

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

A) C)B)

Figure 1.1: Examples of hanging nodes.

1.3 Reference Domains and Reference Maps

For piecewise-linear approximation, degrees of freedom are usually associated with the solu-

tion values at the grid vertices (here the nodal and hierarchic approaches coincide), and the

variational formulation can be evaluated directly in the grid.

The situation changes dramatically with higher-order finite elements since they use a large

amount of overlapping information, whose efficient management requires more structure to

be imposed. For example, while first-order numerical quadrature can be implemented using

coordinates of grid vertices only, higher-order quadrature schemes require many integration

points per element (the actual amount depends on the order of accuracy, and in 3D it can

easily achieve several hundreds). Both storing these values (d spatial coordinates and a

weight per point) in all elements as well as reconstructing them periodically from a reference

configuration would be extremely inefficient. The situation is analogous for higher-order

basis functions.

Therefore, for higher-order finite element discretizations the mesh cells Ki ∈ Th,p are mapped

onto a reference domain K̂ by means of smooth bijective reference maps

xKi
: K̂ → Ki. (1.7)

The maps xK , together with polynomial spaces on the reference domain K̂, will be used

for the definition of the space of functions Vh,p(Ωh) where the finite element solution will

be sought. An example of a reference map in the quadrilateral case in 2D is illustrated in

Figure 1.2.

5

ξ

ξ
2

1

K
q

1

−1

−1 0 1

K

x
K

x
1

x
2

Figure 1.2: Reference map for a quadrilateral element.

The design of reference maps for all standard types of reference domains will be discussed

in detail in section 2.3. There we also show how one uses them to transfer the integrals over

elements Ki from the variational formulation to the reference domains. The higher-order

finite element discretization is performed almost exclusively on the reference domains.

1.4 Finite Element Discretization

Consider a bounded domain Ω ⊂ IRd with Lipschitz-continuous boundary, a partial differen-

tial equation (PDE) to be solved, and a set of conventional boundary conditions. Multiplying

the PDE with a test function v from a suitable function space V , integrating over the domain

Ω, applying the Green’s theorem and incorporating the boundary conditions, one obtains a

variational formulation

L(u∗ + ū, v) = f(v) for all v ∈ V. (1.8)

Both the forms L and f are assumed linear in v. If nonhomogeneous Dirichlet conditions

are present, the solution u = u∗ + ū is sought in an affine function space which is differ-

ent from V (functions satisfying nonhomogeneous Dirichlet boundary conditions obviously

cannot constitute any linear function space). The lift function u∗ is chosen to satisfy non-

homogeneous Dirichlet conditions. Only the unknown component ū satisfying homogeneous

Dirichlet boundary conditions is sought. All functions v ∈ V vanish on any Dirichlet part of

the boundary ∂Ω.

Neumann and Newton (Robin) boundary conditions are enforced by substituting them di-

rectly into boundary integrals in (1.8) over the corresponding part of the boundary ∂Ω. See

6

any basic finite element textbook for more details.

1.4.1 Approximation of weak forms and discretization

The finite element discretization of (1.8) is done in the following standard steps:

Step 1: Approximate the domain Ω with another domain Ωh which is more convenient for

meshing and computation.

Step 2: Cover the domain Ωh with a finite element mesh Th,p. Choose appropriate reference

domains for all geometrical types of elements and for each K ∈ Th,p construct a smooth

bijective reference map xK .

Step 3: Approximate the space V , using appropriate polynomial spaces on the reference

domains and the reference maps, by a suitable subspace Vh,p = span(v1, v2, ..., vN).

Remark 1.3 (Variational crimes) Let us remark that in reality usually Vh,p 6⊂ V since

the domains Ω and Ωh differ, and moreover often even Ωh 6⊂ Ω. Hence this step is sometimes

classified as a variational crime in the FE community.

Step 4: Approximate the form L by another form Lh,p, replacing the exact integration over

Ω and ∂Ω by numerical integration over Ωh and ∂Ωh. Notice that boundary conditions are

shifted from ∂Ω to ∂Ωh in this step.

Step 5: Approximate the linear form f by another linear form fh,p in the same way as in

Step 4.

