem is that we will need too many
rules. Indeed, standard rules are based on the conditions like “if 21 is A4, ...,
and z,, is A, theny is B”. In our case, we have 5 input variables, each of which
can take 4 different fuzzy values (LN, SN, SP, and LP). So, to describe all
possible combinations of inputs, we must use 4° = 1,024 rules. It is doable, but
it is definitely not the simplification for which we were looking.

To decrease the number of the resulting rules, we can use the fact that all
the rules do not distinguish between different modes. Therefore, if we permute
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the values z; (e.g., swap the values z; and z2), the expert’s conclusion will not
change. Hence, instead of considering all possible combinations of x;, we can first
apply some permutation to decrease the number of possible combinations. One
such permutation is sorting the values of z;, i.e., re-ordering these values in the
decreasing order. Let us show that if we apply the rules to thus re-ordered values,
then we can indeed drastically decrease the number of resulting fuzzy rules.

Let y; > yo ... > ys denote the values x4, .. ., x5 re-ordered in decreasing
order. Let us show how, e.g., Rules 2, 3, and 4 from the above rule base can be
reformulated in terms of these new values y;:

Rule 2. To say that all five values x; are positive is the same as to say that the
smallest of these values is positive, so the condition of Rule 2 can be reformulated
asys > 0.

Rule 3. When 4 modes are positive and the fifth is negative, it means that
yg > 0and ys < 0.

We can notice that since Rules 2 and 3 have the same conclusion, they can be
combined into a single rule with a new (even simpler) condition y, > 0. (Indeed,
we either have y5 > 0 and y5 < 0; if y4 > 0 and y5 > 0, then the conclusion is
true because of Rule 2; if y, > 0 and y5 < 0, then the conclusion is true because
of Rule 3.)

Rule 4. Similarly, its condition can be reformulated as y3 > 0, y4 is SN, and
Ys isSN.

As a result, we get the following new (simplified) rule base:
1. If the “total” excess energy y, + . . . + ys attains its largest possible value,
or is close to the largest possible value (by < 0.06), then level 5.
2. Ifyq > 0, then level 4.
Afys > 0,y4 is SN, and ys is SN, then level 4.
Afys > 0,y4 <0, andys is LN, then level 3.
Afys isLP,ys < 0,andys is SN, then level 3.
.Ifys isLP,ys < 0,andys is LN, then level 2.
Afy, iSLP,ys is SP,y3 < 0,y4 iSSN, andys is LN, then level 2.
. In all other cases, level 1.

Q0 3 O U i W

To transform these fuzzy rules into a precise algorithm, we must select
a fuzzy “and”-operation (t-norm) and a fuzzy “or”-operation (t-conorm), e.g.,
min(a,b) and max(a,b), and a defuzzification; in this paper, we use centroid
defuzzification.

For each rule (except for the last one), we can compute the degree of sat-
isfaction for each of the conditions. The rule is applicable if its first condition
holds, and the second condition holds, etc. So, to find the degree with which the
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rule is applicable, we apply the chosen “and”-operation to the degrees with which
different conditions of this rule hold.

For each level > 1, we have two rules leading to this level. The correspond-
ing degree of certainty is achieved if either the first or the second of these rules
is applicable. Therefore, to find a degree to which this level is justified, we must
apply the chosen “or”-operation to the degrees to which these two rules are appli-
cable.

As aresult, we get the degrees d(l) with which we can justify levels = 2+5.
Since the last rule (about level 1) says that this rule is applicable when no other
rule applies, we can compute d(1) as 1 — d(2) — ... — d(5). Now, centroid
defuzzification leads to the resulting certainty 1 -d(1) + 2-d(2) + ... + 5 - d(5).
This is the value that the system outputs as the degree of certainty (ona 1 to 5
scale) that there is a fault at a given location.

7.5 Experimental Results

We have applied the resulting fuzzy model to the beams with known fault
locations. The results are as follows:

When there is only one fault, this fault can be determined as the location
where the degree of certainty attains its largest value 5. This criterion leads to a
perfect fault localization, with no false positives and no false negatives.

