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Abstract 

 
 

High Temperature Phase Transitions in RbH2PO4 

 

M.S. candidate: Heber Martinez 

Advisor: Dr. Cristian E. Botez 

 

 

Recent studies have shown that the proton conductivity of MH2PO4 (M=Cs, Rb) solid-

acids exhibits a sharp, several-order-of-magnitude increase upon heating above a certain 

temperature threshold [Boysen et al., Chem. Mater. 15, 727(2003), Boysen et al., Chem. Mater. 

16, 693(2004)]. This so-called superprotonic behavior allows the above-mentioned compounds 

to function as fuel-cell electrolytes at intermediate temperatures [Boysen et al., Science 303, 

68(2004)], a remarkable application that has attracted much interest. Yet, the crystal structures 

and microscopic mechanisms responsible for this heating-induced proton conductivity 

enhancement are not fully understood. 

Our group has previously demonstrated [Botez et al., J. Chem. Phys. 127, 194701(2007)] 

that the superprotonic behavior in CsH2PO4 is due to the transformation of its room-temperature 

monoclinic (P 21/m) phase into a high-temperature cubic (P m 3 m) polymorph at 237°C. 

Although a similar jump in the proton conductivity upon heating has been reported for RbH2PO4 

[Boysen et al., Chem. Mater. 16, 693(2004)], recent thermal analysis and qualitative X-ray 

diffraction (XRD) studies [Ortiz et al., J. Phys. Chem. Solids 59, 1111(1997), J.-H. Park et al., J. 

Phys. Cond. Mat. 13, 9411(2001)] have suggested that the room temperature tetragonal (I -4 2 d) 

RbH2PO4 phase actually decomposes via dehydration at temperatures as low as 96°C. 
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Surprisingly, this implies that RbH2PO4‘s superprotonic behavior cannot be due to a 

polymorphic phase transition.  

In our present studies we attempt to clarify the structural and/or chemical modifications 

of RbH2PO4 upon heating within the 25-250°C temperature range. We use temperature- and 

time-resolved powder x-ray diffraction (XRD) methods on polycrystalline samples obtained by 

crushing single RbH2PO4 crystals previously prepared by slow evaporation. Our XRD data, 

collected in the reflectivity geometry over the 1.5-3.5Å d-spacing range, evidence a tetragonal-

to-monoclinic transition that occurs within the 90-110°C temperature interval. We indexed the 

high temperature monoclinic phase to space group P21/m and lattice parameters a=7.728Å , 

b=6.187Å, c=4.810Å , and β=109.15°. We have also carried out Rietveld refinements that 

conclusively demonstrate that the newly observed monoclinic structure is a RbH2PO4 

polymorph. These results are significant as they unambiguously establish that prior to any 

temperature induced chemical changes, RbH2PO4 transforms into a stable polymorph, whose 

crystal structure is isomorphic to the monoclinic structure observed in room temperature 

CsH2PO4. This strongly suggests that the superprotonic behavior in RbH2PO4 is triggered by a 

monoclinic-cubic polymorphic phase transition similar to the one observed in CsH2PO4. 

Unfortunately, our current experiments could not reveal such a transition as, upon further heating 

to 210°C under ambient pressure and humidity conditions, the monoclinic phase starts 

dehydrating via the reaction 2RbH2PO4 = Rb2H2P2O7 + 2H2O. A possible method to avoid 

dehydration in future experiments involves the heating of samples subjected to high pressures of 

about 1GPa [Boysen et al., Chem. Mater. 15, 727(2003), Boysen et al., Chem. Mater. 16, 

693(2004), Botez et al., J. Chem. Phys. 127, 194701(2007)] 
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Chapter 1: Introduction 

 

1.1 Earth’s energy resources 

Expiring fossil fuels, and their impact on the environment has motivated research into 

alternative fuels as well as more “eco-friendly” methods of energy production. Much of this 

work has centered on novel energy production methods using devices such as fuel cells and 

alternative fuel sources such as natural gas, solar power, ethanol, and other renewable non-fossil-

fuel sources of energy. The goal of this work revolves around making these alternative fuels and 

technologies available and affordable to the masses, thus allowing for the replacement of 

gasoline, diesel and other nonrenewable sources of energy that contribute largely to the Earth’s 

pollution. 

 

1.2 A promise for the future: Fuel cells 

Fuel cells are a clean, alternative source of power and some of the most promising 

devices for the future generation of electricity. Fuel cells take in fuel through the anode side, 

whereby a catalyst decomposes the fuel into electrons and positive ions, sending the electrons 

through an outer circuit, while the positive ions are transported through an electrolyte to the 

cathode. There, an oxidizing agent is combined with the electrons and positive ions to form 

water, in the case of hydrogen fuel cells, or other substances depending on the type of fuel 

employed [1]. The hydrogen fuel cell, for example, utilizes hydrogen gas (H2) as fuel and oxygen 

(O2) in the air as the oxidizing agent at the cathode; in these fuel cells, hydrogen is separated into 

protons and electrons by a catalyst at the anode.  Subsequently, the electrons are passed through 

an outer circuit making an electrical current, and the protons passed through an electrolyte 
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membrane.  Upon arrival at the cathode, the protons and electrons are combined with molecular 

oxygen by a catalyst to form water and heat as the waste products of the fuel cell. These and 

other characteristics have paved the way for research into the development and engineering of 

new and better fuel cells.  

