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Case study of non�linear inverse problems�
mammography and non�destructive evaluation
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and K� Wordenc

aDepartment of Electrical and Computer Engineering and bFAST Center�

University of Texas at El Paso� El Paso� TX ������ USA

cDepartment of Mechanical Engineering�

University of She	eld� She	eld S
 �JD� United Kingdom

ABSTRACT

The inverse problem is usually di�cult because the signal �image� that we want to reconstruct is weak� Since it is
weak� we can usually neglect quadratic and higher order terms� and consider the problem to be linear� Since the
problem is linear� methods of solving this problem are also� mainly� linear �with the notable exception of the necessity
to take into consideration� e�g�� that the actual image is non�negative��

In most real�life problems� this linear description works pretty well� However� at some point� when we start
looking for a better accuracy� we must take into consideration non�linear terms� This may be a minor improvement
for normal image processing� but these non�linear terms may lead to a major improvement and a great enhancement
if we are interested in outliers such as faults in non�destructive evaluation or bumps in mammography� Non�linear
terms �quadratic or cubic� give a great relative push to large outliers� and thus� in these non�linear terms� the e�ect
of irregularities dominate� The presence of the non�linear terms can serve� therefore� as a good indication of the
presence of irregularities�

We describe the result of the experiments in which these non�linear terms are really helpful�

Keywords� Non�linear inverse problem� non�linear data compression� non�destructive evaluation� mammography

�� INTRODUCTION� AN INVERSE PROBLEM CAN BE LINEAR�
OR IT CAN HAVE A SMALL NON�LINEARITY

Active vs� passive inverse problems� In many applied problems� it is di�cult �or even impossible� to directly
measure the desired characteristics c�� � � � � cn of the object in which we are interested� So� to 	nd the values of these
characteristics� we measure some other characteristics y�� � � � � ym which are related to cj � and then reconstruct the
values of the desired parameters cj from the results ey�� � � � � eym of measuring these characteristics� The problem of
reconstructing the values cj from the measurement results ey�� � � � � eym is called the inverse problem�

Examples of such problem range from engineering �e�g�� detecting and measuring cracks and other faults in
aerospace structures�� to science �e�g�� reconstructing brightness of a distant astronomical source�� to medicine �e�g��
detecting and measuring parameters of possible tumors�� etc�

Depending on the scope of measurement possibilities� we can divide inverse problems into two classes


� First� we have inverse problems in which only a relatively small amount of data is available� examples of such
problems include reconstructing an images of a distant quasar or a distant galaxy� reconstructing a deep�site
geophysical structure from the available earthquake data� etc� In such problems� often� even if we use all
available information� we can still have at best rather crude estimates of the important parameters� Therefore�
the only possible strategy here is to use all available information when solving the inverse problem� It is natural
to call such problems passive because we have no simple way to actively solicit any more information� the only
thing we can do is simply observe what is there and make conclusions based on these observations� For passive
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control problems� the main problem is
 Given the measurement results� how can we reconstruct the values
of the desired characteristics� Usually� we know how the measured characteristics y�� � � � � ym depend on the
desired ones cj� i�e�� we know that yi � fi�c�� � � � � cn� for some known functions f�� � � � � fm� So� in mathematical
terms� the problem is to solve the system of m �approximate� equations eyi � fi�c�� � � � � cn�� where eyi are known
�measured� values� and c�� � � � � cn are unknowns�

� In many other situations� however� the inverse problem is active in the sense that we can send di�erent signals
x�� � � � � xk to the object of our interest� and get di�erent measurement results based on this choice of signals�
For example� in medical imaging� we can send ultrasound or X�ray or other signals and measure the result of
these signals passing through �or re
ected by� the human body� in geophysics� we can send the signals to the
Earth crust and measure the results� etc�

In this paper� we will analyze active inverse problems�

For the active inverse problem� we still have the same problem as we had for the passive ones
 Given the measure�
ment results� how can we reconstruct the values of the desired characteristics� For active problems� the measured char�
acteristics yi depend not only on the desired quantities cj� but also on the signals� i�e�� yi � fi�c�� � � � � cn� x�� � � � � xk�
for some known functions f�� � � � � fm� So� in mathematical terms� this problem looks slightly more complicated than
in the passive case
 we must solve a system of m �approximate� equations eyi � fi�c�� � � � � cn� x�� � � � � xk�� where eyi
are known �measured� values� xj are known values of applied signals� and c�� � � � � cn are unknowns�

However� in addition to the original problem� now that we can control what exactly we measure� we also need
to solve a di�erent problem
 What exactly should we measure� In other words� which values x�� � � � � xk of the signal
should we choose�

There may be di�erent criteria for selecting these signals
 e�g�� we may want to be able to reconstruct the values
of the desired characteristics with the best possible accuracy� or we may want to minimize the total cost consisting
of the detection cost and losses caused by possible un�detected faults� etc�

The dependence of yi on xj is usually linear� If the signal�to�noise ratio is high� then the measurement errors
can be neglected� i�e�� we can safely assume that the measured values eyi coincide with the actual values yi of the
measured quantities� In such situations� to reconstruct the desired values cj� we have m exact equations with n
unknowns
 eyi � fi�c�� � � � � cn� x�� � � � � xk�� In general� if we have at least as many equations as unknowns� this system
has a unique solution� there exist standard numerical methods for getting such solutions� In this case� the inverse
problem is easily solvable�

The real problem starts when the signals xi are relatively weak� and as a result� the signal�to�noise ratio is not
very high� It may happen because we are simply unable to send a strong signal
 e�g�� when we analyze the geophysical
structures several kilometers below� even the strongest test explosions or vibrations lead to very small and hard�to�
detect re
ected signals� Sometimes� it is potentially possible to send a stronger signal� but this stronger signal may
damage or even destroy the very object that we are interested in
 e�g�� a strong test vibration may damage the tested
plane� powerful X�rays may hurt or even kill a patient� etc� In such situations� we are forced to restrict ourselves to
weak signals only�

The weakness of the signals is both a curse and a blessing� On one hand� from the viewpoint of the result�
it is clearly a curse because when the signals are weak� the signal�to�noise ratio goes down� and the quality of
reconstructing the desired values cj deteriorates� On the other hand� from the viewpoint of the computational
complexity� weakness is a blessing� Indeed� when the dependencies fi are smooth �and they are normally smooth��
we can expand each function fi in Taylor series in xj


fi�x�� � � � � xn� � fi��� � � � � �� �
X
j

�fi
�xj

� xj �
�

��

X
j�k

��fi
�xj�xk

� xj � xk � � � � ���

Since the values xj are small� we can neglect terms which are quadratic and of higher order in xj and safely assume
that the dependence of yi on xj is linear� Thus� we have a system of equations in which the functions fi are linear
in xj � This linearity makes computations simpler than in the general non�linear case�

Sometimes� the dependence of yi on xj is slightly non�linear� The quadratic terms in the equation ��� can
be neglected if the signal xj is weak� and if the second derivatives are reasonably small �i�e�� if the dependencies fi



are su�ciently smooth�� If one of these two conditions is not satis	ed� then the quadratic terms can no longer be
neglected� and we have a non�linear dependence� So� if a signal is weak but the function fi is not very smooth� we
must take non�linearity into consideration when solving an active inverse problem�

Traditional viewpoint� this minor non�linearity is of minor importance� Traditionally� the above�described
non�linearity is viewed �correctly� as a second order term� It is de	nitely extremely important to take non�linear
terms into consideration if we want a superaccurate reconstruction� However� in most practical problems� when this
super accuracy is not needed� this non�linearity is a minor term that is rather a nuisance than a serious problem�

What we are planning to do� In this papers� we will show� by analyzing the cases of non�destructive evaluation of
aerospace structures and mammograms� that this small non�linearity can actually be of great practical importance�

�� NON�LINEARITY CAN BE OF GREAT PRACTICAL IMPORTANCE

In many practical problems� it is very important to test smoothness� In many practical problems� we must
check whether a given object is smooth or whether it has non�smooth areas� For example� when we test an aerospace
structure� we must check whether it is still safe to 
y� or it has cracks� holes� or other faults� Similarly� the main
problem of mammography is to detect small non�smoothnesses in the mammal �small clots� cracks� etc��� which may
indicate a tumor� In both cases� we must detect possible non�smoothness�

Non�smoothness leads to non�linearity� If a tested structure has no faults� then the surface is usually smooth�
As a result� the dependencies fi are also smooth� Since we are sending relatively weak signals xi �strong signals can
damage the plane�� we can neglect quadratic �and higher order� terms in Taylor series and only consider linear terms
in these series� thus� the dependency will be linear�

A fault �e�g�� a crack� is� usually� a violation of smoothness� Thus� if there is a fault� the structure stops being
smooth� hence� the function fj stops being smooth� and therefore� linear terms are no longer su�cient� Thus� in the
absence of fault� the dependence is linear� but with the faults� the dependence is non�linear�

So� we can detect the fault by checking whether the dependency between yj and xi is linear�

Comment� The idea that non�linear terms can be helpful has been suggested some time ago� see� e�g�� Ref� ��

Non�linear terms simplify the detection of non�smoothness� When a smooth object acquires a fault� two
changes occur in the dependence of yi on xj 
 	rst� linear terms change� second� non�linear terms appear� Thus� there
are two possible methods of detecting non�smoothness
 we can compare the linear response with the response of an
ideal �smooth� object� or we can try to detect non�smoothness by 	nding non�linearity�

The 	rst method works well if we do know the ideal response function fi� However� in some cases� e�g�� in
mammography� we do not know the linear response of the fault�less object� Or� alternatively� we may know the
original response� but we also know that this response can change not only because of faults� but also because of
stress� material wariness� and other factors that do not necessarily mean that there is a dangerous fault inside� In
such cases� we cannot detect the fault by comparing the current linear response with the ideal one� however� if we
detect non�linear terms� it is a clear indication that there are some faults inside�

The resulting proposal� main idea� As a result of the above analysis� we propose the following way of detecting
faults


� We apply di�erent signals xj to the object� and measure the response yi�

� If the measurement results are consistent with the linear dependence of yi on xj� this means that there are no
faults� and no further testing is needed�

� If the measurement results are inconsistent with the linear model� this means that there is a fault� and so
further thorough tests are needed�

Checking linearity is easy� As a result� for non�destructive evaluation of aerospace structures� we get a simple test
that enables us to save time and resources �necessary for the detailed solution of the inverse problem� by limiting
this detalization only to the cases when the presence of the faults was revealed by non�linearity�

Let us con�rm that non�smoothness leads to non�linearity� To show the above non�linearity is indeed
practically detectable and thus� practically useful� we will present mechanical analysis and experimental results�



�� MECHANICAL ANALYSIS OF NON�LINEARITY

In this section� we present a simpli	ed mechanical explanation of non�linearity� This explanation is too oversimpli	ed
to explain the quantitative experimental results� but it explains� on the qualitative level� why non�linearities do occur�

In order to understand how non�linear e�ects can occur� let us 	rst describe how the signal travels through a
fault�less plate� In this case� at the location of the transmitter� we send� at any given moment of time t� the signal
x�t� � A � cos�� � t�� This signal travels to the receiver �measuring device� with a velocity equal to the speed of
sound� For simplicity� we can assume that the plate is homogeneous� so at any point� we have the same speed of
sound v� Thus� while traveling from the transmitter to the receiver� the signal gets delayed by the amount of time
�t � d�v� where d is the distance between the transmitter and the receiver� As a result� at any moment of time t�
the values of the observed signal y�t� is proportional to value x�t � �t� that the input signal had �t seconds ago

y�t� � k � x�t� �t�� where the coe�cient k describes the loss of amplitude�

Thus� for a fault�less plate� we indeed have a linear dependence between the transmitted signal x�t� and the
measured signal y�t��

Let us now consider the case when a fault lies between the transmitter and the receiver� This fault may be a
crack or a hole� In this case� we can also use the formula y�t� � k � x�t� �t�� where �t is the delay� However� this
delay can no longer be computed simply as d�v� because� in addition to going straight through the material� the
signal has to go either through or around the crack� In both cases� the presence of the crack changes the travel time


