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Abstract

The main objective for the research presented in this special issue is to advance theoretical
basis in soft computing, for the purpose of improving applications.

Why is this theoretical research needed? Because soft computing in general (and intelli-
gent control and decision making in particular) are, in many aspects, still an art. To make
this methodology easier to apply, we must use the experience of successful applications of fuzzy
control, decision making or classification and extract formal rules that would capture this experi-
ence. To be able to do that efficiently, we must understand why some versions of soft computing
methodology turned out to be more successful in some practical situations and less successful in
others. In other words, to advance the practical success of soft computing methodology, we need
further theoretical analysis of soft computing — analysis targeted at enhancing its application
abilities.

Introduction

1.1 Who Are We?

This issue contains the results presented at the Czech-US Seminar on Current Trends in Soft

Computing (June 16-19, 2001, Roznov pod Radhostem, Czech Republic).

This workshop combined the efforts of US-based Rio Grande Institute of Soft Computing
(RioSoft) and the Czech-based Institute for Research and Applications of Fuzzy Modeling (IFARM)

of the University of Ostrava.

The Institute for Research and Applications of Fuzzy Modeling is an organizational unit at the
University of Ostrava. Since its opening in 1996, more than 130 publications has been published

by its 9 researchers.



The Rio Grande Institute for Soft Computing is a consortium of researchers from New Mexico
State University, New Mexico Highlands University, New Mexico Institute of Mining and Technol-
ogy, University of New Mexico, and University of Texas at El Paso. It was formed in 1999 with
a mission to develop and facilitate the application of innovative soft computing technologies for
modeling, prototyping, manufacturing, testing, analysis, and evaluation of processes and systems
which have use both in industry and in government.

1.2 How We Got Together

We have known and used each other’s results for a long time: we regularly meet at the international
conferences, we exchange ideas, results, and problems. In many cases, this exchange of ideas has
led to direct influence: e.g., fundamental results on representing of functions by fuzzy logic proven
by I. Perfilieva — one of the leaders of the Czech team — in [48] was the main motivation for
similar representation results proven by US researchers [27, 36].

Collaboration was boosted during the US visits of Czech researchers. The first boost came when
M. Navara from the Czech team visited US in 1998. During this visit, we published a joint paper
[57] (see also [10]).

The collaboration was really boosted during the extended US visit of two Czech researchers,
V. Novak and I. Perfilieva, in June 2000. They spent a week in Las Cruces and El Paso, giving
presentations and working on joint research topics, and then participated — together with several
researchers from the US team — in the World Automation Congress in Maui, Hawaii. Due to
common interest, this visit was sponsored partly by the Czech granting agency, and partly by the
New Mexico State University and by the El Paso-based NASA-sponsored Pan-American Center for
Earth and Environmental Studies.

During this visit, we completed a joint paper 1. Perfilieva and V. Kreinovich, “A New Univer-
sal Approximation Result For Fuzzy Systems, Which Reflects CNF-DNF Duality” (to appear in
International Journal of Intelligent Systems), and started working on several other joint papers.

Our collaboration was further boosted by a Grant No. W-00016 from the U.S.-Czech Science
and Technology Joint Fund. This grant was partly sponsoring several publications [11, 12, 20, 29,
30, 55, 56, 58, 59|, and it also provided financial support for the Czech-US Seminar on Current
Trends in Soft Computing.

1.3 Motivations for Our Research

In many areas of expertise, such as medicine, geology, etc., human experts are needed. Usually,
there are very few top level experts, and it is not physically possible for these few experts to solve
all numerous related problems. It is therefore desirable to develop a computer-based system which
incorporates the knowledge of the top experts and uses this knowledge either to directly solve the
related problems — or, at least, to provide high-level advise to people trying to solve these problems.

Experts can describe their knowledge in terms of statements and rules, but this formulation of-
ten comes with uncertainty and ambiguity: experts are often not 100% confident in the statements
which form their knowledge, and even when they are, these statements are formulated in terms of
words of natural language (such as “large”) which do not have precise meaning. To adequately
describe the expert knowledge, we must therefore store, in the knowledge base, not only the state-
ments themselves, but also the indication of the degree to which the experts are confident in these
statements.

