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Abstract - From the commonsense viewpoint, if on a bridge In general, ifA, is much larger thad\, (A, > A;), and
whose weight we know with an accuracy of 1 ton, we place a we add “uncertainty approximatel,” to “uncertainty
car whose weight we know with an accuracy of 5 kg, then the approximate|yAa", we should get “uncertainty approxi_
accuracy with which we know the overall weight of a bridge mately A,”. It is therefore natural to expect formal sys-

with a car on it should sill be 1 ton. This is what an engi- - o \¢ \yhich formalize commonsense reasoning to have this
neer or a physicist would say. Alas, this is not so in traditional

interval arithmetic. In this paper, we show that, in contrast property.

to traditional interval arithmetic, the random interval arith- II. TRADITIONAL INTERVAL ARITHMETIC DOES
metic (proposed by the first two authors) actually has this im- NOT HAVE THE DESIRED PROPERTY
portant property.
Keywords— random interval arithmetic, commonsense rea- A natural way of de_aling_with appro_ximat_ely "”OW_” va_lues
soning is interval arithmetic In interval arithmetic, the situation
I. INTUITIVE PROPERTY OFE COMMONSENSE in which we know the value with an accuracy\,, is rep-
ARITHMETIC resented by an interv@d — A,,a + A,].

From the commonsense viewpoint, if on a bridge whosi&! Many practical applications, this formalization works
weight we know with an accuracy of 1 ton, we place eyve[l; however,.the _traqrqonal interval arithmetic does not
car whose weight we know with an accuracy of 5 kg, thefatis’y the desired intuitive property.

the accuracy with which we know the overall weight of andeed, let us assume that about a quantitye know that
bridge with a car on it should still be 1 ton. This is what arit is equal toa with uncertaintyA, (e.g., “with uncertainty
engineer or a physicist would say. N
The problem that we try to solve in this paper can be illus} 1), and about a quantity we know thab is equal tob
trated by the following joke. A museum guide tells the vis-W'th uncertamtyAb _(e.g., with uncertainty 5 kg"). Then,
itors that a dinosaur that they are looking at is 14,000,005 corresponding intervals are equal to

years old. An impressed visitor asks how scientists can be
SO accurate in its predictions. “I don't know how they do
it, — explains the guide — but 5 years ago, when | started
working here, | was told that this dinosaur is 14,000,000he set of possible values ef= a + b is an interval
years old, so now it must be 5 years older”.

a=[ad— Ay da+Asandb = [b— Ay, b+ Ay

o ) c=a+b=
This is clearly a joke, because from the common _

sense viewpoint, a dinosaur which was approximately  [(a+b) — (As + Ap), (@ +b) + (Aq + Ap)].
14,000,000 years.old 5 years ago 1s still 14,000,000 >‘/‘eaﬁ§ accordance with the above interpretation, we thus inter-
old. In more precise terms, if we add 5 to a number “ap-

proximately 14,000,000”, we should get the answer “ap- - T : »
proximately 14,000,000", pretthe suna+b as ‘a+b with uncertaintyA , + A,". So,

if we know a with uncertainty 1 ton, and we knotwwith
Similarly, if the accuracy was “approximately 1 ton” anduncertainty 5 kg, then the resulting uncertaintyzin- b is
we add the accuracy “approximately 5 kg”, we should getqual not to 1 ton as we would intuitively expect, but to
the answer “approximately 1 ton”. 1.005 ton.



How can we modify interval arithmetic to make sure thatleveloped, and they are still actively used in many appli-
the desired property is satisfied, and the uncertainty of treation areas; see, e.g., [JAU 01], [KEA 96], [KEA 964],
resulting sum is 1 ton? [MOO 79].

Comment. A similar problem occurs in a more generalProducing the exact bounds on the inaccuracy of the out-
case offuzzy arithmetic Specifically, often, in addition put is often difficult (this problem is known to be NP-hard
(or instead) the guaranteed bound, an expert can pro- [KRE 97]). Due to the origin of interval techniques — in
NASA-related problems that required high reliability — the
vide bounds that containa % ¢ — G with a certain de- emphasis in interval computations has always been on get-
gree of confidence. Often, we know several such bounding the validated results. Since producing exact bounds is
ing intervals corresponding to different degrees of confieomputationally difficult, interval computation techniques
dence. Such a nested family of intervals is also called @sually produce estimates that are guaranteed to contain
fuzzy setbecause it turns out to be equivalent to a moréenclose) the actual error.
traditional definition of fuzzy set [BOJ 95], [KLI 95], o ) o ) )
[MOO 03], [NGU 96], [NGU 99] (if a traditional fuzzy In many applications of such techniques, it is desirable, in

set is given, then different intervals from the nested familddition to guaranteed “overestimates”, to produce a rea-
can be viewed as-cuts corresponding to different levels SOnable estimate of the size of the actual error, an estimate

of uncertaintya). that may be only valid with a certain probability.