 

 

Figure 1.1:  Diagram of a proton exchange membrane (PEM) hydrogen fuel cell 
 

1.2.1  Types of fuel cells and their limitations 

Research and production of different kinds of fuel cells has been ongoing for several 

decades. Some types of fuel cells have achieved very good efficiency in terms of power 

generation, like the molten carbonate fuel cell and the solid oxide fuel cell. Other types of fuel 

cells have achieved the advantage of compact design and portability such as the proton exchange 

membrane fuel cell (diagrammed in Figure 1.1) and the direct methanol fuel cell. Unfortunately, 

many aspects of fuel cells still have a lot of deficiencies. For example, the molten carbonate fuel 
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cell, which has a very good efficiency because it works at high temperatures and uses its own 

heat to produce more power, presents the disadvantage of having an unstable electrolyte and 

limited service life, due in part to the high operating temperatures mentioned. Also, one of the 

most developed fuel cells so far, the proton exchange membrane fuel cell, has a high production 

cost due in great part to the expense of the catalyst, which is generally platinum. An alternative 

solution to this problem is being developed by a research group at Monash University, 

Melbourne: a cheaper fuel cell made of a new conducting polymer cathode called poly (3, 4-

ethlenedioxythiphene) or PEDOT [2]. Another deficiency in fuel cells is that some, like the 

proton exchange membrane fuel cells, require humidification of the polymer electrolyte 

membrane (which conduct protons as hydronium) with liquid water to work efficiently, meaning 

that they can only operate competently at temperatures below 100ºC [3]; if the temperature in the 

fuel cells exceeds this range, the water evaporates and the membrane dries, which causes it to fail 

in performance. In addition, most fuel cells need pure hydrogen to work best, and production and 

transportation of hydrogen fuel is expensive due to the safety issues involved with H2 gas. 

These and other aspects of critical importance for the performance of a fuel cell are 

therefore being studied in order to develop a better understanding of the microscopic processes 

that occur in each part of the fuel cell. Improved knowledge of these processes will, no doubt, 

allow for better designs, as well as more efficient and affordable fuel cells. 

 

1.2.2  Electrolytes 

One of the most efficient fuel cells in use today is the Proton Exchange Membrane Fuel 

Cell (PEMFC) [1]. This fuel cell uses hydrogen fuel and oxygen to generate electricity by means 

of an electrochemical reaction. A vital part of these devices, is the electrolyte membrane. The 

 3



electrolyte is responsible for the transportation of protons from the anode to the cathode, where 

they combine with electrons and oxygen to form water and heat.  

From the first fuel cell created in 1839 until today, there have been many electrolytes 

used. Examples include potassium hydroxide, polymer membranes, humic acids, sodium 

hydroxide, Nafion® (a sulfonated tetrafluorethylene copolymer), and solid-acids [1]. The first 

fuel cells used materials similar to the ones used today in phosphoric-acid fuel cells, and the later 

created sulphonated polystyrene ion-exchange membranes. [1] 

 

1.2.3 Proton conductivity and solid acids 

Many efforts have been made to improve these electrolytes, and more importantly, develop 

a better understanding of the chemical and physical nature of the electrolyte’s function in a fuel 

cell: proton conductivity. A material is said to become superprotonic, when its proton 

conductivity suddenly increases by orders of magnitude upon heating. A special type of fuel cell 

electrolytes are solid-acids. Some of these materials, such as sulfates and selenates have 

exhibited these so-called superprotonic transitions at temperatures above 140 °C [4]. In addition, 

superprotonic solid-acids can conduct protons without the need for water. This remarkable 

characteristic of sulfates and selenates makes solid-acids an appealing option over polymer 

electrolytes for operation at temperatures greater than 100ºC.  Additionally, this makes the idea 

of portable fuel cells more feasible, since the anhydrous proton transport in this type of 

electrolyte eliminates the need of having an additional system to maintain the fuel cell under a 

saturated water vapor environment.  

The first successful solid-acid based fuel cell was produced in 2001 by Haile et. al.[5]. 

This fuel cell used a 1.5 mm thick layer of CsHSO4 as the electrolyte membrane and functioned 

 4



in the temperature range from 150-160ºC. The fuel cell produced an open-circuit voltage of 

1.11V and a current density at short circuit of 44 mA/cm2. This sulfate-based solid-acid is stable 

under oxidizing conditions but loses weight under reducing conditions as it reacts with hydrogen, 

producing the catalyst poison H2S. Other sulfate and selenate based electrolytes undergo similar 

reactions in fuel cells [6]. These catalyst poisons cause the erosion of the anode over time, and 

decrease the efficiency of the fuel cell. This has motivated research into the properties of 

phosphate-based solid-acids for use as fuel cell electrolytes. 

 

1.2.4  Phosphoric acids 

Researchers have shown that phosphate-based solid-acids have similar high-temperature 

proton conducting abilities to the above mentioned sulfates and selenates. However, phosphate-

based solid-acids do not react with the hydrogen fuel to produce catalyst poisons that can erode 

the electrodes, thus making phosphate-based solid-acids a more appealing option for fuel cell 

electrolytes than the previously mentioned sulfates and selenates. Experiments have shown that 

CsH2PO4 (CDP) and RbH2PO4 (RDP) exhibit superprotonic behavior when heated above a high 

temperature threshold [7,8]. A CDP-based fuel cell was shown to operate properly and 

continuously for over one hundred hours, evidence that CDP can function efficiently as a fuel 

cell electrolyte [9]. This achievement has generated a great amount of interest from the 

theoretical and the engineering perspectives; however, it is left to the researchers to unveil the 

microscopic mechanisms responsible for the sudden increase in the proton conductivity observed 

in these materials. Studies have shown that the proton conduction mechanisms in these fully-

hydrogen-bonded compounds must, in principle, be different from those responsible for the high 

proton conductivity exhibited by their half-hydrogen-bonded, sulfate-based counterparts (e.g. 
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CsHSO4) [10]. Therefore, a different type of proton dynamics must be present in the 

superprotonic phases of these phosphate-based solid-acids. In order to propose an accurate 

atomic-level explanation of the proton migration in these materials, a detailed knowledge of the 

crystal structures and chemical processes present in the materials at all temperatures in the range 

close to the superprotonic transition is needed. 