This degree is in most cases characterized by a number from the interval [0,1]. An expert’s
degree of confidence d(A) in a statement A can be determined, if, e.g., we ask an expert to estimate



his/her degree of confidence on a scale from 0 to 10. If s/he selects 8, then we take d(A) = 8/10.

Suppose now that we know the degrees of confidence d(A) and d(B) in statements A and B,
and we know nothing else about A and B. Suppose also that we are interested in the degree of
confidence of the composite statement A & B. Since the only information available consists of the
values d(A) and d(B), we must compute d(A& B) based on these values. We must be able to
do that for arbitrary values d(A) and d(B). Therefore, we need a function that transforms the
values d(A) and d(B) into an estimate for d(A & B). Such a function is called an “and”-operation
(t-norm). If an “and”-operation fg : [0,1] x [0,1] — [0,1] is fixed, then we take fg(d(A),d(B))
as an estimate for d(A & B). Similarly, to estimate the degree of confidence in A V B, we need an
“or”-operation (t-conorm) fy : [0,1] x [0,1] — [0,1]. A set of truth values (usually, the interval
[0, 1]), endowed with logic-motivated operations like “and” and “or” is called a fuzzy logic [3, 40].

The first two pairs of “and” and “or” operations were proposed by L. Zadeh, the father of fuzzy
logic, in his original paper [61]: fg(z,y) = min(z,y), fv(z,y) = max(z,y), and fg(z,y) = z -y,
fv(z,y) =z +y — z - y. Later, numerous other operations have been proposed: e.g., “bold and”
(Lukasiewicz conjunction) fg(a,b) = max(a + b — 1,0) and “bold or” fy(a,b) = min(a + b,1)
(Lukasiewicz disjunction).

One of the main applications of fuzzy logic is fuzzy control (see, e.g., [28, 42]). In most indus-
trial applications, we want to control the corresponding industrial processes in such a way as to
maximize the output within certain (physical and economical) restrictions. When the correspond-
ing mathematical description is linear, we can use well-known optimal control techniques to find
the optimal control strategy. In reality, however, most industrial processes are non-linear. For
non-linear control problems, the situation is much more complicated: there are good recipes which
often work but, alas, there is still no general method of generating an optimal (or even a reasonably
good) control.

If for a certain industrial process, no known technique leads to a good quality control, what
can we do? Usually, the very fact that this process is actually used in industry means that this
process is reasonably well controlled by human controllers. Therefore, if we want to automate this
control, we must somehow transform the knowledge of these expert controllers (operators) into an
automatic control strategy.

Specifically, our goal is to describe a function which takes the sensor inputs z1, . .., Z,, (numbers)
and generates the (numerical) value of the control effort u. Unfortunately, expert operators cannot
formulate their expertise in these terms. Instead, they describe their control strategy by using
uncertain (“fuzzy”) statements of the type “if the obstacle is straight ahead, the distance to it is
small, and the velocity of the car is medium, press the brakes hard”. Fuzzy control is a methodology
which translates such statements into precise formulas for control.

If the expert rules are simple if-then rules, then, once we have selected a fuzzy “and”-operation
f&(a,b) and a fuzzy “or”-operation fy(a,b), we are able to transform an arbitrary set of simple fuzzy
if-then rules connecting inputs z1, ..., z, and the output u into a crisp function y = f(z1,...,z,)-
Since 1970s, this methodology has been successfully used in many practical problems. Fuzzy con-
trollers are used in areas ranging from camcoder control to car control to controlling chemical
reactions to controlling the temperature on a Space Shuttle; see, e.g., [39].

In particular, a real application of fuzzy control of 5 large aluminium melting furnaces has been
implemented by IRAFM in the Czech Republic in 1996-98 using their original approach based on
fuzzy if-then rules in genuine linguistic form and logical deduction (cf. [45]).



