University of Texas at El Paso

ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

6-1998

Case Study of Non-Linear Inverse Problems: Mammography and
Non-Destructive Evaluation

Olga Kosheleva
The University of Texas at El Paso, olgak@utep.edu

S. Cabrera

Roberto A. Osegueda
The University of Texas at El Paso, osegueda@utep.edu

Carlos M. Ferregut
The University of Texas at El Paso, ferregut@utep.edu

Soheil Nazarian
The University of Texas at El Paso, nazarian@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

3.2 next page for additional authors
Part of the Computer Engineering Commons

Comments:

Technical Report: UTEP-CS-98-15

In: Ali Mohamad-Djafari (ed.), Bayesian Inference for Inverse Problems, Proceedings of the
SPIE/International Society for Optical Engineering, Vol. 3459, San Diego, CA, 1998, pp. 128-135.

Recommended Citation

Kosheleva, Olga; Cabrera, S.; Osegueda, Roberto A.; Ferregut, Carlos M.; Nazarian, Soheil; George, M. J.;
Kreinovich, Vladik; and Worden, K., "Case Study of Non-Linear Inverse Problems: Mammography and Non-
Destructive Evaluation" (1998). Departmental Technical Reports (CS). 436.
https://scholarworks.utep.edu/cs_techrep/436

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact Iweber@utep.edu.


https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/436?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Authors

Olga Kosheleva, S. Cabrera, Roberto A. Osegueda, Carlos M. Ferregut, Soheil Nazarian, M. J. George,
Vladik Kreinovich, and K. Worden

This article is available at ScholarWorks@UTEP: https://scholarworks.utep.edu/cs_techrep/436


https://scholarworks.utep.edu/cs_techrep/436

Case study of non-linear inverse problems:
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ABSTRACT

The inverse problem is usually difficult because the signal (image) that we want to reconstruct is weak. Since it is
weak, we can usually neglect quadratic and higher order terms, and consider the problem to be linear. Since the
problem is linear, methods of solving this problem are also, mainly, linear (with the notable exception of the necessity
to take into consideration, e.g., that the actual image is non-negative).

In most real-life problems, this linear description works pretty well. However, at some point, when we start
looking for a better accuracy, we must take into consideration non-linear terms. This may be a minor improvement
for normal image processing, but these non-linear terms may lead to a major improvement and a great enhancement
if we are interested in outliers such as faults in non-destructive evaluation or bumps in mammography. Non-linear
terms (quadratic or cubic) give a great relative push to large outliers, and thus, in these non-linear terms, the effect
of irregularities dominate. The presence of the non-linear terms can serve, therefore, as a good indication of the
presence of irregularities.

We describe the result of the experiments in which these non-linear terms are really helpful.

Keywords: Non-linear inverse problem, non-linear data compression, non-destructive evaluation, mammography

1. INTRODUCTION: AN INVERSE PROBLEM CAN BE LINEAR,
OR IT CAN HAVE A SMALL NON-LINEARITY

Active vs. passive inverse problems. In many applied problems, it is difficult (or even impossible) to directly
measure the desired characteristics ¢q, ..., ¢, of the object in which we are interested. So, to find the values of these
characteristics, we measure some other characteristics yi, ..., ¥m which are related to ¢;, and then reconstruct the
values of the desired parameters ¢; from the results @i, ..., ¥, of measuring these characteristics. The problem of
reconstructing the values ¢; from the measurement results 41, ..., ¥ is called the inverse problem.

Examples of such problem range from engineering (e.g., detecting and measuring cracks and other faults in
aerospace structures), to science (e.g., reconstructing brightness of a distant astronomical source), to medicine (e.g.,
detecting and measuring parameters of possible tumors), ete.