There has been much debate over the cause of this sudden increase in proton conductivity 

in CDP and RDP. Is it a chemical modification of the compounds, or is it a change in the 

structure of the material? One group believes that this superprotonic behavior is due to the 

decomposition and dehydration of the electrolyte, while another group argues that it is due to a 

change in the crystal structure of the material.  Lee et. al.,  Ortiz et. al., and Park et.al. [11, 12, 

13, 14] provide evidence that the superprotonic behavior is due to thermal decomposition and 

dehydration of the material. Others, like Botez et. al., Brownowska et. al., Baranov et. al. and 

Boysen et. al. [15, 16, 17, 7] agree that the enhanced proton conductivity is due to a polymorphic 

phase transition.  

CDP has been shown to undergo a structural phase transition to a high-symmetry cubic 

phase at a temperature of approximately 230ºC, a temperature commensurate with the onset of 

superprotonic behavior [7]. Impedance measurements on CDP reveal that, at the transition 

temperature, the proton conductivity of the sample changes suddenly from 1.2 x 10-5  to 

9.0 x 10-3  [7, 8]. Botez et. al. conclude that CDP undergoes a structural transition from 

a monoclinic (P21/m) phase, to a dynamically-disordered cubic (Pm3m) phase at the same 

temperature as the superprotonic transition [15]. Botez et. al. and Boysen et. al. have performed 

synchrotron x-ray diffraction experiments under high pressure (~1 GPa) to prevent dehydration 

in the sample, and discovered that the superprotonic transition in the sample still occurs, even in 

11  cm

11  cm
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the absence of dehydration [7, 15]. They have proved this technique to be useful in solving this 

debate and have suggested that the technique will be useful in analyzing other phosphate-based 

solid-acids’ superprotonic/structural transitions. These studies have conclusively demonstrated 

that the superprotonic transition is associated with the change in the crystal structure. Moreover, 

neutron spectroscopy studies performed on CDP evidence that the characteristics of the high-

temperature CDP phase (e.g. its high symmetry, and the six-fold dynamically disordered PO4 

tetrahedra) have an important role in the enhancement of the proton conductivity [18].  

It is the above stated reasons that motivate the study of a material similar to CDP, namely 

RbH2PO4 (RDP). RDP also exhibits superprotonic behavior at high temperatures and the 

question looms as to whether or not this characteristic is due to a structural phase transition 

similar to the monoclinic to cubic phase transition observed in CDP. There are, however, 

differences between these two similar compounds which need to be addressed and explained 

first. For example, RDP has a tetragonal (I-42d) structure at room temperature, different from the 

monoclinic phase of CDP observed at the same temperature. Tetragonal RDP undergoes a first 

transformation at a temperature within the 90°C – 130ºC interval, considerably below its 

superprotonic increase temperature (327°C) [8]. Previous research has evidenced this 

intermediate-temperature transformation of tetragonal RDP; however, the vast majority of these 

studies were based on thermal analysis methods, which are not capable of providing detailed 

information about the crystal structure of the samples under investigation. One study used x-ray 

diffraction experiments on RDP samples kept at 110°C and found a different diffraction pattern 

than the room-temperature XRD patterns previously recorded [19]. However, according to the 

authors of Ref. 19, due to heating induced twinning and crystal fragmentation, structure 

determination was not possible. The authors conclude that the modification in the RDP structure 
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at 110°C was most likely isomorphic to KD2PO4, i.e. monoclinic P21/m (a=7.37Å, b=14.73Å, 

c=7.17Å, and =92°). 

In another XRD experiment performed by Ortiz et. al., new diffraction peaks were 

observed for RDP samples previously kept at 150°C, in addition to the peaks associated with the 

room-temperature tetragonal phase [12]. These new 2 peak positions do not correspond to the 

monoclinic RDP structure mentioned in reference [19] or in any other monoclinic structure. 

Instead, the peaks corresponded to the 2 positions in the x-ray diffraction pattern of the double 

salt 2RbH2PO4· Rb2H2P2O7. Following these findings, Ortiz et. al. conclude that the change in 

the structure of RDP heated to near 100°C is not a tetragonal to monoclinic phase transition, but 

rather a chemical decomposition/polymerization and dehydration given by the reaction: 

4RbH2PO4 → 2RbH2PO4· Rb2H2P2O7 + H2O. An experiment performed by Park et. al. [20, 21], 

in agreement with Ortiz et. al., found, by means of optical microscopy, thermal analysis and 

impedance spectroscopy measurements that the transformation of RDP at 96°C is indeed due to a 

chemical decomposition/polymerization given by the above reaction. Moreover, Park proposes a 

model to explain the superprotonic behavior of phosphate-based solid acids. This model implies 

that the rapid proton migration is due to the fast breaking and reforming of hydrogen bonds 

triggered by the dehydration and chemical decomposition of the material. If Ortiz and Park’s 

propositions are correct, then the nature behind RDP’s superprotonic behavior is fundamentally 

different than from that of the chemically similar material CDP determined by Boysen and Botez 

[7, 15], namely a high-temperature monoclinic to cubic phase transition. It thus becomes 

important to address this issue, as such a fundamental difference is unlikely to occur. 