2 Two Problems with the Existing Fuzzy Control Methodologies

In spite of many successes, there is still room for improvement:
e there are many practical problems for which fuzzy control has not been successfully applied;

e there are also many practical problems for which fuzzy control has been applied, but the
quality of the resulting controller is still much worse than the quality of a control performed
by a skilled operator whose knowledge we try to capture in this fuzzy control.

There are two main reasons why the existing fuzzy control methodology needs improvement:

e First, the existing fuzzy control methodology assumes that all the rules formulated by the
expert operators are simple if-then rules. In reality, operators often use more complex linguis-
tic constructions to describe how they control. These constructions may use different hedges,
i.e., words like “very”, “almost”, etc. These constructions may use verbs, adjectives, etc. The
standard fuzzy control methodology can handle only the most primitive hedges, and often
handles them badly. To expand fuzzy control methodologies to the new areas and to improve
the quality of fuzzy control, we must learn how to handle such complex linguistic expressions,
i.e., to handle linguistic uncertainty.

e Second, in addition to well-justified methods and results, the existing intelligent control sys-
tems and expert systems use a lot of heuristic techniques. In particular, in most packages
and real-life applications, only the simplest t-norms and t-conorms are used. When we use a
heuristic method, there is no guarantee that we get optimal results.

It has been theoretically shown that in many situations, an alternative selection of t-norms
and t-conorms can lead to much better quality control; see, e.g., [7, 40] and references therein.
Moreover, in many situations, it is known how to select optimal t-norms and t-conorms. To
improve the quality of the control, we must therefore analyze different t-norms and t-conorms
and learn how to use them in practical problems. We have already done a lot of research in
this direction. Some of these results are published in the mathematician-oriented book [40];
the second book devoted to foundations for intelligent control will appear shortly. However,
there are still many open problems that require a deep mathematical analysis of unusual
structures that naturally appear in the formalization of human reasoning.

At present, there has been some research in both directions outlined above. However, to achieve a
real breakthrough in fuzzy control, we must combine these two directions. It so happened that:

e the Czech team has an expertise in extending fuzzy control to more linguistically complex
rules, while

e the US team has an expertise in analyzing and optimizing t-norms and t-conorms.
Therefore, if we want to push the successful technology of fuzzy control to a new level, we must
collaborate.

3 Research Directions: General Description

In view of the above, we pursued the following directions of joint research:



e First, we further analyzed the possibility of using complex linguistic expressions in intelligent
control and soft computing. This direction was led by the Czech team.

e Second, we continued to analyze which t-norms and t-conorms are optimal in different sit-
uations. This directions was led by the US team, with an active participation of the Czech
team.

e Together, we are working to incorporate all our findings into a single fuzzy control and soft
computing methodology.

For the second direction, we need the following:

e to find the best hedges, t-norms, t-conorms, etc., we must first describe and analyze all possible
t-norms, t-conorms, etc., describe the properties of different operations;

e then, before attempting to find optimal choices, we should analyze the optimal choices that
have already been found by using different numerical optimization/approximation techniques
and by using such soft computing techniques as neural networks, genetic algorithms, etc.; for
this analysis to be successful, we must be able to describe these choices in more understandable
terms; in other words, we must achieve a deep understanding of numerical approximations,
neural networks, and genetic algorithins;

e next, we must be able to solve the corresponding optimization problem:;

e if the result of our optimization is not good enough, we must be able to go beyond the
traditional class of t-norms, t-conorms, etc.; there are two possibilities to go beyond the
traditional classes:

— we can use more general logical values: instead of using the interval [0, 1], we can can
more general structures;

— we can use more general operations with logical values: instead of restricting ourselves to
commutative associative etc, t-norms and t-conorms, we may want to consider operations
which are slightly non-associative, slightly non-commutative, etc.

e finally, from the viewpoint of practical applications, an important issue is computational
complexity; a theoretically optimal control strategy is practically useless if computing the
control value requires more time than we have.

Since all these directions are important, we have been pursuing them all. To give a better idea of
what we are planning to do, let us these directions in more detail.