Depending on the scope of measurement possibilities, we can divide inverse problems into two classes:

e First, we have inverse problems in which only a relatively small amount of data is available; examples of such
problems include reconstructing an images of a distant quasar or a distant galaxy, reconstructing a deep-site
geophysical structure from the available earthquake data, etc. In such problems, often, even if we use all
available information, we can still have at best rather crude estimates of the important parameters. Therefore,
the only possible strategy here is to use all available information when solving the inverse problem. It is natural
to call such problems passive because we have no simple way to actively solicit any more information; the only
thing we can do is simply observe what is there and make conclusions based on these observations. For passive
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control problems, the main problem is: Given the measurement results, how can we reconstruct the values

of the desired characteristics? Usually, we know how the measured characteristics y1, ..., ym depend on the
desired ones ¢;, i.e., we know that y; = fi(e1, ..., ¢p) for some known functions f1, ..., fn. So, in mathematical
terms, the problem is to solve the system of m (approximate) equations g; & fi(c1,...,¢pn), where g; are known
(measured) values, and ¢y, ..., ¢, are unknowns.

e In many other situations, however, the inverse problem is active in the sense that we can send different signals
Z1,...,T; to the object of our interest, and get different measurement results based on this choice of signals.
For example, in medical imaging, we can send ultrasound or X-ray or other signals and measure the result of
these signals passing through (or reflected by) the human body; in geophysics, we can send the signals to the
Earth crust and measure the results, etc.

In this paper, we will analyze active inverse problems.

For the active inverse problem, we still have the same problem as we had for the passive ones: Given the measure-
ment results, how can we reconstruct the values of the desired characteristics? For active problems, the measured char-

acteristics y; depend not only on the desired quantities ¢;, but also on the signals, i.e., y; = fi(er,..., ¢n, 21, ..., 2k)
for some known functions fi, ..., f;. So, in mathematical terms, this problem looks slightly more complicated than
in the passive case: we must solve a system of m (approximate) equations §; & fi(e1,...,¢cn, @1, ..., 21), Where @
are known (measured) values, z; are known values of applied signals, and ¢4, ..., ¢, are unknowns.

However, in addition to the original problem, now that we can control what exactly we measure, we also need
to solve a different problem: What exactly should we measure? In other words, which values z1, ..., #; of the signal
should we choose?

There may be different criteria for selecting these signals: e.g., we may want to be able to reconstruct the values
of the desired characteristics with the best possible accuracy, or we may want to minimize the total cost consisting
of the detection cost and losses caused by possible un-detected faults, etc.

The dependence of y; on z; is usually linear. If the signal-to-noise ratio is high, then the measurement errors
can be neglected, i.e., we can safely assume that the measured values y; coincide with the actual values y; of the
measured quantities. In such situations, to reconstruct the desired values ¢;, we have m exact equations with n
unknowns: g; = fi(e1, ..., ¢n, 21, ..., ;). In general, if we have at least as many equations as unknowns, this system
has a unique solution; there exist standard numerical methods for getting such solutions. In this case, the inverse
problem is easily solvable.

The real problem starts when the signals z; are relatively weak, and as a result, the signal-to-noise ratio is not
very high. It may happen because we are simply unable to send a strong signal: e.g., when we analyze the geophysical
structures several kilometers below, even the strongest test explosions or vibrations lead to very small and hard-to-
detect reflected signals. Sometimes, it 1s potentially possible to send a stronger signal, but this stronger signal may
damage or even destroy the very object that we are interested in: e.g., a strong test vibration may damage the tested
plane, powerful X-rays may hurt or even kill a patient, etc. In such situations, we are forced to restrict ourselves to
weak signals only.

The weakness of the signals is both a curse and a blessing. On one hand, from the viewpoint of the result,
it is clearly a curse because when the signals are weak, the signal-to-noise ratio goes down, and the quality of
reconstructing the desired values ¢; deteriorates. On the other hand, from the viewpoint of the computational
complexity, weakness is a blessing. Indeed, when the dependencies f; are smooth (and they are normally smooth),
we can expand each function f; in Taylor series in z;:

24
filze, ... x0) = f:(0, .. +Zafl.j+1. %'l’j'l’k+u~ (1)

Since the values x; are small, we can neglect terms which are quadratic and of higher order in z; and safely assume
that the dependence of y; on x; is linear. Thus, we have a system of equations in which the functions f; are linear
in x;. This linearity makes computations simpler than in the general non-linear case.

Sometimes, the dependence of y; on z; is slightly non-linear. The quadratic terms in the equation (1) can
be neglected if the signal ; is weak, and if the second derivatives are reasonably small (i.e., if the dependencies f;



are sufficiently smooth). If one of these two conditions is not satisfied, then the quadratic terms can no longer be
neglected, and we have a non-linear dependence. So, if a signal is weak but the function f; is not very smooth, we
must take non-linearity into consideration when solving an active inverse problem.