Step 6: We arrive at a new, approximate variational formulation: The solution uh,p is sought

in the form uh,p = u∗h,p + ūh,p, ūh,p ∈ Vh,p, satisfying

Lh,p(u
∗
h,p + ūh,p, vh,p) = fh,p(vh,p), (1.9)

for all vh,p ∈ Vh,p. The function u∗h,p is a suitable piecewise polynomial (usually a simple

piecewise-linear) approximation of the lift function u∗ from (1.8).

Step 7: Express the function ūh,p as a linear combination of the basis functions vi of the

7

space Vh,p with unknown coefficients yi,

uh,p(x) = u∗h,p(x) + ūh,p(x) = u∗h,p(x) +
N∑

j=1

yjvj(x). (1.10)

Step 8: Insert the construction (1.10) into the approximate weak form (1.9) and select

vh,p := vi, i = 1, 2, . . . , N . This turns (1.9) into a system of algebraic equations

Lh,p

(
u∗h,p +

N∑
j=1

yjvj, vi

)
= fh,p(vi), i = 1, 2, ..., N. (1.11)

If the form Lh,p is bilinear, (1.11) represents a system of linear algebraic equations which

can be written in a matrix form SY = F,

N∑
j=1

Lh,p (vj, vi)︸ ︷︷ ︸
Sij

yj︸︷︷︸
Yj

= fh,p(vi)− Lh,p

(
u∗h,p

)
︸ ︷︷ ︸

Fi

, i = 1, 2, ..., N.

Otherwise the algebraic system (1.11) is nonlinear.

Step 9: Solve the system (1.11) for the unknown coefficients Y of ūh,p with a suitable

numerical scheme. Retrieve the approximate solution uh,p using (1.10).

1.5 Orthogonal Polynomials

Orthogonal polynomials find applications in diverse fields of mathematics, both for theoreti-

cal and numerical issues. In our case they will play an essential role in the design of optimal

higher-order shape functions. The class of Jacobi polynomials,

Pn,α,β(x) =
(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn

[
(1− x)α+n(1 + x)β+n

]
, (1.12)

holds the prominent position among orthogonal polynomials.

1.5.1 Legendre polynomials

Legendre polynomials have a special importance among the descendants of the Jacobi poly-

nomials Pn,α,β, they are defined as

Ln(x) = Pn,0,0(x).

8

and form an orthonormal basis of the space L2(I). Originally, they were constructed by

means of the Gram-Schmidt orthogonalization process, and later many useful properties

of these polynomials were found. For all of them let us mention, e.g., that their roots

are identical with integration points for higher-order Gauss quadrature rules in one spatial

dimension.

There are several ways to define them, among which probably the most useful for the imple-

mentation of higher-order shape functions is the recurrent definition

L0(x) = 1,

L1(x) = x,

Lk(x) =
2k − 1

k
xLk−1(x)− k − 1

k
Lk−2(x), k = 2, 3, . . . ,

(1.13)

Their orthogonality is exactly specified by

∫ 1

−1

Lk(x)Lm(x)dx =

{
2

2k+1
for k = m,

0 otherwise.
(1.14)

It is not difficult to obtain explicit formulae for Legendre and also other sets of orthogonal

polynomials up to very high orders using standard mathematical software. Let us list a few

Legendre polynomials as a reference for computer implementation.

L0(x) = 1,

L1(x) = x,

L2(x) =
3

2
x2 − 1

2
,

L3(x) =
1

2
x(5x2 − 3),

L4(x) =
1

8
(35x4 − 30x2 + 3),

L5(x) =
1

8
x(63x4 − 70x2 + 15),

(1.15)

The functions L0, L1, . . . , L9 are illustrated in Figure 1.3.

9

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 1.3: Legendre shape functions L0, L1, L2, L3, L4, L5

1.5.2 Lobatto shape functions

Let us define functions

l0(x) =
1− x

2
, l1(x) =

x + 1

2
,

lk(x) =
1

‖Lk−1‖2

∫ x

−1

Lk−1(ξ) dξ, 2 ≤ k,
(1.16)

where ‖Lk−1‖2 =
√

2/(2k − 1) from (1.14). Obviously lk(−1) = 0, k = 2, 3, It follows

from the orthogonality of higher-order Legendre polynomials Lk to L0 ≡ 1,

∫ 1

−1

Lk(x) dx = 0, k ≥ 1, (1.17)

that also lk(1) = 0, k = 2, 3, The Lobatto shape functions l0, l1, l2, . . . , lp form a complete

basis of the space Pp(−1, 1) of polynomials of the order of at most p in the interval (−1, 1).