When there are several faults, all the faults correspond to locations with de-
gree 4 or larger. This criterion is not perfect; it avoids the most dangerous errors
of false negatives (i.e., all the faults are detected), but it has false positives, i.e.,
sometimes faults are wrongly indicated in the areas where there are none.

To make the fuzzy algorithm better, we take into consideration that the vibra-
tion corresponding to each mode has points in which the amplitude of this vibra-
tion is 0. The corresponding locations are not affected by this mode and therefore,
the corresponding excess energy values cannot tell anything about the presence or
absence of a fault. Therefore, it makes sense to only consider those values x; for
which the corresponding mode energy is at least, say, 10% of its maximum. If we
thus restrict the values z;, then the number of false positives decreases.

Similar results fold for 2D cases.

We tried different t-norms and t-conorms. So far, we have not found a statisti-
cally significant difference between the results obtained by using different t-norms
and t-conorms; therefore, we recommend to use the simplest possible operations:
min(a, b) and max(a, b).
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8 Applicationsto Aircraft Reliability

A similar approach works not only for fault detection, but also for another impor-
tant problem — reliability.

8.1 Reliability: General Problem

A typical system (e.g., an airplane) consists of several heterogeneous compo-
nents. For a system to function normally, it is important that all these components
function well.

For example, for an airplane to function normally, it is important that its
structural integrity is intact, that its engines are functioning normally, that its
communication system is functioning OK, and that the controlling software
is functioning well.

The reliability of each component is normally analyzed by different engi-
neering disciplines which use slightly different techniques. As a result of this
analysis, we get the probabilities f; of each component’s failure (or, equivalently,
the probability p; = 1 — f; that ¢-th component functions correctly). To estimates
the reliability of the entire system, we must combine these probabilities that each
component functions correctly into a single probability p that the whole systems
functions correctly.

8.2 Traditional Approach to Reliability

The simplest case typically covered by statistical textbooks is when all com-
ponents are independent. In this case, for reliability, the probability p of the sys-
tem’s correct functioning is equal to the product of the correctness probabilities
for components:

bPp=p1-... Pn.

Another case with known answer is when all failures are caused by one and
the same cause (case of full correlation). In this case, the failure probability is de-
termined by its weakest link, so f = max(f1, ..., fn) and p = min(py, . .., pn)-
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8.3 Traditional Approach is Not Always Sufficient: a Problem

Most real-world situations lie in between these two extremes (see, e.g., [Pet-
roski, 1994], [Ross, 1998]):

e components are not completely independent (e.g., a structural fault can also
damage sensors and thus, computational ability suffers), but

e components are not fully correlated.

Typically, we do not have sufficient information about the correlation be-
tween the components.

8.4 Proposed Approach to Fusing Probabilities: Main Idea

We must choose a method for combining probabilities. In mathemati-
cal terms, we must describe, for every n, a function, which, takes n numbers
Di,---,Pn € [0,1] as inputs and returns the “fused” (combined) probability

fn(pla tee ;pn)-

Similarly to modes, the division into components is rather subjective; e.g.,
for three components, we can

o either divide the system into these three subsystems 1, 2, and 3;
e or divide the system into two “macrocomponents” {1, 2} and 3,
e ordivideitinto 1 and {2,3}.
Depending on the division, we get different expressions for the resulting proba-
bility:
o If we divide the system into three components, the resulting probability is
p = f3(p1,p2,p3).

e If we divide the system into two macrocomponents {1, 2} and 3, then for
the first macrocomponent, we get p12 = f2(p1,p2), and thus, for a system

asawhole, p = fa(p12,p3) = fo(fo(p1,p2),D3).

e Similarly, if we divide the system into two macrocomponents 1 and {2, 3},
then for the second macrocomponent, we get p23 = f2(p2,p3), and thus,

for a system as a whole, p = fa(p1,p23) = fo(p1, f2(p2,p3)).