Traditional viewpoint: this minor non-linearity is of minor importance. Traditionally, the above-described
non-linearity is viewed (correctly) as a second order term. It is definitely extremely important to take non-linear
terms into consideration if we want a superaccurate reconstruction. However, in most practical problems, when this
super accuracy is not needed, this non-linearity is a minor term that is rather a nuisance than a serious problem.

What we are planning to do. In this papers, we will show, by analyzing the cases of non-destructive evaluation of
aerospace structures and mammograms, that this small non-linearity can actually be of great practical importance.

2. NON-LINEARITY CAN BE OF GREAT PRACTICAL IMPORTANCE

In many practical problems, it is very important to test smoothness. In many practical problems, we must
check whether a given object is smooth or whether it has non-smooth areas. For example, when we test an aerospace
structure, we must check whether it is still safe to fly, or it has cracks, holes, or other faults. Similarly, the main
problem of mammography is to detect small non-smoothnesses in the mammal (small clots, cracks, etc.), which may
indicate a tumor. In both cases, we must detect possible non-smoothness.

Non-smoothness leads to non-linearity. If a tested structure has no faults, then the surface is usually smooth.
As a result, the dependencies f; are also smooth. Since we are sending relatively weak signals ; (strong signals can
damage the plane), we can neglect quadratic (and higher order) terms in Taylor series and only consider linear terms
in these series; thus, the dependency will be linear.

A fault (e.g., a crack) is, usually, a violation of smoothness. Thus, if there is a fault, the structure stops being
smooth; hence, the function f; stops being smooth, and therefore, linear terms are no longer sufficient. Thus, n the
absence of fault, the dependence is linear, but with the faults, the dependence is non-linear.

So, we can detect the fault by checking whether the dependency between y; and =; is linear.
Comment. The idea that non-linear terms can be helpful has been suggested some time ago; see, e.g., Ref. 2.

Non-linear terms simplify the detection of non-smoothness. When a smooth object acquires a fault, two
changes occur in the dependence of y; on z;: first, linear terms change; second, non-linear terms appear. Thus, there
are two possible methods of detecting non-smoothness: we can compare the linear response with the response of an
ideal (smooth) object, or we can try to detect non-smoothness by finding non-linearity.

The first method works well if we do know the ideal response function f;. However, in some cases, e.g., in
mammography, we do not know the linear response of the fault-less object. Or, alternatively, we may know the
original response, but we also know that this response can change not only because of faults, but also because of
stress, material wariness, and other factors that do not necessarily mean that there is a dangerous fault inside. In
such cases, we cannot detect the fault by comparing the current linear response with the ideal one; however, if we
detect non-linear terms, it is a clear indication that there are some faults inside.

The resulting proposal: main idea. As a result of the above analysis, we propose the following way of detecting
faults:

e We apply different signals z; to the object, and measure the response y;.

o If the measurement results are consistent with the linear dependence of y; on z;, this means that there are no
faults, and no further testing is needed.

e If the measurement results are inconsistent with the linear model, this means that there is a fault, and so
further thorough tests are needed.

Checking linearity is easy. As a result, for non-destructive evaluation of aerospace structures, we get a simple test
that enables us to save time and resources (necessary for the detailed solution of the inverse problem) by limiting
this detalization only to the cases when the presence of the faults was revealed by non-linearity.

Let us confirm that non-smoothness leads to non-linearity. To show the above non-linearity is indeed
practically detectable and thus, practically useful, we will present mechanical analysis and experimental results.



3. MECHANICAL ANALYSIS OF NON-LINEARITY

In this section, we present a simplified mechanical explanation of non-linearity. This explanation is too oversimplified
to explain the quantitative experimental results, but it explains, on the qualitative level, why non-linearities do occur.