10

Let us list some of them for reference:

l2(x) =
1

2

√
3

2
(x2 − 1),

l3(x) =
1

2

√
5

2
(x2 − 1)x,

l4(x) =
1

8

√
7

2
(x2 − 1)(5x2 − 1),

l5(x) =
1

8

√
9

2
(x2 − 1)(7x2 − 3)x,

(1.18)

The Lobatto shape functions will play an essential role in the design of hierarchic shape

functions in Chapter 2. Some of them are illustrated in Figures 1.4 (notice the different

scales).

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-1 -0.5 0 0.5 1
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-1 -0.5 0 0.5 1

Figure 1.4: Lobatto shape functions l0, l1, l2, l3, l4, l5

11

Chapter 2

Higher-Order Finite Element Method

The construction of finite elements of arbitrary order for H1-conforming approximations is

relatively well known, and various options of hierarchic shape functions for all commonly

used reference domains can be found in several textbooks (see, e.g., [3],[4],[5]) and numerous

articles ([6],[8],[9],[10],[7],[11],[12],[13],[14],[15],[16],[17] and others). However, the question

of the optimal design of shape functions is extremely difficult (already the formulation of

optimality criteria is not at all trivial), and very few results stating any kind of optimality

are available. The conditioning of the master element stiffness and/or mass matrix is a good

indicator of quality of the shape functions.

2.1 Brick master element K1
B

We will be dealing with only one master element, which is master brick K1
B, that will be

associated with the reference brick domain

KB = {ξ ∈ IR3; −1 < ξ1, ξ2, ξ3 < 1}, (2.1)

depicted in Figure 2.1.

3

3

5

7

2

3

11

v

e

e

v
1

e
1 2

v

e

v
4

e
4

5

v
6

vv
8

12
e

7
e

e

9
e

e
10

v

6
e

e
8

3
s

5
s

s
1

s
2

s
4

2

1

s
6

ξ

ξ

ξ

1

0 1−1

−1

Figure 2.1: The reference brick KB

12

Remark 2.1 This geometry is convenient for our purposes since it respects the interval

of definition of the Jacobi polynomials in all three spatial directions. The one-dimensional

affine coordinates appropriate for the geometry (2.1) have the form

λ1,B(ξ1, ξ2, ξ3) =
ξ1 + 1

2
, λ2,B(ξ1, ξ2, ξ3) =

1− ξ1

2
, λ3,B(ξ1, ξ2, ξ3) =

ξ2 + 1

2
,

λ4,B(ξ1, ξ2, ξ3) =
1− ξ2

2
, λ5,B(ξ1, ξ2, ξ3) =

ξ3 + 1

2
, λ6,B(ξ1, ξ2, ξ3) =

1− ξ3

2
.

(2.2)

To allow for anisotropic p-refinement of brick elements, we consider local directional orders

of approximation pb,1, pb,2, pb,3 in element interior (in directions ξ1, ξ2 and ξ3, respectively).

In 3D there is the added possibility of anisotropic p-refinement of faces, for which we need to

assign two local directional orders of approximation psi,1, psi,2 to each face si, i = 1, . . . , 6.

These directional orders are associated with a local two-dimensional system of coordinates on

each face, which matches an appropriate pair of global coordinate axes in lexicographic order.

With this choice, based on [18], local coordinate axes on faces have the same orientation as

the corresponding global ones, which simplifies sign-related issues in the formulae for face

functions. Edges will be equipped as usual with local orders of approximation pe1 , . . . , pe12 ,

and their orientation will be used for the construction of edge functions only.

Remark 2.2 (Minimum rules in 3D) In 3D the minimum rule limits the local orders

of approximation on both edges and faces. Local (directional) orders on mesh faces are

not allowed to exceed the minimum of the (appropriate directional) orders of approximation

associated with the interior of the adjacent elements. Local orders of approximation on mesh

edges are limited by the minimum of all (appropriate directional) orders corresponding to

faces sharing that edge.

The local orders pb,1, . . . , pb,3, psi,1, psi,2, i = 1, . . . , 6, and pe1 , . . . , pe12 suggest that a finite

element of the form K1
B = (KB,WB, Σ1

B) will be equipped with polynomial space

WB =
{
w ∈ Qpb,1,pb,2,pb,3 ; w |si

∈ Qpsi,1,psi,2 , w |ej
∈ Ppej (ej), i = 1, . . . , 6, j = 1, . . . , 12

}
.