The resulting probability should not depend on the (subjective) subdivision into

components. As a result, we should get f3(P17P27P3) = f2(f2(1717p2)7p3) =
f2(p1, f2(p2,p3)). In other words, we can make two conclusions:
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e First, the combination function for arbitrary n > 2 can be expressed
in terms of a combination function corresponding to n = 2, as

fn(pl; s 7pn) = f2(p17f2(p27 . -;f2(pn—1;pn) e ))

e Second, the function fo which describes the combination of two proba-
bilities should be associative (i.e., f2(a, f2(b,¢)) = f2(f2(a,b),c) for all
a,b,c € [0,1]).

For reliability, the function g»(p1, p2) has the following meaning:

e p, is the probability P(C;) of the event C defined as “the first component
is functioning correctly”;

e p, is the probability P(C>) of the event C defined as “the first component
is functioning correctly”; and

e fo(p1,p2) is the probability P(C1&C>) that both components are function-
ing correctly.

In some reliability problems, several components serve as back-ups for one an-
other; in such situations, the system as a whole functions correctly if at least
one of the components functions correctly. In other words, in such problems,
we are interested in the value P(Cy v C>). From the probability theory, we
know that P(C; Vv C3) = P(Cy) + P(Cy) — P(C1&Cy), ie., P(Cy V Cs) =
p1+p2— f2(p1, p2). We can describe this expression as P(C1V Ca) = g2(p1,p2),
where go(a,b) = a + b — fa(a,b).

Similar to the case of “and”-combination of different components, we can
describe the probability P(C; v C3 Vv C3) (that are least one of three components
functions correctly) in two different ways:

e eitheras P((Cy V C2) V C3) = g2(g2(p1,p2),p3),

e oras P(Cy V (Cay V C3)) = ga(ga(p1,p2),p3)-

The expression for P(C; v C2 V Cs3) should not depend on how we compute it,

and therefore, we should have g>(g2(p1, p2),p3) = g2(p1,92(p2,p3)). In other
words, not only the function f2(a, b) should be associative, but also the function
g2(a,b) = a+ b — fa(a,b) should be associative.

8.5 Resulting Solution

We already know that functions f(a, b) for which both the function itself and
the expression a + b — f(a, b) are associative have been classified and are known
as Frank’s t-norms

(s =1 (" = 1)

f2(a,b) =log, |1+ o]
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for some constant s. As a particular case of this general formula, we get the above
two expressions a - b (for s — 1) and min(a, b) (for s — 0).

9 Potential Applicationsto Mammography

The main problem of mammography is to detect small faults in the mammory
(small clots, cracks, etc.), which may indicate a tumor. When formulated in these
terms, the problem sounds very similar to the problem of aerospace testing: in
both cases, we must detect possible faults. Thus, we can use the above ideas in
mammography as well.

Acknowledgments

This work was supported in part by NASA under cooperative agreement NCC5-
209, by NSF grants No. DUE-9750858 and CDA-9522207, by United Space
Alliance, grant No. NAS 9-20000 (PWO C0C67713A6), by the Future Aerospace
Science and Technology Program (FAST) Center for Structural Integrity of
Aerospace Systems, effort sponsored by the Air Force Office of Scientific Re-
search, Air Force Materiel Command, USAF, under grant number F49620-95-1-
0518, and by the National Security Agency under Grant No. MDA904-98-1-0561.

References

Aczel, J. (1966) Lectures on functional equations and their applications,
Academic Press, NY-London.

Andre, G. (1999) Comparison of Vibrational Damage Detection Methods in an
Aerospace Vertical Stabilizer Structure, Master Thesis, The University of
Texas at El Paso, Civil Engineering Department.

Barbier, P., and P. Blondet (1993) Using NDT techniques in the maintenance of
aeronautical products, Aerospatiale France Report No. 93-11587/1/GAL.

Chimenti, D. E. (1997) “Guided waves in plates and their use in materials
characterization”, Appl. Mech. Rev. 50 (5), 247-287.

Clough, R. W., and J. Penzien (1986) Dynamics of Structures, McGraw Hill, N.Y.

Ferregut, C., R. A. Osegueda, and A. Nunez (eds.) (1997) Proceedings of the
International Workshop on Intelligent NDE Sciences for Aging and Futuristic
Aircraft, El Paso, TX, September 30—October 2.