In order to understand how non-linear effects can occur, let us first describe how the signal travels through a
fault-less plate. In this case, at the location of the transmitter, we send, at any given moment of time ¢, the signal
z(t) = A - cos(w -t). This signal travels to the receiver (measuring device) with a velocity equal to the speed of
sound. For simplicity, we can assume that the plate is homogeneous, so at any point, we have the same speed of
sound v. Thus, while traveling from the transmitter to the receiver, the signal gets delayed by the amount of time
At = d/v, where d is the distance between the transmitter and the receiver. As a result, at any moment of time ¢,
the values of the observed signal y(¢) is proportional to value z(¢t — At) that the input signal had At seconds ago:
y(t) =k - x(t — At), where the coefficient k describes the loss of amplitude.

Thus, for a fault-less plate, we indeed have a linear dependence between the transmitted signal z(¢) and the
measured signal y(¢).

Let us now consider the case when a fault lies between the transmitter and the receiver. This fault may be a
crack or a hole. In this case, we can also use the formula y(t) = k - #(t — At), where At is the delay. However, this
delay can no longer be computed simply as d/v, because, in addition to going straight through the material, the
signal has to go either through or around the crack. In both cases, the presence of the crack changes the travel time:

e If the ultrasound has to travel through air, then it is delayed because the speed of sound in the air is smaller
than the speed of sound in the solid body.

e If the ultrasound has to go around the crack, then the speed of sound stays the same, but the length of the
path increases; and so the signal is also delayed.

In both cases, the delay At between the transmitter and the receiver can be computed as At = d/v + ky - dy, where
dyp is the linear size of the fault, i.e., the distance between the front and the rear borders (“walls”) of the fault area
(front and rear with respect to the transmitter), and the coefficient k; describes how fast the signal passes the fault
area. As aresult, the measured signal is equal to y(t) = k-2(t — At) = k- A-cos(w -t —w - At). Since we are interested
in detecting small faults, the value dy is small, so we can expand the expression for y(¢) in terms of dy and keep only
the first few terms. As a result, we get the following formula

y(t) = A -cos(w-t—w-dp/v)+ ks do-A-sin(w-tw-ds/v) + o(do). (2)

Before we send the signal, the plate is immobile, and the distance dy stays constant: do(t) = déo). However, as
we transmit the signal z(?), the plate starts vibrating, and this vibration changes the position of both borders and
therefore, changes the distance dg: dy = dp(t). In order to describe this change, let us denote the distance between
the transmitter and the fault’s front border by d;. By the time the signal reaches this left border, it is delayed by
the time df /v, i.e., takes the form font(t) = kfront - A - cos(w -t —w - dy /v). This vibration causes the corresponding
change in the location of this front border: instead of being equal exactly to dy, this location oscillates around ;.
At any given moment of time, the change in location is proportional to the amplitude #sont(t) of oscillating signal:

diront () = df + kmov * Trront(t) = df + kmov - kfront - A - cos(w -t —w - (df /v)),
for some coefficient kpov.
Similarly, the signal that passes to the rear border gets delayed by =~ d;/v+ k; .dgo). Thus, the location location
of the rare border also changes, as
dreor(t) = df + kmoy - Trear(t) = df + kmoy - kivont A - cos(w -t — w - (df /v) — w - kg - d))).
As a result of these slightly different oscillations, the size dg(?) = dreal(t) — divont(t) also changes with time. We have

already mentioned that the size dg is small, so we can expand the expression for do(¢) in terms of déo) and keep only
the first few terms. As a result, we get the following formula:

do(t) = d + kmoy - krront - A -w - kg - dY) - sin(w -t —w - (dy /v)) + o(d\). (3)

Substituting (3) into (2), we get, in y(¢), in addition to terms proportional to cos(wt), also quadratic terms sin®(wt)
which lead to double frequency terms in the Fourier transform of y(¢). These terms are proportional to AZ%.

Similarly, we get cubic terms, etc.



4. EXPERIMENTAL CONFIRMATION OF NON-LINEARITY

First experiments: pseudo-random signals. The first experimental confirmation that for an ultrasonic scan,
faults do cause non-linear terms, was presented in Ref 9. Namely, it was known that for a fault-less plate, the
dependence between the transmitted signal z(¢) and the measured signal y(¢) is linear, i.e., y(t) = [ A(t —s)-z(s) ds
for some function A(#). It turned out that for a plate with a fault, this dependence is non-linear: namely, cubic terms
must be taken into consideration. To detect this non-linearity, the authors of Ref. 9 used pseudo-random signals that
combine components of several different frequencies with pseudo-random amplitudes and pseudo-random phases.