We performed experiments on polycrystalline RDP aimed at finding its precise crystal 

structure when heated over a range of temperatures from 30 0 C - 200 0 C using laboratory powder 
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x-ray diffraction as well as synchrotron x-ray diffraction. This research is ultimately intended to 

establish a clear understanding of the superprotonic behavior in phosphate-based solid-acid 

electrolytes in order to allow for the engineering of better electrolytes based on the proton 

conduction mechanism present in these superprotonic solid-acids. 
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Chapter 2: Theoretical Background 

 

In June 8, 1912, a paper entitled “Interference effects with Rontgen rays” was submitted 

to the Bavarian Academy of Sciences in Munich, Germany. In this paper, two important studies 

were presented.  In the first, Laue discusses a basic theory of x-ray diffraction by a periodic array 

of atoms; and in the second, Friedrich and Knipping report on the first experiments made on x-

ray diffraction by crystals. In 1913, Bragg reported on the determination of crystal structures by 

x-ray diffraction analysis. He determined the structures of KCl, NaCl, KBr and KI. [22]. These 

studies demonstrated that x-rays are waves, as they can be diffracted from crystalline materials, 

thus proving that crystals are in fact periodic arrays of atoms [23]. X-ray diffraction has since 

been used as a powerful technique for the analysis of crystal structures and is the preferred 

method of analysis for this study. 

In this study, the aim is to determine whether the material RbH2PO4 (RDP) enters a 

superprotonic phase at an elevated temperature or if the material changes its nature, i. e. 

decomposes and dehydrates into a different substance with a different crystal structure. Due to 

the results found by Botez et. al.[15] on a similar compound, CsH2PO4 (CDP), we expect RDP to 

undergo a transition to a superprotonic state accompanied by a change in its crystal structure in a 

similar short temperature interval. 

To gain knowledge about the nature of the crystal in discussion we use a technique 

effective in determining the properties of a crystal: namely x-ray powder diffraction. 
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2.1  Crystal structure 

In the ideal case, a crystal is formed by the repetition of identical structures in three-

dimensions. Thus, the crystal structure of a material can be completely described by specifying a 

lattice, a basis, and the symmetry operations that carry the crystal structure into itself. 

 

2.1.1  Lattice 

A lattice can be understood to be a mathematical tool used to describe the position of 

points on which we attach atoms or groups of atoms. We can describe a lattice by defining three 

fundamental translation vectors: a, b, c. Consider a point described by the equation  

 

cbarr wvu  .                                                      (2.1) 

 

In the above equation, the set of points r’  for all integers u,v,w, defines a lattice when the 

atomic arrangement looks the same when viewed from any point r as when viewed from any 

point r’. 

 

2.1.2  Basis 

A lattice is only an imaginary set of points periodically arranged in space. The atoms 

make the mass in a crystal. To describe the position of the atoms in a crystal we need to specify a 

basis. 

The basis consists of the set of coordinates that describe the positions of the atom or 

atoms attached to a lattice point: (xi,yi,zi) measured from a lattice point. The lattice together with 

the basis forms the crystal structure as shown in Figure 2.1. 
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Figure 2.1: Crystal structure in two dimensions 
 

2.1.3  Unit cell 

Consecutive lattice points can be thought of as forming microscopic boxes. These boxes 

are called unit cells and they fill up the space of the lattice. There are many ways to specify a 

unit cell. For each crystal structure there is a conventional unit cell, which is used to display the 

full symmetry of the crystal. However, the conventional unit cell may not always be the smallest 

unit cell that can be stacked to fill the entire lattice space. The smallest unit cell possible is called 

the primitive unit cell. The primitive unit cell does not always display the full symmetry of the 

crystal, while the conventional unit cell does. The unit cell has dimensions that depend on the 

magnitude of the fundamental translation vectors a, b, c and on the angles between these vectors. 

These dimensions are called the lattice parameters: a, b, c, α, β, γ. 
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Figure 2.2: Lattice parameters 
 

2.1.4  Crystal symmetry 

We know that by stacking unit cells on top of each other and beside each other, we can 

fill the entire three-dimensional space of the lattice. As mentioned in Kittel [23], this can be done 

by means of a lattice translation operation: the displacement of a crystal parallel to itself by a 

crystal translation vector 

 

cbaT wvu  ,                                                        (2.2) 

 

where the vector T connects any two lattice points. 

 

2.1.5  Lattice point groups 

According to Kittel [23], we can also perform various symmetry operations to make the 

crystal lattice be carried onto itself. One of the symmetry operations is rotation about axes 

passing thorough lattice points. There are only five angles for these rotations which are 

permissible: 2π, 2π/2, 2π/3, 2π/4 and 2π/6. Another type of operations in a point group are mirror 

 13



reflections about a plane through a lattice point. There is also a symmetry operation called an 

inversion operation, which consists of a rotation by π followed by reflection about a plane that is 

normal to the rotation axis. 

A lattice point group is defined as the collection of the symmetry operations which, when 

applied about a lattice point, leave the lattice invariant [23]. There are only 32 different point 

groups allowed by crystalline solids [24]. 

The requirement that a lattice be invariant under one of the 32 point groups leads to 

symmetrically specialized types of lattices. These are the Bravais lattices of which there are only 

14. 

 

2.1.6  Space groups 

As described by Patterson in “Solid State Physics”, associating bases of atoms with the 

14 Bravais lattices gives a total of 230 three-dimensional periodic patterns [24]. This means that 

there are 230 space groups and 230 possible crystal symmetries. These space groups are the 

combination of the point group operations and the translational symmetry operations of the 

crystal structure, in addition to screw operations (rotate a point around an axis while translating 

parallel to the axis), and glide operations (a point through a plane while translating it parallel to 

the plane. The full symmetry of the crystal structure is contained in the space group. 