(2.3)

Here,

Qp,q,r = span
{
ξi
1ξ

j
2ξ

k
2 ; (ξ1, ξ2, ξ3) ∈ KB, i = 0, . . . , p, j = 0, . . . , q, k = 0, . . . , r

}
. (2.4)

13

The set of degrees of freedom Σ1
B will be uniquely identified by a concrete choice of basis in

WB. H1-conformity requirements, constraining function values at vertices, on edges and on

faces, dictate that the hierarchic basis of space WB will have to comprise vertex, edge, face

and bubble functions.

Vertex functions ϕ
vj

B , j = 1, 2, . . . , 8, are associated with element vertices, and they provide

the complete basis of a space WB for lowest-order approximation. Recall functions l0, l1, . . .

from (1.5.2). Vertex functions will be chosen in a conventional way, i.e., trilinear in the form

ϕ
vj

B = ld1(ξ1)ld2(ξ2)ld3(ξ3), (2.5)

where

d = (d1, d2, d3)

is a vector index, whose components are related to axial directions ξ1, ξ2 and ξ3, respectively.

It is defined as follows: consider edges ej1 , ej2 , ej3 , containing the vertex vj, and lying in axial

directions ξ1, ξ2, ξ3, respectively. We put dk = 0 if vj lies on the left of edge ejk
(with respect

to the axial direction ξk), and dk = 1 otherwise. Notice that the vertex functions ϕ
vj

B are

equal to one at the vertex vj, and vanish at all seven remaining vertices. Their traces are

linear on all edges. An example of the vertex function is illustrated in Figure 2.2.

Edge functions ϕ
ej

k,B, j = 1, . . . , 12, k = 2, 3, . . . , pej , will be designed in such a way that

the traces of ϕ
ej

k,B to the edge ej match the Lobatto shape functions l2, . . . , lpej (representing

a basis of polynomial space Ppej ,0(ej)), and vanish on all remaining edges. Consider a

polynomial order k, 2 ≤ k ≤ pej , and define index d = (d1, d2, d3) as follows: Put dm = k,

where ξm is the axis parallel to ej. The remaining two components are set to either zero or

one, depending on whether the edge lies on the left or right side of the reference brick, with

respect to the remaining two axial directions. An edge function ϕ
ej

k,B of order k is defined by

ϕ
ej

k,B = ld1(ξ1)ld2(ξ2)ld3(ξ3), (2.6)

as illustrated in Figure 2.2.

Face functions ϕsi
n1,n2,B, 2 ≤ n1 ≤ psi,1, 2 ≤ n2 ≤ psi,2, corresponding to a face si, i = 1, . . . , 6,

will be constructed to have a trace of directional polynomial orders n1, n2 on the face si (with

respect to its local coordinate system specified above), and to vanish on the five remaining

faces. Appropriate components of the index d = (d1, d2, d3) now contain directional orders

14

n1, n2, and the remaining component is set to either zero or one, depending on whether the

face si lies on the left or right side of the reference brick with respect to the remaining axial

direction. We define

ϕsi
n1,n2,B = ld1(ξ1)ld2(ξ2)ld3(ξ3),

and illustrate the construction in Figure 2.2.

Figure 2.2: An example of the vertex, edge, face and bubble function

Remark 2.3 Notice that all face functions sharing the same face sj are linearly inde-

pendent, and obviously linearly independent of face functions corresponding to other faces.

Moreover, all of the aforementioned face functions are linearly independent of edge and

vertex functions.

15

Bubble functions are the last ones to be added into the hierarchic basis of the space WB.

They generate the space Qpb,1,pb,2,pb,3,0 of polynomials of directional orders at most pb,j in

axial directions ξj, j = 1, . . . , 3, that vanish everywhere on the boundary of the reference

brick KB,

ϕb
n1,n2,n3,B = ld1(ξ1)ld2(ξ2)ld3(ξ3), 2 ≤ dj ≤ pb,j, j = 1, . . . , 3. (2.7)

Numbers of hierarchic shape functions in the basis of the space WB are presented in Table

2.1.

Table 2.1: Scalar hierarchic shape functions of K1
B.

