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Abstract

In many practical situations, we need to combine prob-
abilistic and interval uncertainty. For example, we need to

compute statistics like population mean E =
1
n
·

n∑

i=1

xi or

population variance V =
1
n
·

n∑

i=1

(xi − E)2 in the situa-

tions when we only know intervals xi of possible values of
xi. In this case, it is desirable to compute the range of the
corresponding characteristic.

Some range computation problems are NP-hard; for
these problems, in general, only an enclosure is possible.
For other problems, there are ef�cient algorithms. In many
practical situations, we have additional information that
can be used as constraints on possible cumulative distri-
bution functions (cdfs). For example, we may know that the
actual (unknown) cdf is Gaussian. In this paper, we show
that such constraints enable us to drastically narrow down
the resulting ranges � and sometimes, transform the origi-
nally intractable (NP-hard) computational problem of com-
puting the exact range into an ef�ciently solvable one.

This possibility is illustrated on the simplest example of
an NP-problem from interval statistics: the problem of com-
puting the range V of the variance V .

We also describe how we can estimate the amount of in-
formation under such combined intervals-and-constraints
uncertainty.

1. Formulation of the Problem

Statistical analysis is important. Statistical analysis of
measurement and observation results is an important part of

data processing and data analysis. When faced with new
data, engineers and scientists usually start with estimating
standard statistical characteristics such as the mean E, the
variance V , the cumulative distribution function (cdf) F (x)
of each variable, and the covariance and correlation between
different variables. In the traditional statistical analysis, we
estimate the value of each characteristic by computing the
corresponding statistic C(x1, . . . , xn), such as:

• population mean E =
1
n
·

n∑

i=1

xi;

• population variance V =
1
n
·

n∑

i=1

(xi − E)2;

• histogram cdf Fn(x) =
#i : xi ≤ x

n
(where #i : P (i)

denotes �the number of i for which P (i) is true�);

• population covariance

Cx,y =
1
n
·

n∑

i=1

(xi − Ex) · (yi − Ey).

Limitations of traditional statistical techniques and the
need to consider interval uncertainty. Traditional meth-
ods of statistical analysis assume that the measured values
x̃1, . . . x̃n are the actual values x1, . . . , xn of the measured
quantities. These methods work well if the variability of
each variable is much higher than the measurement errors
∆xi

def= x̃i − xi. For example, the accuracy with which we
measure a person's height (≈ 1 cm) is much smaller than
the variability in height between different people.

In many practical situations, however, the measurement
errors are of the same order of magnitude as variability and



therefore, cannot be ignored. Often, the only information
that we have about the measurement errors is that they are
upper bounded by ∆i � and we have no information about
the probabilities of different values ∆xi ∈ [−∆i, ∆i]. In
such situations, the only information we have after the mea-
surements about the (unknown) actual value xi is that xi

belongs to the intervals xi
def= [x̃i −∆i, x̃i + ∆i].

In the case of interval uncertainty, instead of the actual
(exact) values xi, we only know the intervals xi of possible
values of xi. In this case, we must �nd the range

C = C(x1, . . . ,xn) def=

{C(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}
of possible values of the given statistic.

Adding interval uncertainty to statistical techniques:
what is known. There is a lot of research for computing
such ranges. Some range computation problems are NP-
hard � even the problem of computing the range for the pop-
ulation variance is, in general, NP-hard; see, e.g., [6, 9]. For
such problems, in general, we can only compute an enclo-
sure for the desired range.

For other problems, there are ef�cient algorithms; see,
e.g., [2, 6, 9, 11] and references therein. For example, ef�-
cient algorithms are possible:

• for computing the range E of the population mean E,

• for computing the lower endpoints V of the range of
variance,

• for computing the upper endpoint V of the range of
variance when the intervals xi are not contained in
each other, i.e., [xi, xi] 6⊆ (xj , xj) for all i and j,

• etc.

Limitations of the existing approach. To explain the
main limitation of the existing approach, let us brie�y sum-
marize what this approach is doing:

• we start with a statistic C(x1, . . . , xn) for estimating a
given characteristic S;

• we evaluate this statistic under interval uncertainty, re-
sulting in C = C(x1, . . . ,xn).