 

2.1.7  Crystal systems 

The 14 Bravais lattices can be classified in seven systems according to the way in which 

the lattice parameters a, b, c, α, β, γ, are related. These systems can be classified in seven types 

of unit cells: triclinic, monoclinic, orthorhombic, tetragonal, cubic, trigonal, and hexagonal. 
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Figure 2.3: The seven crystal systems 
 

2.1.8 Miller indices 

The Miller indices (hkl) can be used to describe a plane of atoms, a set of planes of 

atoms, or a direction in a Bravais lattice. To describe a plane, it is necessary to find the intercepts 

of the plane on the three axes defined by the fundamental translation vectors a, b, c. Then, take 

the reciprocal of the three numbers and divide by the greatest common divisor. The resulting 

three integers are called the Miller indices: (hkl). The set of planes parallel to (hkl) is denoted as 

{hkl}. [hkl] denotes the direction of a vector normal to the plane (hkl) and <hkl> denotes the set 

of vectors parallel to [hkl].  
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Another way to find the Miller indices involves using the reciprocal lattice. Let d, e, f, be 

the reciprocal lattice vectors, then the vector 

 

fed  l  k h                                                               (2.3)      

 

is normal to the plane (hkl) in the basis of the primitive reciprocal lattice vectors. The constants 

h, k, l, need to be found by dividing them by their greatest common divisor and making them 

integers. This means that the Miller indices give us a plane in the real space and a vector normal 

to the planes of atoms in the reciprocal lattice. A negative integer is represented as a bar above 

the integer. A plane that does not intercept an axis, has a zero as the Miller index pertaining to 

that axis. 

 

Figure 2.4: Axes intercepts giving Miller indices (111) on the left structure and (112) on the right structure 
 

2.2  The Bragg condition 

Suppose two different electromagnetic waves of the same wavelength λ reflect at the 

same angle θ from two consecutive planes (hkl) of atoms separated by a distance d in a crystal. If 

both waves are in phase after they reflect, then they interfere constructively and the amplitude of 

the new wave is doubled. The condition for the waves to be in phase is that they need to travel 
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the same distance or the difference in distance traveled (2dsinθ) needs to be an integer multiple 

of the wavelength λ. This is known as the Bragg condition and is illustrated by Figure 2.5. 

 

Figure 2.5: Illustration of Bragg's law 
 

2.3  X-ray powder diffraction 

Due to the previous observation of a phase change in CDP corresponding to the onset of 

superprotonic behavior, a study of RDP is warrented to determine if a similar phase transition 

occurs at a temperature commensurate with the onset of superprotonic behavior in this material. 

We used powder diffraction because single RDP crystals are not stable (they crack, twin, etc.) at 

high temperatures that are required to see the phase transitions or chemical modifications in the 

material. 

In x-ray powder diffraction, the crystal being studied is ground into a fine powder, 

formed by tiny crystals usually measuring ~1 micrometer and it is placed in a monochromatic 

beam of x-rays. Since the crystals in the powder sample are oriented in all possible directions, 

there will be some planes of atoms in the crystals which will be at the right angles, according to 

 17



Bragg’s Law, to produce cohesive interference of x-rays. These diffracted x-rays, will produce 

shapes of cones (Figure 2.6), with high intensity at the angles where the different planes of atoms 

cause the cohesive interference of x-rays. This pattern gives us the characteristic fingerprint of 

the material. 

 

Figure 2.6: Cone shaped reflections from powder diffraction 
 
 

2.4  Data interpretation 

The cone shaped reflections from powder diffraction can be counted and transformed into 

an intensity versus angle plot to give a clearer picture of the diffraction pattern (Figure 2.7). 

Computer software is used to count the photons and produce the intensity versus angle graph. 

This way, we can identify angles with high intensity reflections as peaks in the diffraction 

pattern. These angles are the Bragg angles θ. Each peak is also related to a plane distance  for a 

certain {hkl} by Bragg’s law: 

d

hklhkld  sin2                                                              (2.4) 
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Figure 2.7: An x-ray powder diffraction pattern 
 

Once the data is collected, it needs to be indexed, which involves assigning Miller indices 

to each peak. This is done by computing the Bragg angles of the diffraction pattern and 

comparing them to the Bragg angles expected from a certain crystal system.  

Bragg angles are related to the Miller indices and to the lattice cell parameters. In the 

indexing process, one considers Bragg’s law and the plane spacing equation for a certain crystal 

system.  The process is aimed at finding the (hkl) and lattice parameters that satisfy the equations 

for each peak. When the crystal system of the sample is known, indexing is significantly easier 

for high symmetry systems and more tedious for low symmetry systems.  

The  terms used in the indexing process for the higher-symmetry systems are the 

following: 

2sin
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Cubic: 
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Orthorhombic: 
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                                               (2.8) 

 

For the other crystal systems, the equations are more complicated, contain more 

parameters, such as the angles of the unit cell , , , and the indexing process is very difficult, 

and is usually done by computer software.  This is called autoindexing. 

When the powder diffraction pattern does not show peaks expected in a crystal structure, 

this may be due to systematic absences. Systematic absences give us information about the 

centering of the unit cell. For example, an I-centered cell shows peaks where h+k+l gives an 

even number; an F-centered cell shows peaks where hkl are either all even or all odd integers. 

Also, other systematic absences give us information about the screw axes and glide planes. 