The data from® shows that the amplitude of the cubic term is roughly proportional to the cube of the linear fault
size. Thus, not only the non-linear terms indicate the presence of the fault, but also the value of the cubic term can
be used to determine the size of the fault.

Pseudo-random signals are difficult to generate, so, it is preferable to use simpler test signals. In
practice, it is difficult to generate pseudo-random signals. It is therefore desirable to confirm that non-linearity can
be also observed for simpler signals, e.g., for sinusoid signals.

Experiment with sinusoid signals: a hardware part. In our experiment, as a signal z;, we sent an ultrasound
wave. To generate this wave, a sinusoid electric signal #(t) = A - cos(w - ) was sent to the transducer, which then
generated an ultrasonic wave in the tested object. The transducer was set at an angle of incidence of 31° with the
plate, so that a wave would go along the surface of the plate (such waves are called Lamb waves; see, e.g., Refs. 2-5,8.

If the transducer was ideally linear, then we would get an ultrasonic wave of the exact same frequency and of the
same sinusoid shape as the original electric signal. In this case, to detect the non-linearity of the plate, it would be
sufficient to place a single sensor on the plate and check whether the signal y(¢) measured by this sensor depends
linearly on «(t).

In reality, however, the transducer is somewhat non-linear; as a result, the ultrasonic signal sent to the plate
contained components at frequencies different from the original frequency w: it has components which are slightly
different from w, and it also has higher harmonics, 1.e., frequencies close to 2w, 3w, etc. We chose w = 500K H z; for
this frequency, the ultrasonic signal is mainly located in the frequency area from 350 to 650 KHz.

To separate the non-linearity of the transducer from the non-linearity of the plate itself, we placed two sensors
on the plate: the first sensor is located near the transducer, and it measures the ultrasonic wave #,(¢) that the
transducer generates; the second sensor is located at a distance from the transducer, and it measure the wave ()
changed after passing through the plate. Then, we check whether x2(¢) linearly depends on 1(%).

How to check non-linearity: general discussion. The detection of non-linearity is based on the fact that the
general linear time-invariant dependency has the form z5(t) = [ A(t — s) - 21(s) ds for some function A(t). In terms
of Fourier components, this dependency takes a simple form #s(w) = fl(w) - #1(w). Thus, to check whether the
dependence is linear, it is sufficient to check whether, for each w, the Fourier component #5(w) is a linear function
of the Fourier component #;(w).

How to check non-linearity: ideal case. If the signal #;(¢) is purely harmonic #1(¢) = A - cos(w - t), then it has
only one Fourier component, and all we have to do to check non-linearity is to take different amplitudes A, and to
plot the absolute value of the corresponding Fourier component |#2(w)| of the signal measured by the second sensor
as a function of A = |&1(w)|. Instead of the absolute values of the Fourier components, we could take their energies
B3 = |22(w)|? and Ey = |#1(w)|?; if the dependency of xa(t) on x1(t) is linear, then 3 is a linear function of Ej:
Es=k- FE.

Due to the inevitable noise, the measured energy at the second sensor also contains a noise component, i.e.,
Ey =k E1+n, where n is the energy of the noise. Crudely speaking, if the dependence between E; and FE is linear,
this means that z5(¢) linearly depends on x1 (%), otherwise, the dependence of #4(t) on #1(¢) is non-linear.

How to check non-linearity: main idea of the practical method. In our case, the original electric signal has
only one Fourier component with the frequency w = 500 KHz, but, as we have mentioned, due to the non-linearity
of the transducer, the resulting ultrasound wave has components in a certain vicinity of this original frequency. As
a result, the signal’s energy is distributed over the resulting range of frequencies. Thus, instead of the value |#2(w)]
corresponding to a single frequency, we took the total energy Eo = [ |£2(w)|? dw of the signal in the frequency range,
where the integral is taken over the entire range of frequencies [350 KHz, 650Khz]. Similarly, for the first sensor, we
take an integral By = [ |21(w)|* dw. We then check whether E» is a linear function of Ej.