The main limitation of this idea is that a statistic is only an
approximation to the desired statistical characteristic, i.e.,
C(x1, . . . , xn) ≈ S. For example, the population mean is
only approximately equal to the mean value of the random
quantity; similarly, the population variance is only an ap-
proximation to the actual variance, etc.

The approximation error C(x1, . . . , xn) − S 6= 0 is not
always taken into account when we take the interval range
C as the range of the actual values of S.

For example, in this approach, if the values xi are known
exactly, then as a range of the population average, we will

get a single number E =
1
n
·

n∑

i=1

xi � while in reality, the

actual mean can differ from this population average.

Seemingly natural solution can lead to excess width. A
natural solution is that, instead of the original statistic C,
we consider the bounds C− and C+ of the corresponding
con�dence interval [C−, C+].

By de�nition of the con�dence interval, this interval
contains the actual value of the characteristic S with an
appropriate certainty. For example, under reasonable as-
sumptions (e.g., if the distribution is Gaussian), the interval
[E − k0 · σ,E + k0 · σ], where σ

def=
√

V and k0 (usually,
2, 3, or 6) is a given constant.

Thus, if we compute the interval range [C−, C
−

] and
[C+, C

+
] for the statistics C− and C+, then the corre-

sponding interval [C−, C
+
] is an enclosure for S (with ap-

propriate certainty). The ranges for C− and C+ can indeed
be often ef�ciently computed [1, 5, 6, 9].

The problem with this idea is that a con�dence interval
is often de�ned so as to contain the actual value � but not
necessarily as the narrowest interval that contains this value.
As a result, the interval [C−, C

+
] may contain excess width.

New idea. Let us instead �nd the actual range

S = {S(F ) : F is possible}

of the characteristic S. Estimating this range is the main
problem that we will be solving in this paper.

To solve this main problem, we must be able to solve the
following closely related problem: how to describe class F
of all the probability distributions F which are consistent
with the given observations [xi, xi]?

2. How to Describe Possible Probability Distri-
butions: p-Boxes

Case of exactly known probability distribution. The
class of all probability distributions is in�nite-dimensional;
thus, to exactly describe a probability distribution, we need
in�nitely many parameters. In a computer, we can only
store and process �nitely many numbers; thus, if we want
to represent probability distributions in a computer, we must
select �nitely many characteristics that will actually be rep-
resenting this distribution.



To make this representation useful in practical applica-
tions, we must select characteristics which are practically
useful. In many practical example, there is a critical thresh-
old x0 after which some undesirable event happens: a chip
delays too much, a panel cracks, etc. In such situations, we
want to make sure that the probability of exceeding x0 is
small. The resulting characteristic Prob(xi ≤ x0) is the
value of the cumulative distribution function (cdf) F (x) for
x = x0.

Thus, from the practical viewpoint, it is bene�cial to de-
scribe a probability distribution by its cdf F (x).

Case of partially known probability distribution.
When, for every x, we know the exact value of F (x), we
thus know the actual probability distribution exactly. So,
when we only have partial information about the probability
distribution, this means that we do not know the exact val-
ues of F (x). Instead, we may know, for every x, an interval
F(x) = [F (x), F (x)] that contains the actual (unknown)
value F (x).

Thus, a natural way to describe partial information about
a probability distribution is to describe, for every x, a func-
tion x → F(x). This function is called a p-box [2].

3. Estimates for Statistical Characteristics
Based on the Use of p-Boxes

New idea (reminder). We have several observations
x1, . . . , xn of a given random variable. These observations
may be exact � in which case, we know the exact values of
xi � or, more generally, they may consist of known inter-
vals xi which contain the actual (unknown) values xi of the
observed quantity.

Our objective is to estimate the value of a statistical char-
acteristic S based on these observations. Our new idea is
that we estimate S in two steps:

• �rst, we describe the class of all probability distribu-
tions which are consistent with the given observations;
since we agreed to represent such classes as p-boxes,
we must transform observations x1, . . . , xn into a p-
box;

• second, we estimate the range of the desired character-
istic S based on this p-box.

Kolmogorov-Smirnov (KS) p-box. In statistics, there is
a known way to produce bounds on cdfs (i.e., a p-box) from
observations: use Kolmorogov-Smirnov (KS) inequalities;
see, e.g., [7, 10].