4 Extending Fuzzy Control Methodology to More Complex Lin-
guistic Expressions

The prevailing applications of fuzzy control are based on simple control rules, like: “if the distance
to the obstacle is small, decelerate fast”. In real life, experts use much more sophisticated linguistic
constructions to describe their control rules. For example, they use hedges, i.e., words like almost,
somewhat, etc. One of the main objectives of the Czech research group is to formalize and use this
sophisticated linguistic information in fuzzy control and other applications of fuzzy logic.



This research started with the the monograph [43]. Since the publication of this monograph, the
Czech team has extended this approach to a general foundations of fuzzy logic and its applications
[47]. Novak has also published a monograph [42] on general theory and applications of fuzzy sets.
Other leading persons of the Czech team who are participating in this project are Irina Perfilieva
and Jif{ Mockor.

The Czech team has applied their approach to challenging important real-life problems ranging
from furnace control to problems related to safety of nuclear power plants.

5 Analysis of All Possible t-Norms, t-Conorms, etc.

The preliminary results of this analysis are described in [40]. This work is mainly done by E. A.
Walker and C. Walker from the US team.

A promising special direction is the use of category theory to analyze fuzzy logics and fuzzy
sets. Category theory is the foundations of modern algebra and modern mathematics, and it is
definitely desirable to apply its rich ideas to the analysis of fuzzy logics. This research has been
done separately both by C. Walker from the US team and by J. Mockor from the Czech team.

6 Understanding the Relation Between Numerical Approxima-
tions, Neural Networks, Genetic Algorithms, and Fuzzy Logic

We can approach the problem of finding the optimal fuzzy control as a numerical optimization
problem. There exist many techniques for solving this problem, ranging from crisp methods based
on numerical optimization and approximation to soft computing techniques such as In control
problems, neural networks can learn from patterns and simulate the control decisions of expert
controllers. Genetic algorithms can be used to optimize in difficult-to-optimize situations — and
fuzzy control is definitely one of such situations.

From the practical viewpoint, numerical optimization techniques, neural networks, and genetic
algorithms are very successful in optimization. However, the results of these optimization techniques
are often difficult to interpret. Indeed, fuzzy control rules, by definition, are formulated in terms
of natural language and are, therefore, easier to understand and to analyze. In contrast, e.g., a
neural network is described in terms of weights and connections, which are difficult to grasp and
to analyze.

As we have mentioned, heuristic methods are often far from being optimal. To find optimal
solutions, we must therefore be able to reformulate numerical approximation techniques, neural
networks, and generic algorithms in terms which are easier to analyze, i.e., ideally, in terms similar
to the terms in which we reason. In other words, we must find an interpretation of neural networks
and genetic algorithms in terms of fuzzy logic.

The attempts to find such an interpretation are an ongoing effort. For approximations, an
interpretation in terms of fuzzy logic was pioneered by I. Perfilieva from the Czech team; see, e.g.,
[44, 49, 50]. Some research in this direction was also done by researchers from the US team; see,
e.g., [7, 24, 33].

For neural networks and genetic algorithms, some preliminary unpublished results, by A. Di
Nola and V. Kreinovich, have been discussed at the workshop. These results — obtained mainly by
the US team — are also based on the earlier mathematical foundational results by 1. Perfilieva from
the Czech team [48].



7 Finding Optimal t-Norms and t-Conorms for Different Opti-
mization Problems

The explaination of the current empirically optimal selections in various areas of soft computing,
ranging from the choice of t-norms and t-conorms in fuzzy logic to the choice of activation functions
in neural networks, is given in [26].