Frank, M. J. (1979) “On the simultaneous associativity of F'(z,y) and
x +y — F(z,y)”, Aequationes Mathematicae 19 (2-3), 194-226.

Grabec, 1., and W. Sachse (1997) Synergetics of Measurement, Prediction, and
Control, Springer Verlag, Berlin-Heidelberg.

26



Gros, X. E. (1997) NDT Data Fusion, J. Wiley, London.

Hovey, P. W., and A. P. Berens (1988) “Statistical evaluation of NDE reliability in
the aerospace industry”, Review of Progress in QNDE, Plenum, N.Y., 7B,
1761-1768.

Klir, G. and B. Yuan (1995) Fuzzy sets and fuzzy logic: theory and applications,
Prentice Hall, Upper Saddle River, NJ.

Kosheleva, O., L. Longpré, and R. A. Osegueda (1999) “Detecting Known
Non-Smooth Structures in Images: Fuzzy and Probabilistic Methods, with
Applications to Medical Imaging, Non-Destructive Testing, and Detecting
Text on Web Pages”, Proceedings of The Eighth International Fuzzy Systems
Association World Congress IFSA’99, Taipei, Taiwan, August 17-20,
269-273.

Kreinovich, V., H. T. Nguyen, and E. A. Walker (1996) “Maximum entropy
(MaxEnt) method in expert systems and intelligent control: new possibilities
and limitations”, In: K. M. Hanson and R. N. Silver, Eds., Maximum Entropy
and Bayesian Methods, Kluwer, Dordrecht, 93-100.

Kreinovich, V., C. Quintana, and O. Fuentes (1993) “Genetic algorithms: what
fitness scaling is optimal?” Cybernetics and Systems: an International
Journal, 24 (1), 9-26.

Krishna, M., V. Kreinovich, and R. A. Osegueda (1999) “Fuzzy Logic in
Non-Destructive Testing of Aerospace Structures”, Proceedings of the 1999
IEEE Midwest Symposium on Circuits and Systems, Las Cruces,

New Mexico, August 8-11 (to appear).

Mal, A. K. and S. J. Singh (1991) Deformation of Elastic Bodies, Prentice Hall,
Englewood Cliffs, NJ.

Nguyen, H. T., and V. Kreinovich (1997) Applications of Continuous
Mathematics to Computer Science, Kluwer, Dordrecht.

Nguyen, H. T., and E. A. Walker (1999) A first course in fuzzy logic, CRC Press,
Boca Raton, Florida.

Osegueda, R. A., Y. Mendoza, O. Kosheleva, and V. Kreinovich (1999)
“Multi-Resolution Methods in Non-Destructive Testing of Aerospace
Structures and in Medicine”, Proceedings of the 14th IEEE
International Symposium on Intelligent Control/Intelligent Systems and
Semiotics ISIC/ISAS’99, Cambridge, Massachusetts, September 15-17,
208-212.

Osegueda, R. A., A. Revilla, L. Pereyra, and O. Moguel (1999) “Fusion of modal
strain energy differences for localization of damage”, In: A. K. Mal (ed.),
Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace
Hardware 11, Proceedings of SPIE, 3586, Paper 3586—28.

Pereyra, L. R., R. A. Osegueda, C. Carrasco, and C. Ferregut (1999) “Damage
detection in a stiffened plate using modal strain energy differences”, Ibid,
Paper 3586-29.

Petroski, H. (1994) Design paradigms: case histories of error and judgment in
engineering, Cambridge University Press, Cambridge, MA.

27



Ross, T. J. (1998) “Case studies in civil engineering: fuzzy logic applications”,
In: B. Papadopoulos and A. Syropoulos (eds.), Current Trends and
Developments in Fuzzy Logic, Proceedings of the First International
Workshop, Thessaloniki, Greece, October 16-20, 211-236.