The main idea behind KS inequalities is rather straight-
forward. Namely, for each x0, we have

• the actual (unknown) probability p = F (x0) that x ≤
x0, and

• the observed frequency Fn(x0) =
#i : xi ≤ x0

n
.

It is known that when n tends to in�nity, then the distri-
bution for the frequency tends to normal. Thus, for large
n, this distribution is approximately normal. Hence, with
given certainty α, we have p− k · σ ≤ Fn(x0) ≤ p + k · σ,

where σ =

√
p · (1− p)

n
is the standard deviation of this

simple random variable and k = k(α) is a factor that de-
termines the con�dence level. So, with certainty α, we get
bounds on p = F (x0) in terms of Fn(x0).

We can now use these bounds for x0 = x1, . . . , x0 =
xn, and use monotonicity of the cdf F (x) to get bounds
[Fn(x)− ε, Fn(x) + ε] for all x ∈ [xi, xi+1].

Graphically, for a histogram

6

-

Fn(x)

x1 x2 x3

the Kolmogorov-Smirnov p-box takes the form:

6

-

Fn(x)

x1 x2 x3

For interval-valued data [xi, xi], instead of single his-
togram, we have a p-box [Fn(x), Fn(x)] formed by:

• the histogram Fn(x) generated by the values
x1, . . . , xn, and

• the histogram Fn(x) generated by the values
x1, . . . , xn.

To get a guaranteed bound (with appropriate certainty), we
perform the same ε-enlargement to this p-box, producing a
new p-box

F(x) = [max(Fn(x)− ε), 0), min(Fn(x) + ε, 1)].



Computing bounds for variance based on the KS p-box.
Most known algorithms for computing the lower and upper
bounds for the population variance under the interval uncer-
tainty (see, e.g., [6, 9]) use the results of the calculus-type
analysis of optimal values. Speci�cally, we use the follow-
ing facts:

• if the function V attains a maximum or minimum
for some value xi which is strictly inside the interval
[xi, xi], then ∂f

∂xi
= 0;

• if V attains a maximum for xi = xi, then ∂f

∂xi
≤ 0;

• if V attains a minimum for xi = xi, then ∂f

∂xi
≥ 0;

• if V attains a maximum for xi = xi, then ∂f

∂xi
≥ 0;

• if V attains a minimum for xi = xi, then ∂f

∂xi
≤ 0.

For the actual variance V =
∫

x2 dF (x) − (∫
x dF (x)

)2,
a similar reasonably simple calculus-type analysis leads to
the following conclusions:

• the minimum V of the variance V is attained when the
cdf F (x) ∈ F(x) �rst follows the upper cdf F (x), then
stays horizonal, and then follows the lower cdf F (x):

6

-

Fn(x)

x1 x2 x3

• the maximum V of the variance V is attained when the
cdf F (x) ∈ F(x) �rst follows the lower cdf F (x), and
then jumps (vertically) to the upper cdf F (x):

6

-

Fn(x)

x1 x2 x3

Comment. The only difference with the case of popula-
tion variance � in which we have �nitely many variables
x1 ∈ x1, . . . , xn ∈ xn � is that now we have an unknown
function F (x) ∈ F(x) � i.e., in effect, in�nitely many vari-
ables F (x) ∈ F(x) corresponding to different values x.

Computational complexity of computing V and V . For
the bounds on the population variance:

• we can compute V in linear time O(n) [12];

• computing V is, in general, NP-hard;

• when [xi, xi] 6⊆ (xj , xj), we can compute V in linear
time [12].

For the actual variance, if we use KS p-box, then the only
remaining question is when to make a jump. For n data
points, there are n possible interval containing this jump.
For each interval, �nding the best location is an easy-to-
solve (quadratic) optimization problem with one variable,
so its complexity does not depend on n. Thus, by applying
the above observation:

• we can compute V in linear time O(n), and

• we can compute V in linear time O(n);

Conclusion. When we go from computing the range of
the population variance to computing the range of the actual
variance, we not only make our estimates more adequate �
we also, in general, make computations much faster.

4 How to Handle Additional Constraints

Possibility of additional information. In the previous
text, we assumed that the only information we have about
the cdf F (x) is that it is contained in the given p-box:
F (x) ∈ F(x). However, often, we have additional infor-
mation about F (x).