In particular, for t-norms and t-conorms, the following results hold:

e If we are looking for the smoothest control, then the best choice is to use fg(a,b) = a-b and
fv(a,b) = min(a,b) [7, 14, 15, 54].

e If we are looking for the control that is most robust (i.e., least sensitive to the inaccuracy
with which we measure the membership functions), then, depending on what exactly we are
looking for, we can get two different results:

— if we are looking for the control that is the most robust in the the worst case, then the
best choice is to use fg(a,b) = min(a,b) and fy(a,b) = max(a,b) [25, 31, 34, 32, 40];

— if we are looking for the control that is the most robust in the average, then the best
choice is to use fg(a,b) =a-band fy(a,b) =a+b—a-b[25, 32, 35, 40];

— instead of minimizing the average error, we can try to minimize the corresponding entropy
[4, 5, 13, 51, 52, 53]:

* if we use the average entropy (in some reasonable sense), we get the same pair of
optimal functions as for average error;

* for an appropriately defined worst-case entropy the optimal operations are fg (a,b) =
min(a,b) and fy(a,b) =a+b—a-b.

o If we are looking for the model that is the fastest to compute, then the best choice is to use
f&(a,b) = min(a,b) and fy(a,b) = max(a,b) [16].

¢ Finally, if, in control applications, we are looking for the most stable control for a given system,
then the best choice is to use fg(a,b) = min(a,b) and fy(a,b) =a+b—a-b[13, 14, 15, 54].

These optimization results are in good accordance with the general group-theoretic approach that
enables us to classify techniques that are optimal relative to arbitrary reasonable criteria [1, 14, 15,
27, 54].

This approach is a general approach to optimization under uncertainty. In practical applications,
we often need to make a selection in the situation in which we do not have a complete knowledge.
For example, when we design an “optimal” image processing system for a rover going to a distant
planet — but we do not know what kind of images to expect. We want to optimize message processing
algorithms on the Internet — but these algorithms will then be hardwired and use for several years,
and we do not know how exactly Internet will change and how what type of message will be routed
during these years.

In traditional mathematical optimization problems of optimization without uncertainty, the
relative quality of different alternatives is described by an objective function. In optimization
under uncertainty, we do not have an objective function. We know that there is some preference
relation — or, in mathematical terms, a partial pre-order.

In many practical problems, we also have natural symmetry operations so that the preference
relation should naturally be invariant with respect to these symmetries. It turns out that in many



practical situations, this invariance is sufficient to find — if not the optimal solution, but at least
a small class of possibly optimal solutions. In our book [26], we have shown that this approach
explains many heuristic methods in computer science, such as a choice of an activation function in
neural networks, congestion-avoiding routing algorithms, etc. Since then, we have successfully used
this idea in many other problems including imaging (e.g., visible shapes of extraterrestrial bodies
can be naturally explained within this approach).

8 Analyzing More General Sets of Logical Values

Traditional fuzzy control methodology is mainly oriented towards values from the interval [0, 1].
In many real-life situations, when the traditional approach does not work well, it is reasonable to
consider more general sets of logical values. The research into such general algebraic description is
mainly done by the Czech team, with the participation of A. Di Nola.

A specific case of sets of logical values was also analyzed by the US team. Specifically, the need
for more general logics comes from the fact that just like experts are not sure about the statement
S, they are also not sure about their own degrees of belief d(S). Thus, instead of a single number
d(S), we can consider several possible numbers d, with degrees da(d) describing to what extent
these numbers are adequate descriptions of the original expert’s uncertainty. This “second-order”
approach has several successful applications. In principle, it is possible to go further and consider
the fact that the degrees da(d) are also not given precisely, so we seem to need the third-, fourth-
order etc, approaches. However, in practice, such theoretically possible approaches turned out to
be not useful. This fact can be explained if we take the multiresolutional character of reasoning
into consideration:

e On the one hand, every “first-order” and “second-order” logic, in which the set of degree of
belief is an ordered set, can be naturally described as a limit of an interval-related multires-
olutional procedure [8, 9, 23, 60].

e On the other hand, if degrees come from words, then the third order is no longer necessary
[11].

It is natural to select a continuous approach which best reflects the multiresolutional character of
human reasoning, i.e., in which there is a qualitative difference between different pairs of degrees.
A natural way to describe this difference in continuous case is to use the approach of non-standard
analysis, with the actual infinitesimal elements (= lexicographic ordering). The optimal selection
of such logics is described in [18, 37].

