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Abstract - From the commonsense viewpoint, if on a bridge
whose weight we know with an accuracy of 1 ton, we place a
car whose weight we know with an accuracy of 5 kg, then the
accuracy with which we know the overall weight of a bridge
with a car on it should still be 1 ton. This is what an engi-
neer or a physicist would say. Alas, this is not so in traditional
interval arithmetic. In this paper, we show that, in contrast
to traditional interval arithmetic, the random interval arith-
metic (proposed by the first two authors) actually has this im-
portant property.

Keywords— random interval arithmetic, commonsense rea-
soning

I. INTUITIVE PROPERTY OF COMMONSENSE
ARITHMETIC

From the commonsense viewpoint, if on a bridge whose
weight we know with an accuracy of 1 ton, we place a
car whose weight we know with an accuracy of 5 kg, then
the accuracy with which we know the overall weight of a
bridge with a car on it should still be 1 ton. This is what an
engineer or a physicist would say.

The problem that we try to solve in this paper can be illus-
trated by the following joke. A museum guide tells the vis-
itors that a dinosaur that they are looking at is 14,000,005
years old. An impressed visitor asks how scientists can be
so accurate in its predictions. “I don’t know how they do
it, – explains the guide – but 5 years ago, when I started
working here, I was told that this dinosaur is 14,000,000
years old, so now it must be 5 years older”.

This is clearly a joke, because from the common
sense viewpoint, a dinosaur which was approximately
14,000,000 years old 5 years ago is still 14,000,000 years
old. In more precise terms, if we add 5 to a number “ap-
proximately 14,000,000”, we should get the answer “ap-
proximately 14,000,000”.

Similarly, if the accuracy was “approximately 1 ton” and
we add the accuracy “approximately 5 kg”, we should get
the answer “approximately 1 ton”.

In general, if∆a is much larger than∆b (∆a À ∆b), and
we add “uncertainty approximately∆b” to “uncertainty
approximately∆a”, we should get “uncertainty approxi-
mately∆a”. It is therefore natural to expect formal sys-
tems which formalize commonsense reasoning to have this
property.

II. TRADITIONAL INTERVAL ARITHMETIC DOES
NOT HAVE THE DESIRED PROPERTY

A natural way of dealing with approximately known values
is interval arithmetic. In interval arithmetic, the situation
in which we know the valuẽa with an accuracy∆a is rep-
resented by an interval[ã−∆a, ã + ∆a].

In many practical applications, this formalization works
well; however, the traditional interval arithmetic does not
satisfy the desired intuitive property.

Indeed, let us assume that about a quantitya, we know that
it is equal tõa with uncertainty∆a (e.g., “with uncertainty

1 ton”), and about a quantityb, we know thatb is equal tõb
with uncertainty∆b (e.g., “with uncertainty 5 kg”). Then,
the corresponding intervals are equal to

a = [ã−∆a, ã + ∆a] andb = [̃b−∆b, b̃ + ∆b].

The set of possible values ofc = a + b is an interval

c = a + b =

[(ã + b̃)− (∆a + ∆b), (ã + b) + (∆a + ∆b)].

In accordance with the above interpretation, we thus inter-

pret the suma+b as “̃a+ b̃ with uncertainty∆a+∆b”. So,
if we know a with uncertainty 1 ton, and we knowb with
uncertainty 5 kg, then the resulting uncertainty ina + b is
equal not to 1 ton as we would intuitively expect, but to
1.005 ton.



How can we modify interval arithmetic to make sure that
the desired property is satisfied, and the uncertainty of the
resulting sum is 1 ton?

Comment. A similar problem occurs in a more general
case offuzzy arithmetic. Specifically, often, in addition
(or instead) the guaranteed bound∆a, an expert can pro-

vide bounds that contain∆a
def= a − ã with a certain de-

gree of confidence. Often, we know several such bound-
ing intervals corresponding to different degrees of confi-
dence. Such a nested family of intervals is also called a
fuzzy set, because it turns out to be equivalent to a more
traditional definition of fuzzy set [BOJ 95], [KLI 95],
[MOO 03], [NGU 96], [NGU 99] (if a traditional fuzzy
set is given, then different intervals from the nested family
can be viewed asα-cuts corresponding to different levels
of uncertaintyα).