This information that can be used as constraints on pos-
sible cdfs F (x) ∈ F(x). It is desirable to use these con-
straints when estimating statistical characteristics � simi-
larly to the way constraints can be combined with traditional
interval computations; see, e.g., [3].

Types of additional information. Often, we sometimes
know the shape of F (x), i.e., we know that F (x) =
F0(x, a1, . . . , an) for a known function F0 and for some
parameters ai. Usually, we do not know the exact values
of each of these parameters; we may know the intervals
ai = [ai, ai] that contain the actual (unknown) values of
these parameters.



A typical situation is when this dependence is linear in
ai, i.e., when

F (x) = F0

(
n∑

i=1

ai · ei(x)

)
.

To be more precise, the known dependence may not be lin-
ear in terms of the given parameters, but it may be described
in this form if we use appropriate parameters.

For example, if we know that the actual distribution is
Gaussian, this means that F (x) = F0

(
x− a

σ

)
for some

parameters a and σ. With respect to the given parameters
a and σ, this dependence is not linear, but if we select new
parameters a1

def=
1
σ

and a2
def= − a

σ
, then we get the desired

linear form: F (x) = F0(a1 · x + a2).

How to take this additional information into account:
�rst seemingly natural solution. We have mentioned
that a natural way to represent a class of probability distribu-
tions is to �nd an appropriate p-box. Thus, it seems natural
to �nd a p-box containing this class, i.e., for every x, to �nd
the interval of possible values of F (x) corresponding to the
given class.

Once the p-box is found, we can then estimate the range
of the desired characteristic � e.g., of the variance V � based
on this p-box.

Limitations of the above seemingly natural approach.
This approach indeed provided a guaranteed bound (enclo-
sure) for the desired range � but it may also have excess
width.

For example, if we start with the family of all normal
distributions with 0 average and standard deviation σ from
a given interval [σ, σ], then the actual mean is always 0.
However, as one can easily check, the corresponding p-box
has non-zero width; as a result, it contains distribution with
non-zero mean � and thus, the enclosure for the mean com-
puted by using this p-box will contain non-zero values.

Towards exact estimates. Once we have a KS p-box
[F (x), F (x)] based on observations, we know that the ac-
tual (unknown) cdf F (x) must be within this interval for
all x:

F (x) ≤ F (x) ≤ F (x).

By de�nition, the KS p-box is obtained from the values at
x = xi via monotonicity: when xi < x < xi+1, we take
F (x) = F (xi) and F (x) = F (xi+1). Thus, to guarantee
that F (x) ∈ F(x) for all x, it is suf�cient to check that this
enclosure occurs for x = x1, . . . , xn, i.e., that

F (xi) ≤ F (xi) ≤ F (xi).

We know that F (x) = F0

(
n∑

i=1

ai · ei(x)
)

, so we can con-
clude that

F (xi) ≤ F0

(
n∑

i=1

ai · ei(x)

)
≤ F (xi).

Since the cdf F0(x) is monotonic, we can apply the inverse
function F−1

0 to all the sides and get an equivalent inequal-
ity:

F−1
0 (F (xi)) ≤

n∑

i=1

ai · ei(x) ≤ F−1
0 (F (xi)). (1)

Thus, if we know the dependence S(a1, . . . , an) of the de-
sired characteristic S on the parameters ai, then we can �nd
the range of this characteristic by �nding the minimum and
the maximum of the corresponding function S(a1, . . . , an)
under the constraints (1) and ai ≤ ai ≤ ai.

In particular, if the dependence S(a1, . . . , an) is linear
in ai, then the problems of �nding the minimum S and the
maximum S are linear programming problems � i.e., prob-
lems which can be ef�ciently solved by known feasible al-
gorithms.

Example. In practice, there are examples when the actual
dependence S(a1, . . . , an) is not linear, but this dependence
can be reduced to linear by an appropriate transformation.

For example, for the case of the Gaussian distribution,
we may be interested in the variance V = σ2. In this
case, as we have mentioned, a1 =

1
σ

, hence σ =
1
a1

, and

V =
1
a2
1

. This dependence is non-linear; however, this de-
pendence is strictly increasing. Thus:

• �nding the minimum of V is equivalent to �nding the
maximum of a1 and

• �nding the maximum of V is equivalent to �nding the
minimum of a1.