Eventually, we plan to combine these two directions.

9 Analyzing Possible Non-Associative Operations

Since A&B and B&A mean the same thing, it is natural to require that our degree of belief in
A&B be the same as our degree of belief in B&A, i.e., that the and-operation is commutative.
Similarly, from the fact that A&(B&C) and (A& B)&C mean the same thing, we can conclude that
the and-operation is associative. So, & is a semigroup operation. Similarly, “or”-operation V is
a semigroup operation, etc. So, we have several related semigroup (and other) operations on the
same ordered set.

This fact is well known in computer science, and researchers in Al have been using the circa
1950s-1960s classification results for ordered semigroups to design and enhance their systems. Some



of these results have led to drastic improvements in the quality of the corresponding intelligent
control systems and and expert systems.

Let us also remark that the use of “and” and “or” connectives in natural language is much more
intricate than can be captured by simple associative and commutative operations used till now (cf.,
e.g. [17]). This is another, very important motivation for study of non-associative operations.

However, there is still a gap between formalisms — in which algebraic properties like associativ-
ity are always true — and actual operations used by human experts in which all these properties are
only approximately true. There are many empirical examples of non-associative, non-commutative,
etc. operations. However, in our mathematical description of uncertainty in human reasoning, we
stick with the associative operations simply because not much is known about non-associative ones.
To bridge this gap, we need a deep mathematical analysis of the empirical operations, with the hope
of extracting new weakened properties (something like “approximately associative”) that would en-
able us to get reasonable mathematical results. We have already started this work, and obtained
interesting mathematical results. These results are not yet at the level of deep general theorems,
but even at the current weak level, they have interesting applications: for example, we are now
able to have an explanation for the empirical 7 4+ 2 rule, according to which experts usually use
between 5 and 9 degrees of belief to describe their uncertainty.

Specifically, it is known that for given p; = p(S1) and pa = p(S2), possible values of p(S; & S2)
form an interval p = [p~,p™], where p~ = max(p; + p2 — 1,0) and p™ = min(p;, p2); and possible
values of p(S; V S2) form an interval p = [p~, p*], where p~ = max(p1, p2) and p* = min(p; +po,1)
(see, e.g., a survey [38] and references therein). So, in principle, we can use such interval estimates
and get an interval p(C) of possible values of p(C). Sometimes, this idea leads to meaningful
estimates, but often, it leads to a useless p(C) = [0, 1] [38, 41]. In such situations, it is reasonable,
instead of using the entire interval p, to select a point within this interval as a reasonable estimate
for p(S1 & Ss) (or, correspondingly, for p(S1 V S2)).

Since the only information we have, say, about the unknown probability p(S; & S2) is that it
belongs to the interval [p~,pT*], it is natural to select a midpoint of this interval as the desired
estimate:

o

ef

1 ]
fe(p1,p2) = - -max(py +p2 —1,0) + 3 min(py, pa);

N =

def 1 1 .
fu(pr,p2) = 3 - max(p1,p2) + 3 min(p; + po,1).

This midpoint selection is not only natural from a common sense viewpoint; it also has a deeper
justification. Namely, in accordance of our above discussion, for n = 2 statements S; and So,
to describe the probabilities of all possible Boolean combinations, we need to describe 22 = 4
probabilities z1 = p(S1 & S2), 2 = p(S1 & —S2), z3 = p(—=S1 & S2), and z4 = p(—S1 & —52); these
probabilities should add up to 1: z1 4+ 9 + 3+ z4 = 1. Thus, each probability distribution can be
represented as a point (z1,...,24) in a 3-D simplex s = {(z1,%9,%3,24) |z; > 0& 1 +...+ 24 = 1}.
We know the values of p1 = p(S1) = 21 + 22 and py = p(S2) = z1 + 3, and we are interested
in the values of p(S; & S2) = z1 and p(S; V S2) = z1 + z9 + z3. It is natural to assume that a
priori, all probability distributions (i.e., all points in a simplex s) are “equally possible”, i.e., that
there is a uniform distribution (“second-order probability”) on this set of probability distributions.
Then, as a natural estimate for the probability p(S; & S2) of S1 & S2, we can take the conditional
mathematical expectation of this probability under the condition that the values p(Si) = p1 and
p(S2) = pa:
E(p(S1& 82) | p(S1) = p1 &p(S2) = p2) =

P(.’L‘1|$1 +xz9 =p1 &x1+ 23 =p2).