� If the ultrasound has to travel through air� then it is delayed because the speed of sound in the air is smaller
than the speed of sound in the solid body�

� If the ultrasound has to go around the crack� then the speed of sound stays the same� but the length of the
path increases� and so the signal is also delayed�

In both cases� the delay �t between the transmitter and the receiver can be computed as �t � d�v � kf � d�� where
d� is the linear size of the fault� i�e�� the distance between the front and the rear borders ��walls�� of the fault area
�front and rear with respect to the transmitter�� and the coe�cient kf describes how fast the signal passes the fault
area� As a result� the measured signal is equal to y�t� � k �x�t��t� � k �A �cos�� � t�� ��t�� Since we are interested
in detecting small faults� the value d� is small� so we can expand the expression for y�t� in terms of d� and keep only
the 	rst few terms� As a result� we get the following formula

y�t� � A � cos�� � t� � � df�v� � kf � d� �A � sin�� � t� � df�v� � o�d��� ���

Before we send the signal� the plate is immobile� and the distance d� stays constant
 d��t� � d
���
� � However� as

we transmit the signal x�t�� the plate starts vibrating� and this vibration changes the position of both borders and
therefore� changes the distance d�
 d� � d��t�� In order to describe this change� let us denote the distance between
the transmitter and the fault�s front border by df � By the time the signal reaches this left border� it is delayed by
the time df�v� i�e�� takes the form xfront�t� � kfront �A � cos�� � t� � � df�v�� This vibration causes the corresponding
change in the location of this front border
 instead of being equal exactly to df � this location oscillates around xf �
At any given moment of time� the change in location is proportional to the amplitude xfront�t� of oscillating signal


dfront�t� � df � kmov � xfront�t� � df � kmov � kfront �A � cos�� � t� � � �df�v���

for some coe�cient kmov�

Similarly� the signal that passes to the rear border gets delayed by � df�v� kf � d
���
� � Thus� the location location

of the rare border also changes� as

drear�t� � df � kmov � xrear�t� � df � kmov � kfront �A � cos�� � t� � � �df�v� � � � kf � d
���
� ��

As a result of these slightly di�erent oscillations� the size d��t� � dreal�t�� dfront�t� also changes with time� We have

already mentioned that the size d� is small� so we can expand the expression for d��t� in terms of d
���
� and keep only

the 	rst few terms� As a result� we get the following formula


d��t� � d
���
� � kmov � kfront �A � � � kf � d

���
� � sin�� � t� � � �df�v�� � o�d���� �� ���

Substituting ��� into ���� we get� in y�t�� in addition to terms proportional to cos��t�� also quadratic terms sin���t�
which lead to double frequency terms in the Fourier transform of y�t�� These terms are proportional to A��

Similarly� we get cubic terms� etc�



	� EXPERIMENTAL CONFIRMATION OF NON�LINEARITY

First experiments� pseudo�random signals� The 	rst experimental con	rmation that for an ultrasonic scan�
faults do cause non�linear terms� was presented in Ref �� Namely� it was known that for a fault�less plate� the
dependence between the transmitted signal x�t� and the measured signal y�t� is linear� i�e�� y�t� �

R
A�t� s� �x�s� ds

for some function A�t�� It turned out that for a plate with a fault� this dependence is non�linear
 namely� cubic terms
must be taken into consideration� To detect this non�linearity� the authors of Ref� � used pseudo�random signals that
combine components of several di�erent frequencies with pseudo�random amplitudes and pseudo�random phases�

The data from� shows that the amplitude of the cubic term is roughly proportional to the cube of the linear fault
size� Thus� not only the non�linear terms indicate the presence of the fault� but also the value of the cubic term can
be used to determine the size of the fault�

Pseudo�random signals are di�cult to generate� so� it is preferable to use simpler test signals� In
practice� it is di�cult to generate pseudo�random signals� It is therefore desirable to con	rm that non�linearity can
be also observed for simpler signals� e�g�� for sinusoid signals�

Experiment with sinusoid signals� a hardware part� In our experiment� as a signal xj � we sent an ultrasound
wave� To generate this wave� a sinusoid electric signal x�t� � A � cos�� � t� was sent to the transducer� which then
generated an ultrasonic wave in the tested object� The transducer was set at an angle of incidence of ��� with the
plate� so that a wave would go along the surface of the plate �such waves are called Lamb waves� see� e�g�� Refs� ������

If the transducer was ideally linear� then we would get an ultrasonic wave of the exact same frequency and of the
same sinusoid shape as the original electric signal� In this case� to detect the non�linearity of the plate� it would be
su�cient to place a single sensor on the plate and check whether the signal y�t� measured by this sensor depends
linearly on x�t��

In reality� however� the transducer is somewhat non�linear� as a result� the ultrasonic signal sent to the plate
contained components at frequencies di�erent from the original frequency �
 it has components which are slightly
di�erent from �� and it also has higher harmonics� i�e�� frequencies close to ��� ��� etc� We chose � � ���KHz� for
this frequency� the ultrasonic signal is mainly located in the frequency area from ��� to ��� KHz�

To separate the non�linearity of the transducer from the non�linearity of the plate itself� we placed two sensors
on the plate
 the 	rst sensor is located near the transducer� and it measures the ultrasonic wave x��t� that the
transducer generates� the second sensor is located at a distance from the transducer� and it measure the wave x��t�
changed after passing through the plate� Then� we check whether x��t� linearly depends on x��t��

How to check non�linearity� general discussion� The detection of non�linearity is based on the fact that the
general linear time�invariant dependency has the form x��t� �

R
A�t � s� � x��s� ds for some function A�t�� In terms

of Fourier components� this dependency takes a simple form �x���� � �A��� � �x����� Thus� to check whether the
dependence is linear� it is su�cient to check whether� for each �� the Fourier component �x���� is a linear function
of the Fourier component �x�����

How to check non�linearity� ideal case� If the signal x��t� is purely harmonic x��t� � A � cos�� � t�� then it has
only one Fourier component� and all we have to do to check non�linearity is to take di�erent amplitudes A� and to
plot the absolute value of the corresponding Fourier component j�x����j of the signal measured by the second sensor
as a function of A � j�x����j� Instead of the absolute values of the Fourier components� we could take their energies
E� � j�x����j� and E� � j�x����j�� if the dependency of x��t� on x��t� is linear� then E� is a linear function of E�

E� � k �E��

Due to the inevitable noise� the measured energy at the second sensor also contains a noise component� i�e��
E� � k �E��n� where n is the energy of the noise� Crudely speaking� if the dependence between E� and E� is linear�
this means that x��t� linearly depends on x��t�� otherwise� the dependence of x��t� on x��t� is non�linear�

How to check non�linearity� main idea of the practical method� In our case� the original electric signal has
only one Fourier component with the frequency � � ��� KHz� but� as we have mentioned� due to the non�linearity
of the transducer� the resulting ultrasound wave has components in a certain vicinity of this original frequency� As
a result� the signal�s energy is distributed over the resulting range of frequencies� Thus� instead of the value j�x����j
corresponding to a single frequency� we took the total energy E� �

R
j�x����j� d� of the signal in the frequency range�

where the integral is taken over the entire range of frequencies ���� KHz� ���Khz � Similarly� for the 	rst sensor� we
take an integral E� �

R
j�x����j� d�� We then check whether E� is a linear function of E��



The choice of an object� In our experiments� as a sample object� we took an aluminum ���� plate� its size is
�� � �� in� its thickness is �!�� in� Initially� we performed the measurements on the undamaged plate� Then� we
simulated a crack by sawing across the �� in width of the plate with a 	ne tooth hand saw� The crack is at the
middle of the plate� The two sensors were placed at an equal distance from the crack �or� for the un�damaged plate�
at an equal distance from the center line where we later cut in a crack��

The choice of a signal� We wanted to make sure that the 	rst sensor really measures the original ultrasound wave�
Therefore� we restricted our signals only to the 	rst moments of time after the beginning of the experiments� before
the wave re
ected from the plate�s borders gets back to the location of the 	rst sensor� To be able to separate the
original signal from its later re
ections� we generated only 	ve cycles of the ��� KHz wave�

To check for non�linearity� we repeated this experiment at several di�erent voltage levels of the original electric
signal
 �V �pure noise�� �V� "V� �V� and �V�

The choice of sampling frequency� We used a sampling frequency of �� million samples per second �MSPS��
i�e�� �� samples per cycle �we 	rst tried � MSPS� but the noise was too high to make any conclusions� so we had to
double the sampling frequency��

Filtering out re�ections and the original noise� Based on the geometry of the plate and on the known speed
of sound waves� we estimated �and later experimentally con	rmed� that the re
ection starts in at least ��� points
after the original signal� and that the entire signal �before re
ection� occurs in the 	rst ���� data points� so we only
measured the 	rst ���� data points�

The entire �����point data starts as noise �no signal�� then contains the signal� and then has the signal mixed
with the re
ections� To separate the signal from the original noise and from the following re
ections� we selected ���
points out of the ���� available� As a criterion for selecting the front edge of the data� it is natural to chose the 	rst
instance when the measured signal exceeds a certain portion of the maximum amplitude� Based on our observations�
we have chosen �!� as this portion� So� for each sensor k �k � �� ��� we computed the largest value Amax of all ����
amplitudes� found the 	rst point ti at which the measured value xk�ti� was larger than or equal to Amax��� and
counted a total of ��� points xk�ti�� xk�ti���� � � � � xk�ti������ Then� we applied FFT to the selected data� and used
this FFT to compute the total energy Ek of the signal in the frequency interval ���� KHz� ���Khz �

We further decreased noise by repeating the measurements� To decrease the noise� we repeated each 	ve�
wave burst ��� times� and averaged the signals before processing them� To estimate the measurement accuracy�
we repeated the same ����burst experiment ten time� Then� as a result of measuring energy� we took an interval
�E�

k � E
�
k  between the smallest and the largest of the resulting ten values�

How to check non�linearity� formulation of the problem� As a result of the measurements� we got several
intervals �E�

� �V �� E�
� �V � and �E�

� �V �� E�
� �V � corresponding to di�erent voltages V � We know that for each voltage�

the actual �unknown� values of the energy E��V � and E��V � lie within the corresponding intervals� The question
is
 is this data consistent with the assumption that E��V � is a linear function of E��V �� Or� in other words� it is
possible to 	nd real numbers k � �� n� and values E��V � � �E�

� �V �� E�
� �V � and E��V � � �E�

� �V �� E�
� �V � for which

E��V � � k �E��V � � n�

How to check non�linearity� derivation of an algorithm� For each V � we want to have a value of E��V �
that satis	es the following two properties
 	rst� it belongs to the interval �E�

� �V �� E�
� �V � � and second� it can be

represented as k �E��V � � n for some E��V � � �E�

� �V �� E�
� �V � �

Let us 	rst assume that the values k � � and n are given� Since k � �� the function k �E��V � � n is increasing�
and so� for each V � when E��V � takes values from the interval �E�

� �V �� E�
� �V � � the expression k �E��V � � n takes

values from the interval �k �E�

� �V � � n� k �E�
� �V � � n � Thus� the above two conditions on E��V � mean that E��V �

must belong to two di�erent intervals
 �E�

� �V �� E�
� �V � and �k � E�

� �V � � n� k �E�
� �V � � n � This is possible if and

only if these two intervals have a non�empty intersection� i�e�� if E�

� �V � � k �E�
� �V ��n and k �E�

� �V � �n � E�
� �V ��

Now� the question is
 when is it possible to 	nd k � � and n for which these inequalities hold for all V � Let
us 	rst assume that k is given� Then� by moving n into one side of each inequality� we can reformulate the above
inequalities in the following way
 E�

� �V � � k � E�
� �V � � n and n � E�

� �V � � k � E�

� �V �� Such a value n exists if
and only if all the lower bounds for n are smaller than or equal to all the upper bounds for n� in other words� if
E�

� �V �� k �E�
� �V � � E�

� �V ��� k �E�

� �V �� for all possible values of V and V ��

So� the original question can be reformulated as follows
 does there exist a value k for which this inequality is
true for all V and V �� We can somewhat simplify this inequality by moving all terms which contain k to one side and



all other terms to another side� As a result� we get the inequality k � �E�

� �V ���E�
� �V �� � E�

� �V ���E�

� �V �� In our
case� the energy of the wave monotonically increases with the voltage V � so that if V � V �� then E�

� �V � � E�

� �V ���
Hence� when V � V �� the above inequality is equivalent to

k �
E�
� �V �� �E�

� �V �

E�

� �V ��� E�
� �V �

�

and when V � V �� the above inequality turns into

E�

� �V �� E�
� �V ��

E�
� �V ��E�

� �V ��
� k�

Such a value k exists if and only if all lower bounds for k are smaller than or equal to all the upper bounds for k�
i�e�� when

max
V ��V

E�

� �V �� E�
� �V ��

E�
� �V � �E�

� �V ��
� max

V �V �

E�
� �V �� �E�

� �V �

E�

� �V ��� E�
� �V �

� �#�

How to check non�linearity� the resulting algorithm� To check non�linearity� we must check the inequality
�#��

Experimental results�

V �E�

� �V �� E�
� �V � �E�

� �V �� E�
� �V � �E�

� �V �� E�
� �V � �E�

� �V �� E�
� �V � 

undamaged� ��	 undamaged� ��	 damaged���� damaged� ��


�V ������ ���� ������ ���� ������ ���� ������ ���� 
�V ������ ���� ������ ���� ������ ��"� ������ ���� 
"V ������ ���# ������ ���� ����"� ���� ����#� ���� 
�V ������ ���# ������ ���� ������ ���� �#�"�� #��# 
�V �#���� #��� ���"�� ���� ������ ���� ����"� ���� 

In the undamaged case� we clearly have a linear dependency �E��V � � ��� �E��V ��� while in the damaged case� the
dependence is clearly non�linear�

Why did nobody notice this non�linearity before	 Our experiments do not require very complicated and
accurate equipment� they use standard sensors and transducers� So why did not anybody make these experiments
before� The main reason is that before� people used just one signal level �e�g�� the highest possible�� to detect the
faults� The use of only one signal level is justi	ed if the response is linear
 then� another input level will not lead to
any new information� To detect non�linear terms� however� we must use at least two di�erent input levels�


� PRACTICAL RECOMMENDATION� BRIEF SUMMARY

Main recommendation� To detect the faults� we must use at least two di�erent signal levels� If the increase in the
signal level xj leads to a proportional increase in the measured values yi� then most probably the object is smooth�
If the dependence of yi on xj is non�linear� then� most probably� there is a fault� so further analysis is needed�

Auxiliary recommendations� Since it is important to detect non�linearity� it is important not to smoothen and
linearize the signal �or the image� if this signal �image� is to be compressed� To overcome the smoothing aspects of
lossy compression and following decompression� it is therefore important to enhance the image before compression�
For example� one of the successful enhancement methods consists of replacing the brightness value x at each pixel by
a so�called selective median of its neighbors� i�e�� by a median m if jx�mj � 	 for some 	xed 	� and by the original
value x otherwise�

A general comment about checking non�linearity� After K measurements� we have K sets of data

$x�k�� � � � � � $x�k�n � $y
�k�
� � � � � � $y�k�m � � � k � K� Often� we do not know the probabilities of di�erent measurement er�

rors� we only know the upper bounds for these errors� So� we know the intervals X
�k�
� � � � � � X

�k�
n � Y

�k�
� � � � � � Y

�k�
m of

possible values of the measured quantities� We want to check whether this dependence can be linear� i�e�� whether

these exist coe�cients cij for which� for every k and j�
P

cij � x
�k�
j � Y

�k�
j for some x

�k�
i � X

�k�
i � This is a known



problem of interval computations
 check whether the given system of interval linear equations is solvable �here� the

unknowns are cij� interval coe�cients are X�k�
i and Y

�k�
j ��

Our main concern is not to miss the fault� so we need guaranteed methods� Thus� we need to use interval
�guaranteed� methods for solving linear interval systems �see� e�g�� Refs� ����"��������
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