The problem of �nding the minimum and maximum of a1

under linear constraints is already a linear programming
problem.

Conclusion. The use of additional information about
the probability distribution not only eliminates the excess
width; it may also transform the originally NP-hard prob-
lem of estimating the range of the variance into a feasible
one.



5. Gauging Amount of Uncertainty

Formulation of the problem and a seemingly natural
solution. Every time we have uncertainty, an important
question is how to gauge the amount of uncertainty; see,
e.g., [4]. In the traditional statistical approach, the uncer-
tainty in a probability distribution is usually described by
Shannon's entropy

S = −
∫

ρ(x) · log(ρ(x)) dx,

where ρ(x) = F ′(x) is the probability density function of
this distribution.

We have already mentioned that in the situations when
we have partial information about the probability distribu-
tion F (x) � e.g., when we only know that F (x) belongs to
a non-degenerate p-box F(x) = [F (x), F (x)], a reasonable
estimate for an arbitrary statistical characteristic S is the
range of possible values of S over all possible distributions
F (x) ∈ F(x).

It therefore seems natural to apply this approach to en-
tropy as well � and return the range of entropy as a gauge
of uncertainty of a p-box; see, e.g., [4, 13].

Limitations of the above (seemingly natural) solution.
The problem with the above approach is that every non-
degenerate p-box includes discrete distributions, i.e., dis-
tributions which take discrete values x1, . . . , xn with �nite
probabilities. For such distributions, Shannon's entropy is
−∞.

Thus, for every non-degenerate p-box, the resulting in-
terval [S, S] has the form [−∞, S]. Thus, once the distri-
bution with the largest entropy S is �xed, we cannot distin-
guish between a very narrow p-box or a very thick p-box �
in both case, we end up with the same interval [−∞, S].

It is therefore desirable to develop a new approach that
would enable us to distinguish between these two cases.

Our idea: go back to the foundations. To design this
new characteristic, let us go back to the foundations, check
how Shannon came up with his measure of uncertainty, and
see how Shannon's derivations can be modi�ed to the case
of p-boxes.

Traditional approach to gauging amount of informa-
tion: reminder. The traditional Shannon's notion of the
amount of information is based on de�ning information as
the (average) number of �yes�-�no� (binary) questions that
we need to ask so that, starting with the initial uncertainty,
we will be able to completely determine the object.

Discrete case, when we have no information about prob-
abilities. Let us start with the simplest situation when we
know that we have n possible alternatives A1, . . . , An, and
we have no information about the probability (frequency)
of different alternatives. Let us show that in this case, the
smallest number of binary questions that we need to deter-
mine the alternative is indeed q

def= dlog2(n)e.

Comment. The value dxe is the smallest integer which is
larger than or equal to x. It is called the ceiling of the num-
ber x.

After each binary question, we can have 2 possible an-
swers. So, if we ask q binary questions, then, in principle,
we can have 2q possible results. Thus, if we know that our
object is one of n objects, and we want to uniquely pin-
point the object after all these questions, then we must have
2q ≥ n, i.e., q ≥ log2(n). To complete the derivation, it is
let us show that it is suf�cient to ask q questions.

Indeed, let's enumerate all n possible alternatives (in ar-
bitrary order) by numbers from 0 to n − 1, and write these
numbers in the binary form. Using q binary digits, one can
describe numbers from 0 to 2q − 1. Since 2q ≥ n, we can
this describe each of the n numbers by using only q binary
digits. So, to uniquely determine the alternative Ai out of
n given ones, we can ask the following q questions: �is the
�rst binary digit 0?�, �is the second binary digit 0?�, etc, up
to �is the q-th digit 0?�.

Case of a discrete probability distribution. Let us now
assume that we also know the probabilities p1, . . . , pn of
different alternatives A1, . . . , An. If we are interested in an
individual selection, then the above arguments show that we
cannot determine the actual alternative by using fewer than
log(n) questions. However, if we have many (N ) similar
situations in which we need to �nd an alternative, then we
can determine all N alternatives by asking ¿ N · log2(n)
binary questions.

To show this, let us �x i from 1 to n, and estimate the
number of events Ni in which the output is i.