The problem is that these operations are non-associative. Why is this a problem? If we are
interested in estimating the degree of belief in a conjunction of three statements S & Ss & Ss,
then we can either apply the “and” operation to p; and p, and get an estimate fg (p1,p2) for the
probability of S; & S2 and then, we apply the “and” operation to this estimate and p3, and get an
estimate fg (fg(p1,p2),p3) for the probability of (S1 & S2) & Ss. Alternatively, we can get start by
combining So and S3, and get an estimate fg (p1, fe.(p2,p3))- Intuitively, we would expect these
two estimates to coincide, but, e.g., (0.4&0.6) & 0.8 = 0.2& 0.8 = 0.1, while 0.4& (0.6&0.8) =
0.4&0.5=0.2 #0.1.

How can we solve this problem? Since we know that the numerical values are only an approxi-
mation, we can analyze how non-associative the above operations can be. If the difference is below
the natural resolution level, then, from the practical point of view, the above operations are as
good as associative ones. The following is true [2, 20]:

max | e fula,b),) — fu(a fu (b )] = 5

"Wy

max |fy(fv(a,b),c) = fv(a, fu(b,c))| = %

Each word describing a degree of belief is a “granule” covering the entire sub-interval of values.
Thus, non-associativity is negligible if the corresponding realistic “granular” degree of belief have
granules of width > 1/9. One can fit no more than 9 granules of such width in the interval [0, 1].
This may explain why humans are most comfortable with < 9 items to choose from — the famous
“7 plus minus 2” law; see, e.g., [21, 22].

10 Reducing Computational Complexity of the Existing Tech-
niques

In addition to a purely mathematical problem of developing new techniques, we face the problem
of decreasing the computational complexity of the corresponding algorithms. Most problems of
optimization under uncertainty are NP-hard even if consider only the degenerate case of interval
uncertainty [6]. It is therefore important to develop new methods for interval and fuzzy computa-
tions. Since the main reason why the corresponding computational problems are so complex is the
presence of constraints that limit possible combinations of values of different variables, our plan
is to concentrate on computations under such constraints, i.e., on constrained interval and fuzzy
arithmetic. We have started doing a joint research in this direction [11, 57], and we plan to continue
this work.

An important approach to reducing computational complexity is the approach of granularity. In
contrast to data processing, where all the real numbers come from measurements, in fuzzy systems,
the degrees of belief come from expert estimates. Although we use real numbers to describe such
degrees, but in reality, an expert cannot describe his degree with too large an accuracy: hardly
anyone can distinguish between, say, degree 0.81 and 0.82. So, although we use real numbers, in
reality, we should combine these real numbers into finitely many granules (clusters), and reduce
the computational complexity by using, instead of the entire real number, only the index of the
granule to which it belongs. Granules do not have to be crisp sets, they can be fuzzy sets as well.

This granular approach have been partly pursued by researchers from both teams. At the
workshop, V. Novak described a new approach in which granules are characterized by membership
functions whose description (in a fixed formal language) is short (see [46]). This promising approach

10



to granularity seems to be closely related to Algorithmic Information Theory (theory of Kolmogorov
complexity) [19] where a complexity of a string is defined as a shortest length of its description in
a certain formal language.

11 Future Plans

We plan continue our collaboration in designing new application-oriented theoretical foundations of
soft computing methodology, and thus, in finding new more successful applications of this method-
ology.

Our immediate goal is to improve control applications in the areas in which we already have an
experience of applying fuzzy control: furnace control and safety of nuclear power stations. We also
plan to develop new practical applications.
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