A method for So|ving this prob|em, both for interval arith_The main idea behind the random interval arithmetic is that

metic and for a more general case of fuzzy arithmetic, hd@r each intermediate computation step= = © y, if we
been earlier proposed by the third author [KRE 01]. Howknow the exact intervalg andy of possible values of
ever, in that approach, interval operations such as additi@@dy, then, depending on the relative monotonicity of the
is no longer always easily computable. We need a practical,andy relative to inputs, the intervalscan change from

easy-to-implement approach. This is what we will describthe worst-case situation — when we apply interval arith-
in this paper. metic operation t& andy — to the best-case situation when

- . ] ] _ we apply the operations of the so-calléaal (inner) arith-
Specifically, we will show that random interval arithmeticetic  For example, for addition, wher = [z, 7] and

[ALT 96], [ALT 01], that was proposed by the first two y = [y, 7], then the resulting interval can rangg from the

authors in line with Jean Vignes’ stochastic arithmetig,orst-case situation when— [z-+y, T+7] to the best-case
[VIG 88], [VIG 93], actually has the desired property. situation when -

lIl. WHAT IS RANDOM INTERVAL ARITHMETIC: IN . L o
S © BRIEF ¢ z = [min(z + 7,7 + y), max(z + 7,7 + y)|.

Before we start explaining how random interval arithmetic

can'help, let us briefly recall what is random interval arithyynan an algorithm consists of numerous computational
metic. steps, then it is reasonable to expect that steps in which we
Random interval arithmetic is a way of analyzing how thé)ave monotonicity in the same direction (and the worst-
uncertainty in input data and the round-off imprecision ofase interval) are as frequent as cases in which we have
computer operations on real numbers affect the results Bfonotonicity in different directions (and the best-case in-
the computations. Traditionally, in science and engineeterval). To provide a good estimation of the resulting un-
ing, this analysis have been based on statistical techniquésrtainty, it is therefore reasonable, on each computational
e.g., analytical statistical techniques similar to sensitivstep, to consider either traditional, or inner arithmetic with
ity analysis and Monte-Carlo-type simulation techniquegdual probability. This technique — calleahdom interval
However, the use of traditional statistical techniques rearithmetic— indeed leads to reasonable estimates for the
quires that we know the exact probability distribution offésulting uncertainty.

the input and round-off errors.

. . . I IV. RANDOM INTERVAL ARITHMETIC HAS THE
In most real-life situations, we do not know these distrib- DESIRED COMMONSENSE PROPERTY: AN

utions; at best, we know the upper bounds on these errors OBSERVATION

— or, more generally, the intervals that are guaranteed to

contain the actual (unknown) values of these errors. THeet us consider addition of two intervals. One can easily
need to consider sudhterval uncertainty was realized al- see that in the traditional interval arithmetic, the half-width
ready in the 1950s. In the late 1950s and the early 19604, of the suma + b of two intervals is equal to the sum of
NASA-related problems of space navigation under uncethe corresponding half-widths:

tainty provided a real boost to this area of research. The

resultinginterval computationsechniques have been well AL = A, + A (1)



In dual arithmetic, the half-width is equal to the differencéVhat happens if instead of a simple sum, we would
between the larger and the smaller half-widths: like to compute the value of a more complex function
f(a1,...,a,)? For a function of two variables, when the

A? = max(A,, Ay) — min(Ag, Ay). (2)
In random interval arithmetic, we use both operations withncertainty is smallia; = ;- @ < a;, we can safely
equal probability 50%. Therefore, the average width of thiinearize the expression fdi(a, , a2):

resulting interval is equal to flar,az) = f(@ + Aay, @z + Aag) =
Al + A4 of of
Al = —<¢——¢, 3 ay,a — A —— - Aas.
c 2 ( ) f(a'17a2)+8a1 a1+8a2 a2
The formula (1) can be rewritten as So, whenAa; € [A;, A;], the worst-case half-width im =
f(a1,a2) is equal to
Al = max(Aq, Ap) + min(A,, Ap). (4)

Substituting (2) and (4) into the formula (3), we conclude Al — af A+ of Ay
that 8@1 6&2 ’

Al = max(Ag, Ap).