Altogether, these systematic absences can help us determine the space group of the crystal. The 

indexing process is complete when all the peaks are indexed. 
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Chapter 3: Experimental procedure 

 

3.1  Sample preparation 

 RbH2PO4 crystals were synthesized by a vapor diffusion method. The process consisted 

in mixing rubidium carbonate ( Rb2CO3 ) with phosphoric acid ( H3PO4 ) below the solubility 

level. The mixture is then placed in a small beaker and the small beaker is placed inside of a 

large beaker containing methanol ( Figure 3.1 ). The large beaker was closed with a lid. The 

system was left at room temperature for approximately two weeks. The RbH2PO4 crystals were 

formed when the methanol vapors mixed with the Rb2CO3 and H3PO4 solution and caused it to 

precipitate slowly. This slow process of vapor diffusion produces better crystals than by using a 

faster method, for example, gel diffusion. 

 

 

Figure 3.1: The synthesis process for RbH2PO4 

 
 
 The crystals were ground mechanically in a mortar and pestle (Figure 3.2) into a fine 

powder and placed in a sample holder of the x-ray diffractometer. 
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Figure 3.2: Mortar and pestle (left). RbH2PO4 crystals (right). 
 

3.2  Apparatus 

The Siemens D5000 x-ray diffractometer (Figure 3.3) was used for the ambient-pressure 

measurements. The diffractometer has a source of Cu Kα x-rays of wavelength λ=1.5418 Å. Any 

Kβ radiation coming from the x-ray tube is removed from the beam by a nickel filter in order to 

produce a more monochromatic beam of x-rays. 

 

Figure 3.3: Siemens D-5000 diffractometer 
 

The diffractometer has a large diameter goniometer (600 mm) and it can move both its x-

rays source and the detector within an angular range from 20˚C to 60˚C (Figure 3.4). A Paar 
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HTK high-temperature chamber that can be used to vary the temperature  from room temperature 

to 1000˚C  during the XRD data collection was used. 

 

Figure 3.4:  Diffraction geometry 
 

3.3  Methodology 

In order to run the diffractometer properly, a few key steps need to be performed. First, a 

steady flow of a gas consisting in 90% argon and 10% methane is flowed through the 

scintillation counter detector. Second, a steady flow of water at 17˚ C is ran through the x-ray 

tube’s refrigeration system in order to prevent the x-ray tube from overheating. Thirdly, the 

detector’s manual controls are turned on and a voltage is set at the appropriate level, approx. 3.6 

kV. The x-ray tube’s voltage is then turned on to no more than 30 kV and its current to no more 

than 10 mA. Then, after making sure the detector is working properly, the x-ray source’s voltage 

is turned down to 20 kV and its current to 5 mA. subsequently, the experiment is controlled by 

computer software called Job Measurement. The sample is mounted in place and the door is 

closed. Using Job Measurement, we input the time intervals and angles at which we want the 

diffractometer to take measurements. This is done by using a parameter file, created previously. 

After reading instructions from the file, the system starts taking measurements. 
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The detector was set to measure scattered x-rays at angles 2 from 20˚ to 60˚.   The total 

measurement time for each XRD pattern is approximately 30 minutes. 

The diffraction pattern was analyzed using a peak fitting software called FULLPROF. 

This program is used to perform Le Bail analysis. In a Le Bail fit, the unit cell parameters, the 

reflection intensities, and the peak profile parameters are iteratively adjusted to give the best 

agreement with the data. The software lets the user choose the parameters to be varied. Then, it 

makes the best fit possible by varying the lattice parameters in controlled cycles (Figure 3.5). 

 

 

Figure 3.5: FULLPROF starting parameters file 
 

The correct Bragg peak positions are identified and the respective cell parameters are 

yielded by the fit (Figure 3.5). Figure 3.6 shows an example of a Le Bail fit for data collected on 

RDP at 25ºC.  The red circles correspond to the data while the black line indicates the fit to the 

data.  The green tick marks indicate the positions of the expected Bragg peaks, and the blue line 

is the difference between the data and the fit (which would be flat in the case of a perfect fit.) 
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Figure 3.6: A Le Bail fit where red dots are XRD data points, black line is Le Bail fit and blue line is 
difference curve. 
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Figure 3.7: Cell parameters given by the Le Bail fit. 
  

The second experiment consisted of powder diffraction measurements at temperatures 

ranging from approximately room temperature to 150˚C. A Paar HTK high-temperature chamber 

was used in conjunction with the Siemens D500 diffractometer. The chamber raises the 

temperature of the sample by orders of the Job Measurement software. The chamber also 

protects the system from the high temperatures reached by the sample and sample holder, and 

permits the goniometer to work regularly at the same time. 

 Analysis on the diffraction patterns of RDP at high temperatures (30˚C - 150˚C) were 

performed using the FULLPROF software to get the lattice parameters from the best fit and 

consequently the crystal structure and lattice parameters identified. 
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Chapter 4: Results and discussion 
 

Both phosphoric acids, RDP and CDP, have been shown to exhibit the so-called 

superprotonic behavior at elevated temperatures. In the case of CDP, the transition to the high-

proton-conductivity state occurs at around T=235°C. [25,26]. At room temperature, CDP has a 

monoclinic crystal structure. CDP then undergoes a phase transition to a cubic phase as the 

temperature rises to near T=237°C [15], a temperature commensurate with the onset of 

superprotonic behavior in the material. This has demonstrated that the monoclinic to cubic 

phase-transition in CDP is associated with its superprotonic behavior. On the other hand, RDP 

becomes superprotonic at a temperature of about T=327°C [8] but, unlike its phosphoric acid 

counter-part CDP, its room temperature phase is tetragonal, differing from the monoclinic room 

temperature state observed in CDP. 

We found that polycrystalline RDP undergoes a phase transition when heated from room 

temperature to above 130°C. Figure 4.1 shows XRD patterns over the 20°-60° 2range. 