Ross, T. J., C. Ferregut, R. A. Osegueda, and V. Kreinovich (1999) “System
Reliability: A Case When Fuzzy Logic Enhances Probability Theory’s
Ability to Deal With Real-World Problems”, Proceedings of the 18th
International Conference of the North American Fuzzy Information Society
NAFIPS’99, New York City, June 10-12, 81-84.

Stubbs, N. S., T. Broom, and R. A. Osegueda (1998) “Non-destructive
construction error detection in large space structures”, AIAA ADM Issues of
the International Space Station, AIAA, Williamsburg, Virginia, April,
47-55.

Terano, T., K. Asai, and M. Sugeno (1987) Fuzzy Systems Theory and its
Applications, Academic Press, San Diego, CA.

Ulieru, M. and R. Isermann (1993) “Design of a fuzzy-logic based diagnostic
model for technical processes”, Fuzzy Sets and Systems, 52 (3), 249-272.

Viktorov, I. A. (1967) Rayleigh and Lamb Waves: Physical Theory and
Applications, Plenum Press, N.Y.

Yam, Y., R. A. Osegueda and V. Kreinovich (1999) “Towards Faster, Smoother,
and More Compact Fuzzy Approximation, with an Application to
Non-Destructive Evaluation of Space Shuttle’s Structural Integrity”,
Proceedings of the 18th International Conference of the North American
Fuzzy Information Society NAFIPS’99, New York City, June 10-12,
243-247.

Appendix: Proofs

Proof of Theorem 1

This proof is based on the following lemma:

Lemma. If an optimality criterion is final and unit-invariant, then the optimal
family F,,; is also unit-invariant, i.e., Rx(Fopt) = F,p fOr every number .

Proof of the Lemma. Since the optimality criterion is final, there exists a unique
family Fy,,,; that is optimal with respect to this criterion, i.e., for every other F,
either Fopy > F, or Fypy ~ F'.

To prove that F,p: = R (F,pe), we will first show that the re-scaled family

R (Fopt) is also optimal, i.e., that for every family F: either Ry(Fopt) > F, or
Ry(Fopt) ~ F.
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If we prove this optimality, then the desired equality will follow from the fact
that our optimality criterion is final and therefore, there is only one optimal family
(so, since the families F,p; and Ry (F,,:) are both optimal, they must be the same
family).

Let us show that Ry (F,;) is indeed optimal. How can we, e.g., prove that
Ry (F,p) > F? Since the optimality criterion is unit-invariant, the desired rela-
tion is equivalent to F,,; > Ry-:(F'). Similarly, the relation R (Fp) ~ F'is
equivalentto Fop, ~ Ry—1(F).

These two equivalences allow us to complete the proof of the lemma. In-
deed, since F,,; is optimal, we have one of the two possibilities: either F,,; >
Ry-1(F), or F,,; ~ Ry—1(F). In the first case, we have Ry (F,,:) = F'; in the
second case, we have Ry (F,p:) ~ F.

Thus, whatever family F' we take, we always have either R (F,,;) >~ F', or
Ry (Fopt) ~ F. Hence, Ry (Fop) is indeed optimal and thence, Rx(Fopt) = Fopt-
The lemma is proven.

Let us now prove the theorem. Since the criterion is final, there exists an
optimal family Fo,y = {C - f(2)}. Due to the lemma, the optimal family is
unit-invariant.

From unit-invariance, it follows that for every A, there exists a real number
A()) for which f(\-z) = A(X) - f(2). Since the function f(z) is differentiable,
we can conclude that the ratio A(A) = f(\ - 2)/f(z) is differentiable as well.
Thus, we can differentiate both sides of the above equation with respect to A, and
substitute A = 1. As a result, we get the following differential equation for the
unknown function f(z):

daf
T 5

where by «, we denoted the value of the derivative dA/d taken at A = 1. Moving
terms dz and z to the right-hand side and all the term containing f to the left-hand
side, we conclude that

daf  dz

f =Q- P .
Integrating both sides of this equation, we conclude that In(f) = a-In(z) + C for
some constant C, and therefore, that f(z) = const - z*. The theorem is proven.