This is exactly the intuitive property that we have been trywhile the result of applying dual interval arithmetic is
ing to formalize.

o]

WAV
80,2 2

V. DISCUSSION Al — ﬁ
E)al

What happens when instead of two values, we estimate the

sum of severali{ > 2) different quantities: = a1 +... +  Thys, the average half-width — corresponding to random
an? Let us assume that we know each quantitwith an  jnierval arithmetic — is equal to

accuracyA;. What is the expected value of the resulting

accuracy im?

. , r of of
The sum is computed element by element: first, we com- A" = max o B Cl e Az ).
putea; + ao; then, we computéa; + as) + as, etc. Let us ! 2
follow these computations and estimate the uncertainty of .
all the intermediate results. Similarly, forn > 2 variables, we conclude that
At first, we adda; anday. As we have mentioned, the re-
sulting sum has, on average, the uncertaintix (A, As). AT = max <‘§f N aﬁif ~An) .5
ay Qp

To estimate the uncertainty of the next intermediate result

(a1+az)+as, we can take, as an estimate of the uncertaintgommentlt is worth mentioning that this same expression
in a; + as, the valuemax(A1, A,). Then, according to the appears in a completely different context. In interval com-
above result, the average uncertaintydn+ a3 ) + a3 will  putations, when we estimate the range of a function over a

be equal to box[a;,a1] %X ... X [a,,ay], if a box is not too narrow, the
estimates are too wide. To improve the estimates, we can
max(max(Aq, Az), Az) = max(Aq, Ag, Ag). bisect the box along one of the directions and repeat the

imilarl he i di estimation for each of the two half-boxes. The efficiency
Similarly, for the intermediate sunmm, + az + as + a4, of this procedure drastically depends on which side we se-

we caAn cznclzdeAthat thz rﬁsultring uncertainty is egua! ct for bisecting. It has been shown, both empirically and
max(Ar, Az, Az, Aq), and that the average uncertainty "Ntheoretically, that the optimal direction in a directionin

the suma; + ... + a, is equal to which the product

max(Aq,...,Ay). af

8ai

A

An interesting corollary of this formula is that while the
process of adding numbers depends on the order in which
we place these numbers, the resulting average uncertaigythe largest possible; see, e.g., [KEA 98], [RAT 92],
does not depend on this order, only on the uncertaidties [RAT 94]. The above value (5) is exactly the value of this
with which we know the numbers,. maximum.



CommentOur final comment is that the appearance of thés Applications to Reasoning Under Uncertainty, Knowledge

i i epresentation, and Control Theory. Proceedings of MEX-
.ma)r(] function .rgaly Ieaddto oge more exp_lar:latlon of W?)'R ON'98, Workshop on Interval Computations, 4th World
in the most widely used (and most practically successfugongress on Expert Systemexico City, Mexico, 1998.

version of fuzzy logic, if we know the degree of belief= [KLI'95] G.Klir and B. YuanFuzzy Sets and Fuzzy Logic: The-

d(A) in a statement! and the degree of beliéf= d(B)  ory and Applications Prentice Halil, Upper Saddle River, New
in a statemenB, then we estimate the degree of belief  Jersey, 1995.

[KRE 97] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kallpm-

; def _ ; putational complexity and feasibility of data processing and inter-
ﬁgs()a inC'=AVEB aSmax(a, b) so that ifa > b, we val computationsKluwer, Dordrecht, 1997.
C = Q.

[KRE 01] V. Kreinovich, H. T. Nguyen, and W. Pedrycz, “How
to Make Sure Thatdpprox100 + 1 Is ~ 100 in Fuzzy Arith-
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This work was supported in part by NASA under cooptems Association and 20th International Conference of the North

erative agreement NCC5-209, by the NSF grants EARRmerican Fuzzy Information Processing Society IFSA/NAFIPS
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