According to the peak positions in Figure 4.1, only tetragonal RDP is present in the x-ray 

diffraction pattern when the heating went up to 80°C. Then, as the sample was heated above 

90°C, the peaks of tetragonal RDP phase started to decrease in intensity, and new peaks started 

to emerge. A complete transformation was completed by 130°C when the peaks pertaining to 

tetragonal RDP completely disappeared. Further heating up to 200°C resulted in no further 

change in the XRD pattern.  
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Figure 4.1: XRD pattern of RbH2PO4 
 
 

 Indexing was performed on the data collected at 150°C by means of a Le Bail fit using 

the program FULLPROF [27]. It was found that a single crystallographic phase with spacegroup 

P21/m and unit cell parameters a=7.694Å, b=6.199Å, c=4.774Å and =109.02º is present in the 

sample at this temperature (Figure 4.2 (b)). The starting unit cell parameters for the Le Bail fit of 

RDP at room temperature were taken from the Powder Diffraction File 84-0115; the unit cell 

parameters for the high-temperature phase were taken from the indexing of the 150°C data 

(Figure 4.2 (b)). Both fits were modeled by pseudo-Voigt functions. Thanks to the high-quality 

(low residue) in Figure 4.2, we were able to determine precisely the lattice parameters and to 

evidence clearly that tetragonal RDP transforms into a single monoclinic (P21/m) phase that is 
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stable at T=150°C. This cleared the doubt of whether there would be a single phase or multiple 

phases present in the sample upon heating. 
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Figure 4.2: Indexing of RbH2PO4 at (a) room temperature: tetragonal RbH2PO4. (b) high temperature: 
monoclinic RbH2PO4. 
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 After indexing the XRD pattern, a technique of analysis that is capable of determining, 

besides the unit cell dimensions, the atomic coordinates and the thermal parameters of the 

sample molecule was used. This method called Rietveld Refinement [28] uses the General 

Structure Analysis System (GSAS) [29] computer simulation program. A Rietveld refinement 

relates the peak shapes and positions with the cell parameters, atomic coordinates and internal 

energies of the atoms and makes the best fit possible between the observed profile and the 

refined profile. For the Rietveld refinement performed on RDP at T=150°C, the lattice constants, 

space group, and peak-shape parameters yielded by the Le Bail analysis above were used as the 

starting parameters. In addition, the positions of the hydrogen atoms in monoclinic CDP (P21/m) 

were used as the starting positions for the hydrogen atoms in RDP at T=150°C, assuming that 

both structures are isomorphic. Ultimately, a model of the RDP molecule in three dimensions 

was made (Figure 4.3).  Soft constraints were imposed on the P-O bond distances and the O-P-O 

bond angles in the PO4 tetrahedra 15 parameters were used in the Rietveld refinement and we got 

a final whole-pattern residual Rwp=7.6%. Figure 4.3 shows the results of the Rietveld 

Refinement, were the solid line represents the best Rietveld fit, the empty symbols represent the 

actual intensities of the diffracted rays as a function of diffracted angles, the lower trace is the 

difference curve (between the observed and calculated patterns), and the vertical bars represent 

the position of the Bragg angles.  
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Figure 4.3: Rietveld fit and 3-D model of monoclinic RbH2PO4. 
 

 

The numerical results of the Rietveld refinement are shown in Table I, namely, the 

fractional coordinates of the non-hydrogen atoms and their thermal parameters. The resulting 3-

D model of RbH2PO4 is shown in Figure 4.3. The 3-D model of the structure consists of 

alternating rows of PO4 tetrahedra and Rb atoms that run parallel to the c axis. Each tetrahedron 

is hydrogen bonded at all four corners so that there are two types of hydrogen-bond chains zig-

zagging along the a and c axes. 
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Table I: Fractional coordinates and thermal parameters of non-hydrogen atoms in RbH2PO4 
 

 

Fractional coordinates and thermal parameters 
Atom X Y Z Multiplicity Wyckoff 

letter  
Occupancy Uiso 

Rb 0.2623(6) 0.25       0.0604(8) 2 E 1 0.0377(23)
P 0.2456(17) 0.75 0.5319(25) 2 E 1 0.0377(23)

O(1) 0.4156(26)      0.75 0.4132(33) 2 E 1 0.0377(23)
O(2) 0.3451(23)     0.75 0.8736(44) 2 E 1 0.0377(23)
O(3) 0.1289(35)     0.5482(51)   0.4203(42)    4 F 1 0.0377(23)

An important observation made through the Rietveld refinement was that the structure of 

monoclinic RDP is nearly identical to the structure from monoclinic CDP. Table II shows the 

parameters in a comparison between monoclinic RDP and CDP. Our finding that RDP 

transforms from a room temperature tetragonal phase into an intermediate temperature 

monoclinic phase, about 100ºC below the superprotonic threshold (~257°C), suggests that RDP, 

like CDP, will transform into a high-symmetry disordered phase at a temperature close to the 

superprotonic threshold. In addition, this suggests that the nature behind the superprotonic 

conduction in both molecules, CDP and RDP, is fundamentally similar. 

Further experiments were performed on RDP powders to investigate the stability of the 

newly found monoclinic phase of RDP at intermediate-to-high temperatures (above 150°C). In 

these experiments, we heated the RDP sample at temperatures from 30°C to 240°C in increments 

of 10°C using a synchrotron radiation source and a flat plate detector.  
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Table II. Comparison between unit cell parameters and PO4 tetrahedral bond distances and angles in the 
monoclinic phases of rubidium- and cesium-dihydrogen phosphate. 