The choice of an object. In our experiments, as a sample object, we took an aluminum 6065 plate; its size is
36 x 18 in, its thickness is 1/16 in. Initially, we performed the measurements on the undamaged plate. Then, we
simulated a crack by sawing across the 18 in width of the plate with a fine tooth hand saw. The crack is at the
middle of the plate. The two sensors were placed at an equal distance from the crack (or, for the un-damaged plate,
at an equal distance from the center line where we later cut in a crack).

The choice of a signal. We wanted to make sure that the first sensor really measures the original ultrasound wave.
Therefore, we restricted our signals only to the first moments of time after the beginning of the experiments, before
the wave reflected from the plate’s borders gets back to the location of the first sensor. To be able to separate the
original signal from its later reflections, we generated only five cycles of the 500 KHz wave.

To check for non-linearity, we repeated this experiment at several different voltage levels of the original electric

signal: OV (pure noise), 6V, 7V, 8V, and 9V.

The choice of sampling frequency. We used a sampling frequency of 10 million samples per second (MSPS),
i.e., 20 samples per cycle (we first tried 5 MSPS, but the noise was too high to make any conclusions, so we had to
double the sampling frequency).

Filtering out reflections and the original noise. Based on the geometry of the plate and on the known speed
of sound waves, we estimated (and later experimentally confirmed) that the reflection starts in at least 250 points
after the original signal, and that the entire signal (before reflection) occurs in the first 2500 data points, so we only
measured the first 2500 data points.

The entire 2500-point data starts as noise (no signal), then contains the signal, and then has the signal mixed
with the reflections. To separate the signal from the original noise and from the following reflections, we selected 256
points out of the 2500 available. As a criterion for selecting the front edge of the data, it is natural to chose the first
instance when the measured signal exceeds a certain portion of the maximum amplitude. Based on our observations,
we have chosen 1/6 as this portion. So, for each sensor k (k = 1,2), we computed the largest value Apax of all 2500
amplitudes, found the first point ¢; at which the measured value z;(¢;) was larger than or equal to Apax/6, and
counted a total of 256 points xy(¢;), 2x(ti41), - - -, #5(titas5). Then, we applied FFT to the selected data, and used
this FFT to compute the total energy Fj, of the signal in the frequency interval [350 KHz, 650Khz].

We further decreased noise by repeating the measurements. To decrease the noise, we repeated each five-
wave burst 200 times, and averaged the signals before processing them. To estimate the measurement accuracy,
we repeated the same 200-burst experiment ten time. Then, as a result of measuring energy, we took an interval
[E}, Eff] between the smallest and the largest of the resulting ten values.

How to check non-linearity: formulation of the problem. As a result of the measurements, we got several
intervals [E7(V), Ef (V)] and [E5 (V), EF (V)] corresponding to different voltages V. We know that for each voltage,
the actual (unknown) values of the energy E1(V) and E2(V) lie within the corresponding intervals. The question
is: is this data consistent with the assumption that F3(V') is a linear function of E1(V)? Or, in other words, it is
possible to find real numbers k > 0, n, and values Ey(V) € [E7(V), Ef (V)] and Eo(V) € [E5 (V), EF (V)] for which
Ey(Vy=k-E (V)4 n?

How to check non-linearity: derivation of an algorithm. For each V| we want to have a value of Ea(V)
that satisfies the following two properties: first, it belongs to the interval [E5 (V), EF(V)], and second, it can be
represented as k - E1(V) +n for some E1(V) € [E7 (V), Ef (V)]

Let us first assume that the values k > 0 and n are given. Since k > 0, the function k - E1(V') 4+ n is increasing,
and so, for each V', when E, (V) takes values from the interval [E] (V), Ef (V)], the expression k- E1(V) + n takes
values from the interval [k - E7 (V)4 n, k- Ef (V) 4+ n]. Thus, the above two conditions on Fo(V) mean that Ey(V)
must belong to two different intervals: [E5 (V), EF (V)] and [k - E7 (V) + n, k - E;F(V) + n]. This is possible if and
only if these two intervals have a non-empty intersection, i.e., if £5 (V) < k-Ef (V)4+nand k- BT (V)+n < EF (V).