Proof of Theorem 2

Since the optimality criterion is final, there exists an optimal family Fo¢. Simi-
larly to the proof of Theorem 1, we prove that this optimal family is unit-invariant,
i.e., R\ (Fopt) = Fopt for all real numbers A > 0.

29



So, if a function p(E) belongs to the optimal family Fip, then, for every
A > 0, the re-scaled function p(A - E) of multiplying E to this function f belongs
to Fypt, i.€., due to definition of a family, there exist values k(X), etc., for which

k() -p(E) +1(A)
m(A) - p(E) +n(})’

The solution to this functional equation is, in essence, described in [Aczel, 1966].
For completeness, let us describe the proof in detail.

p(A-E) = 3)

ForA = 1,wehave k = n = landl = m = 0, so, since p is smooth
(hence continuous), for A = 1, we have n()) # 0; hence, we can divide both the
numerator and the denominator of (3) by n(A) and thus, get a similar formula with
n(A) = 1. If we multiply both sides of the resulting equation by the denominator,
we get the following formula:

m(A) - p(E) - p(A- E) + p(E) = k(A) - p(E) + 1(}).

If we fix A and take three different values of E, we get three linear equations for
determining three unknowns k(X), I(A), and m(\), from which we can determine
these unknowns using Cramer’s rule. Cramer’s rule expresses every unknown as
a fraction of two determinants, and these determinants polynomially depend on
the coefficients. The coefficients either do not depend on A at all (like p(E)) or
depend smoothly (p(A - E) smoothly depends on A because p(E) is a smooth
function). Therefore, these polynomials are also smooth functions of A, and so
are their ratios £(A), I(X), and m(A).

Now that we know that all the functions in the equations (3) are differen-
tiable, we can differentiate both sides with respect to A and set A = 1. As a result,
we get the following differential equation:

dp
E-—=Cy+0Cy- Cy-p?
dE o+ Ci-p+Ca-p
for some constants C;. To solve this equation, we can separate the variables, i.e.,
move all the terms related to E to one side and all the terms related to p to the
other side, and get the differential equation

dp _@
Co+Cr-p+Cs-p? T E°

(4)

Let us first show that Cy # 0. Indeed, if C2 = 0 and Cy = 0, then p/Cy =
In(E) + const, which contradicts to our assumption that p(0) = 0. If C2 = 0 and
C1 #0,thenwe get C; ' -1n(Cy - p+ Co) = In(E) + const hence Cy - p+ Co =
A - E*, which for a < 0, contradicts to the assumption that p(0) = 0, and for
a > 0, contradicts to the assumption that p(E) — 1 as E — oo. Thus, the
case C, = 0 is impossible, and Cy # 0. For Cy # 0, in general, the left-hand
side of the equation (4) can be represented as a linear combination of elementary
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fractions (p + z1)~! and (p + 22)~! (where z; are — possibly complex — roots of
a quadratic polynomial C; + C; - p + C> - p?):

1 1 1
=c- - .
Co+Cr-p+Cy-p? (P+Z1 P+Z2>

(the case of a double root can be handled in a similar manner.) Thus, integrating
the equation (4), we conclude that

cln (m> = In(E) + const,
P+ 2

and

for some A and 3. So, the expression A - E° can be obtained from p(E) by
a fractional linear transformation; hence, by applying the inverse transformation
(and it is known that the inverse to a fractionally linear transformation is also
fractionally linear) we conclude that

A-EPf+B
p(E)_C-Eﬂ+D

for some numbers A, B, C, and D. One can easily check that only for real values
A — D and §, we get a monotonic everywhere defined function p(E).

If 3 < 0, then we can multiply both numerator and denominator by E—7
and get a similar expression with 8 > 0. Thus, without losing generality, we can
assume that 8 > 0. Now, the condition that p(0) = 0 leads to B/D = 0 and
hence, to B = 0. The condition leadsto A = C, i.e., to

A-EP

PE)= D

Since p(E) is not identically equal to 1, we have D # 0. Therefore, we can divide
both the numerator and the denominator of this fraction by D, and get the desired
expression (1). The theorem is proven.
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