 
 RDP CDP [Ref. 7] 

 
 
 

Unit cell 

  

Spacegroup P 21/m P 21/m 

a [Å]   7.868(6) 7.912(2) 

b [Å] 6.299(5) 6.383(1) 

c [Å] 4.871(4) 4.8802(8) 

 [deg.] 109.15(3) 107.73(2) 

Phosphate group tetrahedral bond distances and angles 

P-O(1) [Å] 1.622(19) 1.565(6) 

P-O(2) [Å] 1.590(18) 1.481(5) 

P-O(3) [Å] 1.558(7) 1.529(4) 

O(1)-P-O(2) [deg.] 101.1(9) 107.0(3) 

O(1)-P-O(3) [deg.] 109.6(6) 106.1(2) 

O(2)-P-O(3) [deg.] 113.4(6) 113.6(2) 

O(3)-P-O(3) [deg.] 109.4(7) 109.9(2) 

 

 

XRD data was collected in intervals of about 45 s. Full profile analysis using Le Bail fits 

were performed on the patterns acquired at each temperature. On the upper row of Figure 4.4, Le 

Bail fits of the patterns at three different temperatures within the intervals (30°C – 90°C, 90°C – 

130°C, and 130°C – 200°C) are shown. In the 30°C – 90°C interval (region I), only the 

tetragonal phase of RDP is present; in the 90°C – 130°C interval (region II), both the tetragonal 

 33



and the monoclinic phases are present; and in the 130°C – 200°C interval (region III), only 

monoclinic RDP is present.  

 

Figure 4.4: Le Bail fits for three regions (upper panel) . Temperature dependence of lattice parameters of 
RbH2PO4. 

 

In the lower panels of Figure 4.4, the temperature dependence of the lattice parameters of 

both tetragonal and monoclinic RDP obtained from the Le Bail fits are shown. With the 

exception of the clearly different pattern of lattice parameters for each RDP phase, this observed 
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temperature dependence demonstrates a smooth variation of the lattice parameters throughout the 

whole 30°C – 200°C temperature interval, showing that no other structural or chemical 

modifications (except for the tetragonal→monoclinic polymorphic transition) occur. These 

results confirm that monoclinic RDP is stable when heated up to 200°C. Many authors have 

indicated that the tetragonal to monoclinic transition occurs at a particular temperature in the 

80°C – 120°C interval, depending on the sample and experimental conditions [30]. Our results 

show that because both phases of RDP (tetragonal and monoclinic) coexist in the 90°C – 130°C 

interval, the phase transition is gradual and a precise temperature at which the transition occurs 

could not be determined. A final XRD experiment on polycrystalline RDP was performed to 

investigate its behavior at high temperatures (above 200°C) and at ambient pressure and 

humidity conditions. Figure 4.5 shows XRD patterns collected at five different temperatures in 

the 200°C – 240°C interval.  

 
Figure 4.5: Dehydration and partial decomposition of RbH2PO4 at high temperatures. 
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From these patterns we were able to observe new peaks emerging at even higher 

temperatures. The new peaks were indexed and corresponded to the material di-rubidium di-

hydrogen pyrophosphate (Rb2H2P2O7). These new peaks emerge as the result of dehydration and 

partial polymerization/decomposition of the sample via the reaction 

2RbH2PO4→Rb2H2P2O7+H2O. At 240°C, the new peaks are dominant, but the monoclinic RDP 

peaks are still present in the XRD pattern. In comparison, CDP starts to dehydrate/decompose at 

almost the same temperature as it jumps into a superprotonic behavior. Moreover, the phase 

transition in CDP from monoclinic to cubic, to which its superprotonic behavior is associated, 

was seen even in an ambient atmosphere [15]. Unfortunately, the partial decomposition of RDP, 

which starts at about T=210°C, occurs at more than one hundred degrees Celsius below the 

temperature at which RDP was observed to become superprotonic (T=327°C) [8]. This partial 

decomposition of RDP is the reason why a potential phase transition to a superprotonic RDP 

transition cannot be observed under ambient pressure. Therefore, in order to investigate if the 

superprotonic behavior is indeed due to a polymorphic phase transition from a monoclinic to a 

high-temperature superprotonic phase, experiments under a high pressure or saturated water 

vapor environment are needed. 
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Chapter 5: Summary and conclusions 

 

 We performed XRD experiments on polycrystalline RDP samples by heating the samples 

from room temperature to T=250°C using laboratory and synchrotron x-ray sources under 

ambient pressures. We observed that RDP undergoes a polymorphic phase transition from its 

room-temperature crystal structure to an intermediate-temperature monoclinic structure. The 

transition starts at about T=90°C and is complete at about T=130°C. Both, the tetragonal and the 

monoclinic phases are present in the transition-temperature interval. The new, intermediate-

temperature, monoclinic RDP phase crystallizes in spacegroup P21/m with unit cell parameters 

a=7.694Å, b=6.199Å, c=4.774Å and =109.02 deg. Monoclinic RDP is nearly identical in 

structure to monoclinic CDP. This means that it is expected that similar structural transitions and 

similar proton conduction mechanisms in both of these phosphate-based solid acids are 

responsible for their superprotonic behavior. Upon further heating under ambient pressure and 

humidity conditions, the monoclinic RDP polymorph is stable up to 200°C. After this 

temperature, RDP starts to dehydrate/decompose into water and rubidium di-hydrogen 

pyrophosphate salt via the reaction reaction: 2RbH2PO4→Rb2H2P2O7+H2O. Experiments under 

high pressure or saturated water vapor environment are needed in order observe a high-

temperature phase transition that might be associated to the superprotonic behavior of RDP. 
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