This number Ni is obtained by counting all the events
in which the output was i, so Ni = n1 + n2 + . . . + nN ,
where nk equals to 1 if in k-th event the output is i and 0
otherwise. The average E(nk) of nk equals to pi · 1 + (1−
pi) ·0 = pi. The mean square deviation σ[nk] is determined
by the formula σ2[nk] = pi · (1 − E(nk))2 + (1 − pi) ·
(0 − E(nk))2. If we substitute here E(nk) = pi, we get
σ2[nk] = pi · (1 − pi). The outcomes of all these events
are considered independent, therefore nk are independent
random variables. Hence the average value of Ni equals to
the sum of the averages of nk: E[Ni] = E[n1] + E[n2] +
. . . + E[nN ] = Npi. The mean square deviation σ[Ni]



satis�es a likewise equation σ2[Ni] = σ2[n1] + σ2[n2] +
. . . = N · pi · (1− pi), so σ[Ni] =

√
pi · (1− pi) ·N .

For big N the sum of equally distributed independent
random variables tends to a Gaussian distribution (the well-
known central limit theorem), therefore for big N , we can
assume that Ni is a random variable with a Gaussian distri-
bution. Theoretically a random Gaussian variable with the
average a and a standard deviation σ can take any value.
However, in practice, if, e.g., one buys a voltmeter with
guaranteed 0.1V standard deviation, and it gives an error
1V, it means that something is wrong with this instrument.
Therefore it is assumed that only some values are practi-
cally possible. Usually a �k-sigma� rule is accepted that the
real value can only take values from a − k · σ to a + k · σ,
where k is 2, 3, or 4. So in our case we can conclude
that Ni lies between N · pi − k ·

√
pi · (1− pi) ·N and

N · pi + k ·
√

pi · (1− pi) ·N . Now we are ready for the
formulation of Shannon's result.

Comment. In this quality control example the choice of
k matters, but, as we'll see, in our case the results do not
depend on k at all.

Let a real number k > 0 and a positive integer n be
given. The number n is called the number of outcomes.
By a probability distribution, we mean a sequence {pi} of
n real numbers, pi ≥ 0,

∑
pi = 1. The value pi is called

a probability of i-th event. Let an integer N is given; it is
called the number of events. By a result of N events we
mean a sequence rk, 1 ≤ k ≤ N of integers from 1 to
n. The value rk is called the result of k-th event. The to-
tal number of events that resulted in the i-th outcome will
be denoted by Ni. We say that the result of N events is
consistent with the probability distribution {pi} if for ev-
ery i, we have N · pi − k · σi ≤ Ni ≤ N + k · σi,
where σi

def=
√

pi · (1− pi) ·N. Let's denote the num-
ber of all consistent results by Ncons(N). The number
dlog2(Ncons(N))e will be called the number of questions,
necessary to determine the results of N events and denoted
by Q(N). The fraction Q(N)/N will be called the average
number of questions.

Theorem (Shannon; see, e.g., [8]). When the number of
events N tends to in�nity, the average number of questions
tends to

S(p) def= −
∑

pi · log2(pi).

Case of a continuous probability distribution. After a
�nite number of �yes�-�no� questions, we can only distin-
guish between �nitely many alternatives. If the actual situ-
ation is described by a real number, then, since there are in-

�nitely many different possible real numbers, after �nitely
many questions, we can only get an approximate value of
this number.

Once we �x the accuracy ε > 0, we can talk about the
number of questions that are necessary to determine a num-
ber x with this accuracy ε, i.e., to determine an approximate
value r for which |x− r| ≤ ε.

Once an approximate value r is determined, possible ac-
tual values of x form an interval [r − ε, r + ε] of width
2ε. Vice versa, if we have located x on an interval [x, x] of
width 2ε, this means that we have found x with the desired
accuracy ε: indeed, as an ε-approximation to x, we can then
take the midpoint (x + x)/2 of the interval [x, x].

Thus, the problem of determining x with the accuracy
ε can be reformulated as follows: we divide the real line
into intervals [xi, xi+1] of width 2ε (xi+1 = xi + 2ε), and
by asking binary questions, �nd the interval that contains x.
As we have shown, for this problem, the average number of
binary question needed to locate x with accuracy ε is equal
to S = −∑

pi · log2(pi), where pi is the probability that x
belongs to i-th interval [xi, xi+1].