Node Polynomial Number of Number of
type order shape functions nodes

Vertex always 1 8
Edge 2 ≤ pej pej − 1 12
Face 2 ≤ psi,1, psi,2 (psi,1 − 1)(psi,2 − 1) 6
Interior 2 ≤ pb,1, pb,2, pb,3 (pb,1 − 1)(pb,2 − 1)(pb,3 − 1) 1

Remark 2.4 When the distribution of order of polynomial approximation in the finite

element mesh is uniform (p = pb,i = psj ,k = pem for all i, j, k, m), the above introduced basis

of WB reduces to a basis

ld1(ξ1)ld2(ξ2)ld3(ξ3), 0 ≤ d1, d2, d3 ≤ p,

of the standard space Qp,p,p of cardinality card(Qp,p,p) = (p + 1)3.

2.2 Projection-based interpolation on reference domains

Projection-based interpolation on hierarchic elements is a nontrivial technique that forms

an essential part of higher-order finite element methods. Recall from Section 1.2 that in

contrast to nodal higher-order elements, the degrees of freedom L1, L2, . . . , LNP
for hierarchic

elements are not defined outside of the local polynomial space P (K). One needs to combine

the standard nodal (Lagrange) interpolation with projection on higher-order polynomial

subspaces.

16

Given a sufficiently regular function u ∈ V (Ωh), it is our aim to find an appropriate piecewise-

polynomial interpolant uh,p ∈ Vh,p(Ωh), Vh,p ⊂ V . For every element K ∈ Th,p with affine

reference map xK : K̂ → K this is equivalent to the interpolation of the function u |K ◦xK

on the reference domain. Therefore we will stay on the reference domain for a while.

Properties of projection-based interpolation operators

In order that the projection-based interpolation Π is algorithmically efficient, conforming

and compatible with convergence theory, we request the following properties:

1. Locality. The projection-based interpolant Πu of a function u is constructed element-

wise. Therefore we request that within an element, Π uses function values of u from

this element only.

2. Global conformity. For every function u ∈ V 0, V 0 = V , the projection-based inter-

polant uh,p = Πu still lies in the space V .

3. Optimality. The interpolant uh,p ∈ Vh,p must have the minimum distance from the

interpolated function u ∈ V in an appropriate norm.

2.3 Construction of reference maps

Now we will define suitable parametrizations for edges and faces of (generally arbitrarily

curved) elements K ∈ Th,p, and apply the transfinite interpolation technique in order to

design reference maps XK(ξ) : K̂ → K (where K̂ is an appropriate reference domain).

Moreover, the reference maps XK(ξ) are nonpolynomial (when the edges or faces are para-

metrized by nonpolynomial functions). As long as they are smooth and one-to-one, this is

not a problem and in principle one can use them in the finite element code anyway. However,

usually one prefers to construct their isoparametric approximations xK(ξ) ≈ XK(ξ), which

are polynomial maps defined in terms of master element shape functions and can be easily

stored and handled in the computer code.

17

2.3.1 Mapping (curved) brick elements onto KB

Let the edges ẽj, j = 1, . . . , 12, of a brick K ∈ Th,p be parametrized by continuous curves

Xej(ζ) ⊂ IR3, ζ ∈ [−1, 1]. As usual the parametrization of edges has to be compatible with

the orientation of edges of the reference domain KB (depicted in Figure 2.1). In other words,

Xe1(1) = Xe2(−1) = Xe6(−1) = x2,

Xe2(1) = Xe3(1) = Xe7(−1) = x3,

Xe3(−1) = Xe4(1) = Xe8(−1) = x4,

Xe4(−1) = Xe1(−1) = Xe5(−1) = x1

(2.8)

and so on. Here x1, . . . ,x8 are vertices of the physical element K, ordered compatibly with

the vertices v1, . . . , v8 of the reference domain KB.

New in 3D are parametrizations Xsi(ζ1, ζ2), ζ ∈ [−1, 1]2 for the faces s̃i ⊂ ∂K, i = 1, . . . , 6.

Recall that local coordinate axes ζ1, ζ2 attached to each face are oriented accordingly to the

coordinate axes ξ1, ξ2, ξ3, following their lexicographic order. An essential new issue in 3D

is the compatibility of face parametrizations Xsi(ζ1, ζ2) with parametrizations of edges. For

example, for the face s1 this translates into the compatibility conditions

Xs1(ζ,−1) = Xe4(ζ), ζ ∈ [−1, 1],

Xs1(ζ, 1) = Xe12(ζ), ζ ∈ [−1, 1],

Xs1(−1, ζ) = Xe5(ζ), ζ ∈ [−1, 1],

Xs1(1, ζ) = Xe8(ζ), ζ ∈ [−1, 1].