Now, the question is: when is it possible to find & > 0 and n for which these inequalities hold for all V7 Let
us first assume that & is given. Then, by moving n into one side of each inequality, we can reformulate the above
inequalities in the following way: E5 (V) —k-EFf (V) < nand n < EF (V) —k - E7 (V). Such a value n exists if
and only if all the lower bounds for n are smaller than or equal to all the upper bounds for n, in other words, if
E;(V)—k-Ef (V)< B (V') =k - E7 (V') for all possible values of V and V.

So, the original question can be reformulated as follows: does there exist a value k for which this inequality is
true for all V and V’/? We can somewhat simplify this inequality by moving all terms which contain k to one side and



all other terms to another side. As a result, we get the inequality k- (E7 (V') — B (V) < Ef (V') — EZ (V). In our
case, the energy of the wave monotonically increases with the voltage V, so that if V < V’, then Ef (V) < E_ (V).
Hence, when V' < V’, the above inequality is equivalent to

and when V > V' the above inequality turns into

£y (V) = B3 (V')
EY (V)= Er (V)

<k

Such a value k exists if and only if all lower bounds for k& are smaller than or equal to all the upper bounds for &,
i.e., when

L ES(V)=ERV) _ BHV) = Er (V) W

VISV EF(V) = B (V) = V<VIEL (V) = Ef (V)

How to check non-linearity: the resulting algorithm. To check non-linearity, we must check the inequality
(4).

Experimental results.

V[ ETOV), EF (D] | IES (V) B (V)] || [ET (V), EX (V)] | [E2 (V), ES (V)]
undamaged, 10 | undamaged, 10° damaged,10° damaged, 10*
ov [0.00,0.01] [0.00,0.01] [0.02,0.03] [0.06,0.11]
6V 2.65,2.66 1.59,1.61 0.69,0.70 0.23,0.28
vV 3.12,3.14 1.86,1.88 0.87,0.92 0.14,0.23
8V 3.62,3.64 2.16,2.18 1.05,1.08 4.75,4.84
9V 4.59,4.69 2.70,2.80 1.28,1.32 5.57,5.80

In the undamaged case, we clearly have a linear dependency (E2(V) = 0.6 - E1(V')), while in the damaged case, the
dependence is clearly non-linear.

Why did nobody notice this non-linearity before? Our experiments do not require very complicated and
accurate equipment, they use standard sensors and transducers. So why did not anybody make these experiments
before? The main reason is that before, people used just one signal level (e.g., the highest possible), to detect the
faults. The use of only one signal level is justified if the response is linear: then, another input level will not lead to
any new information. To detect non-linear terms, however, we must use at least two different input levels.

5. PRACTICAL RECOMMENDATION: BRIEF SUMMARY

Main recommendation. To detect the faults, we must use at least two different signal levels. If the increase in the
signal level z; leads to a proportional increase in the measured values y;, then most probably the object is smooth.
If the dependence of y; on z; is non-linear, then, most probably, there is a fault, so further analysis is needed.

Auxiliary recommendations. Since it is important to detect non-linearity, it is important not to smoothen and
linearize the signal (or the image) if this signal (image) is to be compressed. To overcome the smoothing aspects of
lossy compression and following decompression, it is therefore important to enhance the image before compression.
For example, one of the successful enhancement methods consists of replacing the brightness value & at each pixel by
a so-called selective median of its neighbors, i.e., by a median m if |# — m| < ¢ for some fixed ¢, and by the original
value  otherwise.

A general comment about checking non-linearity. After K measurements, we have K sets of data

i‘(lk), . ..,iﬁlk),gg’“), . ..,gﬁ,’?, 1 < k < K. Often, we do not know the probabilities of different measurement er-
rors, we only know the upper bounds for these errors. So, we know the intervals ng), .. .,XT(Lk),Yl(k), .. .,Yn(qk) of

possible values of the measured quantities. We want to check whether this dependence can be linear, i.e., whether
these exist coefficients ¢;; for which, for every k and j, > ¢;; - x;k) € Y]»(k) for some J:Ek) € XZ»(k). This is a known



problem of interval computations: check whether the given system of interval linear equations is solvable (here, the
unknowns are ¢;;, interval coefficients are XZ»(k) and Yj(k)).

Our main concern is not to miss the fault, so we need guaranteed methods. Thus, we need to use interval
(guaranteed) methods for solving linear interval systems (see, e.g., Refs. 1,6,7,10,11).
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