In general, this probability pi is equal to
∫ xi+1

xi
ρ(x) dx,

where ρ(x) is the probability distribution of the unknown
values x. For small ε, we have pi ≈ 2ε · ρ(xi), hence
log2(pi) = log2(ρ(xi)) + log2(2ε). Therefore, for small
ε, we have

S = −
∑

ρ(xi) · log2(ρ(xi)) ·2ε−
∑

ρ(xi) ·2ε · log2(2ε).

The �rst sum in this expression is the integral sum for the
integral S(ρ) def= − ∫

ρ(x) · log2(x) dx (this integral is
called the entropy of the probability distribution ρ(x)); so,
for small ε, this sum is approximately equal to this integral
(and tends to this integral when ε → 0). The second sum
is a constant log2(2ε) multiplied by an integral sum for the
interval

∫
ρ(x) dx = 1. Thus, for small ε, we have

S ≈ −
∫

ρ(x) · log2(x) dx− log2(2ε).

So, the average number of binary questions that are needed
to determine x with a given accuracy ε, can be determined
if we know the entropy of the probability distribution ρ(x).

Case of p-boxes: description of the situation. Our main
motivation is that the traditional approach of interval-valued
entropy does not allow us to distinguish between narrow and
wide p-boxes. For a wide p-box, it is OK to make a wide
interval like [−∞, S], but for narrow p-boxes, we would
like to have narrower estimates. Let us therefore consider
narrow p-boxes.

Since entropy is de�ned for smooth (differentiable) cdfs
F (x), it is reasonable to start with the case when the cen-
tral function of a p-box is also smooth. In other words, we



consider p-boxes of the type

F(x) = [F0(x)−∆F (x), F0(x) + ∆F (x)],

where F0(x) is differentiable, with derivative ρ0(x) def=
F ′0(x), and ∆F (x) is small.

Formulation of the problem. For each ε > 0 and for
each distribution F (x) ∈ F(x), we can use the above for-
mulas to estimate the average number Sε(F ) of �yes�-�no�
question that we need to ask to determine the actual value
with accuracy ε. Our objective is to compute the range

[S, S] = {Sε(F ) : F ∈ F}.

Known result. It is known (see, e.g., [8]) that asymptoti-
cally,

S ∼ −
∫

ρ0(x) · log2(ρ0(x)) dx− log2(2ε).

New result. Our new result is that

S ∼ −
∫

ρ0(x) ·max(2∆F (x), 2ε · ρ0(x)) dx.

Comment. This result holds when ε and the width of ∆F
both tends to 0. If instead we �x the width ∆F and let
ε → 0, then S →∞ but S remains �nite.

Idea of the proof. When we discretize the distribution,
we get pi ≈ ρ0(xi) ·∆xi, hence

−
∑

pi · log2(pi) ≈ −
∫

ρ0(x) · log(ρ0(x) ·∆x) dx.

To minimize the entropy, we can take the discrete distri-
bution with values x1, . . . , xn as far away from each other
as possible. A distribution which is located at xi and xi+1

and has 0 probability to be in between is described by a cdf
F (x) which is horizontal on [xi, xi+1]. Thus, we must se-
lect a cdf F (x) ∈ F(x) for which these horizontal segments
are as long as possible. The length of a horizontal segment
is bounded by the geometry of the p-box:

-¾
¡

¡
¡

¡
¡

¡
¡
6

?
∆xi

2∆F (x)
F (x)

¡
¡

¡

F (x)
-¾ 2ε

Thus, this length cannot exceed 2∆F (x)
ρ0(x)

. If this length
is > 2ε, then we can take this interval between the se-
quential values xi. If this length is < 2ε, then we can

still take ∆xi = 2ε. Thus, in general, we take ∆xi =

max
(

2∆F (x)
ρ0(x)

, 2ε

)
. Substituting this expression into the

above asymptotic formula, we get the desired asymptotic
for S.

6 Conclusions

This paper mainly deals with the following problem:
When we have several observations of given random vari-
ables, these observations being known as intervals, how is
it possible to compute enclosures for some characteristics
such as mean values or standard deviation of the true popu-
lation.

In our paper, we describe feasible algorithms for solving
several practically important cases of this problem.
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