(2.9)

Notice that compatibility conditions (2.9) together with conditions (2.8) yield compatibility

of parametrizations of faces with vertices:

Xs1(−1,−1) = x1,

Xs1(1,−1) = x4,

Xs1(1, 1) = x8,

Xs1(−1, 1) = x5,
...

(2.10)

The transfinite interpolation scheme will be defined using a vertex, edge and face contribu-

tion,

XK(ξ) = Xv
K(ξ) + Xe

K(ξ) + Xs
K(ξ), ξ ∈ KB. (2.11)

18

The vertex part Xv
K(ξ) is defined by combining the physical mesh vertex coordinates xi and

scalar vertex functions (2.5),

Xv
K(ξ) =

8∑
i=1

xiϕ
vj

B (ξ).

Consider a reference edge ej = vAvB and the parametrization Xej of the corresponding

physical mesh edge ẽj. Its bubble part

X
ej

0 (ζ) = Xej(ζ)−Xej(−1)
1− ζ

2
−Xej(1)

ζ + 1

2
, ζ ∈ [−1, 1],

is bilinearly blended,

X
ej

K(ξ) = X
ej

0 (λB(ξ)− λA(ξ))λC(ξ)λD(ξ), (2.12)

and used for the definition of the edge part

Xe
K(ξ) =

12∑
j=1

X
ej

K(ξ)

of the transfinite interpolant XK(ξ). For each edge ej the affine coordinates in (2.12) are

chosen so that λA, λB vanish on faces perpendicular to ej and are ordered so that λA(vA) =

λB(vB) = 1. The affine coordinates λC , λD vanish on the faces sC , sD ⊂ ∂KB, which do not

share any vertex with the edge ej, respectively.

In the same way, for each face si we first construct the bubble part

Xsi
0 (ζ) = Xsi(ζ)−Xe

K |si
(ζ)−Xv

K |si
(ζ),

of the parametrization Xsi(ζ), which entirely vanishes on the boundary of the face si. Func-

tions Xsi
0 (ζ) are further linearly blended into the element interior,

Xsi
K(ξ) = Xsi

0 (λB(ξ)− λA(ξ), λD(ξ)− λC(ξ))λE(ξ), (2.13)

and contribute to the face part

Xs
K(ξ) =

6∑
i=1

Xsi
K(ξ)

of the transfinite interpolant XK(ξ).

The affine coordinates in (2.13) are chosen taking into account the local coordinate system

on the face si: λA, λB correspond to faces perpendicular to the local axis ζ1 and λA(eA) =

λB(eB) = 1 where the edges eA, eB correspond to ζ1 = −1 and ζ1 = 1 on the face si,

respectively. Similarly λC , λD are chosen for the second local axial direction ζ2. The affine

coordinate λE vanishes on the element-opposite face sE.

19

2.3.2 Inversion of reference maps

Inversion of the reference maps xK(ξ) : K̂ → K, where K is a physical mesh element and

K̂ is the corresponding reference domain, is only required if we need to locate a geometrical

point ξ∗ ∈ K̂, given its image

x∗ = xK(ξ∗) ∈ K ∈ Th,p. (2.14)

This might be the case, for example, when the user asks the value of the approximate solution

at some specific point x in the computational domain.

Affine case

If the Jacobi matrix DxK/Dξ of the map xK is constant (i.e., K is either a triangle or

tetrahedron with linear edges and/or faces), we have

DxK

Dξ
(v1)(ξ

∗ − v1) = x∗ − xK(v1),

which yields

ξ∗ = v1 −
(

DxK

Dξ

)−1

(v1)(xK(v1)− x∗).

Here v1 is (for example the first) vertex of the reference domain Kt or KT and xK(v1) is the

corresponding vertex of the physical mesh element K.

2.4 Constrained approximation

The constrained approximation technique has long been used for first-order elements in

various applications. To our knowledge, for higher-order elements it was first introduced by

Demkowicz, Oden et al. in [14]. It is necessary for an efficient resolution of phenomena that

require a high local concentration of degrees of freedom – those are typically boundary and

internal layers, regions with steep gradients, singularities, etc. Attempts to resolve these

features with regular meshes can lead to inefficient distribution of degrees of freedom and

even can spoil the convergence of the finite element scheme.