A method for solving this problem, both for interval arith-
metic and for a more general case of fuzzy arithmetic, has
been earlier proposed by the third author [KRE 01]. How-
ever, in that approach, interval operations such as addition
is no longer always easily computable. We need a practical,
easy-to-implement approach. This is what we will describe
in this paper.

Specifically, we will show that random interval arithmetic
[ALT 96], [ALT 01], that was proposed by the first two
authors in line with Jean Vignes’ stochastic arithmetic
[VIG 88], [VIG 93], actually has the desired property.

III. WHAT IS RANDOM INTERVAL ARITHMETIC: IN
BRIEF

Before we start explaining how random interval arithmetic
can help, let us briefly recall what is random interval arith-
metic.

Random interval arithmetic is a way of analyzing how the
uncertainty in input data and the round-off imprecision of
computer operations on real numbers affect the results of
the computations. Traditionally, in science and engineer-
ing, this analysis have been based on statistical techniques,
e.g., analytical statistical techniques similar to sensitiv-
ity analysis and Monte-Carlo-type simulation techniques.
However, the use of traditional statistical techniques re-
quires that we know the exact probability distribution of
the input and round-off errors.

In most real-life situations, we do not know these distrib-
utions; at best, we know the upper bounds on these errors
– or, more generally, the intervals that are guaranteed to
contain the actual (unknown) values of these errors. The
need to consider suchinterval uncertainty was realized al-
ready in the 1950s. In the late 1950s and the early 1960s,
NASA-related problems of space navigation under uncer-
tainty provided a real boost to this area of research. The
resultinginterval computationstechniques have been well

developed, and they are still actively used in many appli-
cation areas; see, e.g., [JAU 01], [KEA 96], [KEA 96a],
[MOO 79].

Producing the exact bounds on the inaccuracy of the out-
put is often difficult (this problem is known to be NP-hard
[KRE 97]). Due to the origin of interval techniques – in
NASA-related problems that required high reliability – the
emphasis in interval computations has always been on get-
ting the validated results. Since producing exact bounds is
computationally difficult, interval computation techniques
usually produce estimates that are guaranteed to contain
(enclose) the actual error.

In many applications of such techniques, it is desirable, in
addition to guaranteed “overestimates”, to produce a rea-
sonable estimate of the size of the actual error, an estimate
that may be only valid with a certain probability.

The main idea behind the random interval arithmetic is that
for each intermediate computation stepz := x ¯ y, if we
know the exact intervalsx andy of possible values ofx
andy, then, depending on the relative monotonicity of the
x andy relative to inputs, the intervalsz can change from
the worst-case situation – when we apply interval arith-
metic operation tox andy – to the best-case situation when
we apply the operations of the so-calleddual (inner) arith-
metic. For example, for addition, whenx = [x, x] and
y = [y, y], then the resulting intervalz can range from the
worst-case situation whenz = [x+y, x+y] to the best-case
situation when

z = [min(x + y, x + y), max(x + y, x + y)].

When an algorithm consists of numerous computational
steps, then it is reasonable to expect that steps in which we
have monotonicity in the same direction (and the worst-
case interval) are as frequent as cases in which we have
monotonicity in different directions (and the best-case in-
terval). To provide a good estimation of the resulting un-
certainty, it is therefore reasonable, on each computational
step, to consider either traditional, or inner arithmetic with
equal probability. This technique – calledrandom interval
arithmetic – indeed leads to reasonable estimates for the
resulting uncertainty.

IV. RANDOM INTERVAL ARITHMETIC HAS THE
DESIRED COMMONSENSE PROPERTY: AN

OBSERVATION

Let us consider addition of two intervals. One can easily
see that in the traditional interval arithmetic, the half-width
∆c of the suma+b of two intervals is equal to the sum of
the corresponding half-widths:

∆t
c = ∆a + ∆b. (1)



In dual arithmetic, the half-width is equal to the difference
between the larger and the smaller half-widths:

∆d
c = max(∆a, ∆b)−min(∆a,∆b). (2)

In random interval arithmetic, we use both operations with
equal probability 50%. Therefore, the average width of the
resulting interval is equal to

∆r
c =

∆t
c + ∆d

c

2
. (3)

The formula (1) can be rewritten as

∆t
c = max(∆a,∆b) + min(∆a, ∆b). (4)

Substituting (2) and (4) into the formula (3), we conclude
that

∆r
c = max(∆a,∆b).

This is exactly the intuitive property that we have been try-
ing to formalize.

V. DISCUSSION

What happens when instead of two values, we estimate the
sum of several (n > 2) different quantitiesa = a1 + . . . +
an? Let us assume that we know each quantityai with an
accuracy∆i. What is the expected value of the resulting
accuracy ina?

The sum is computed element by element: first, we com-
putea1 + a2; then, we compute(a1 + a2) + a3, etc. Let us
follow these computations and estimate the uncertainty of
all the intermediate results.

At first, we adda1 anda2. As we have mentioned, the re-
sulting sum has, on average, the uncertaintymax(∆1, ∆2).

To estimate the uncertainty of the next intermediate result
(a1+a2)+a3, we can take, as an estimate of the uncertainty
in a1 +a2, the valuemax(∆1, ∆2). Then, according to the
above result, the average uncertainty in(a1 +a2)+a3 will
be equal to

max(max(∆1, ∆2), ∆3) = max(∆1,∆2, ∆3).

Similarly, for the intermediate suma1 + a2 + a3 + a4,
we can conclude that the resulting uncertainty is equal to
max(∆1, ∆2,∆3, ∆4), and that the average uncertainty in
the suma1 + . . . + an is equal to

max(∆1, . . . , ∆n).

An interesting corollary of this formula is that while the
process of addingn numbers depends on the order in which
we place these numbers, the resulting average uncertainty
does not depend on this order, only on the uncertainties∆i

with which we know the numbersai.

What happens if instead of a simple sum, we would
like to compute the value of a more complex function
f(a1, . . . , an)? For a function of two variables, when the

uncertainty is small∆ai
def= ai − ãi ¿ ai, we can safely

linearize the expression forf(a1, a2):

f(a1, a2) = f(ã1 + ∆a1, ã2 + ∆a2) =

f(ã1, ã2) +
∂f

∂a1
·∆a1 +

∂f

∂a2
·∆a2.

So, when∆ai ∈ [∆i,∆i], the worst-case half-width ina =
f(a1, a2) is equal to

∆t =
∣∣∣∣
∂f

∂a1

∣∣∣∣ ·∆1 +
∣∣∣∣
∂f

∂a2

∣∣∣∣ ·∆2,

while the result of applying dual interval arithmetic is

∆d =
∣∣∣∣
∣∣∣∣
∂f

∂a1

∣∣∣∣ ·∆1 −
∣∣∣∣
∂f

∂a2

∣∣∣∣ ·∆2

∣∣∣∣ .

Thus, the average half-width – corresponding to random
interval arithmetic – is equal to

∆r = max
(∣∣∣∣

∂f

∂a1

∣∣∣∣ ·∆1,

∣∣∣∣
∂f

∂a2

∣∣∣∣ ·∆2

)
.

Similarly, for n > 2 variables, we conclude that

∆r = max
(∣∣∣∣

∂f

∂a1

∣∣∣∣ ·∆1, . . . ,

∣∣∣∣
∂f

∂an

∣∣∣∣ ·∆n

)
. (5)

Comment.It is worth mentioning that this same expression
appears in a completely different context. In interval com-
putations, when we estimate the range of a function over a
box [a1, a1]× . . .× [an, an], if a box is not too narrow, the
estimates are too wide. To improve the estimates, we can
bisect the box along one of the directions and repeat the
estimation for each of the two half-boxes. The efficiency
of this procedure drastically depends on which side we se-
lect for bisecting. It has been shown, both empirically and
theoretically, that the optimal direction in a directionai in
which the product

∣∣∣∣
∂f

∂ai

∣∣∣∣ ·∆i

is the largest possible; see, e.g., [KEA 98], [RAT 92],
[RAT 94]. The above value (5) is exactly the value of this
maximum.



Comment.Our final comment is that the appearance of the
max function may lead to one more explanation of why
in the most widely used (and most practically successful)
version of fuzzy logic, if we know the degree of beliefa =
d(A) in a statementA and the degree of beliefb = d(B)
in a statementB, then we estimate the degree of beliefc =

d(C) in C
def= A ∨ B asmax(a, b) – so that ifa À b, we

havec = a.
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