Hence, the main idea is to employ irregular meshes (i.e., meshes with hanging nodes in the

sense of Paragraph 1.2.3) in such a way that the approximation still satisfies global conformity

20

requirements – continuity of the approximation across element interfaces for H1-conforming

approximations. Perhaps the easiest way to understand the constrained approximation is to

view it in terms of change of basis in a given polynomial space.

2.4.1 Continuous constrained approximation in 3D

While the mathematical issues related to the constrained approximation technique in 3D are

at a similar level of complexity as in two spatial dimensions, its algorithmic aspects become

significantly more pronounced.

Naturally, for continuous approximations our task is to handle hanging nodes in such a way

that continuity of the approximation across element interfaces is preserved. Thus the entire

action will take place on mesh edges and faces and it will involve the vertex, edge and face

functions only. For hexahedral elements, there are basically two situations we may find it

useful to consider:

1. two quadrilateral faces constrained by one quadrilateral face,

2. four quadrilateral faces constrained by one quadrilateral face,

We will discuss only Case 1 in more detail since Case 2 is very similar to Case 1.

Two quadrilateral faces constrained by another quadrilateral face

Let us consider the model situation depicted in Figure 2.3. Assume that the edges v1v2 and

v1v4 specify the global orientation of the face s1. The same orientation, by definition, is

inherited by the small faces s2 and s3, respectively (or, more precisely, with the only change

that the edge v1v4 is replaced by its sons v1v5 and v5v4). The face s1 comes with two local

directional orders of approximation ps1,1, corresponding to the first direction v1v2, and ps1,2,

associated with the other direction v1v4. By definition, these directional polynomial orders

are inherited by the small faces s2 and s3.

21

v
2

v
5

6
v

3
v

v
4

v
1

e
2

e
e

3

e
4

1

e
5

e
7

e
9 e

6

e
8

1
s

s

s

3

2

Figure 2.3: Constrained continuous approximation 3D.

The local orders of approximation on the edges e1, . . . , e4 are denoted by pe1 , . . . , pe4 , respec-

tively. Each of these edges comes with a unique global orientation that is independent of the

orientation of the face s1. The edges e5, e7 and e6, e8 inherit local orders from the edges e1

and e2, respectively. Recall that the minimum rule guarantees that pe3 ≤ ps1,1, pe4 ≤ ps1,1.

Hence, by definition, the edge e9 is equipped with the directional order ps1,1 on the face s1.

In summary, we have
ps2,1 = ps3,1 = ps1,1

ps2,2 = ps3,2 = ps1,2

pe5 = pe7 = pe1 ,

pe6 = pe8 = pe2 ,

pe9 = ps1,1.

(2.15)

Now one could strictly copy the 2D procedure, i.e., construct for each face s2 and s3 a transi-

tion matrix that converts the coefficients corresponding to DOF associated with the face s1

to coefficients related to faces s2 and s3, respectively. However, due to the product structure

of quadrilateral faces, these transition matrices would contain almost exclusively zeros. In

other words, the number of constraining relations is dramatically less than mbms where mb

and ms stand for the total number of DOF associated with the big (constraining) and small

(constrained) face, respectively. Thus it is convenient to go deeper into the structure of the

shape functions in order to avoid unnecessary extra algebraic equations.

Remark 2.5 Notice that the transition matrices are of the type ms×mb where generally

22

ms 6= mb. In our case, the inequality occurs for s2 if ps1,1 6= pe4 and for s3 if ps1,1 6= pe3 .

More to the point, the coefficients αv5 , αe5
k , αe7

k , 2 ≤ k ≤ pe1 corresponding to the vertex v5

and edges e5, e7 are only constrained by the coefficients αv1 , αv4 , αe1
k , 2 ≤ k ≤ pe1 associated

with the edge e1. Therefore the transition matrices Mpe1

L , Mpe1

R represent the algebraic

relations between these coefficients. The global orientation of the edge e1 can be either v1v4

or v4v1. Depending on this we relate the matrices Mpe1

L , Mpe1

R to the edges e5, e7 in this or

reverse order.

In the same way we proceed once more with the vertex v6 and edges e6, e8 and e2, expressing

the short edge coefficients αv6 , αe6
k , αe8

k , 2 ≤ k ≤ pe2 by means of the long edge coefficients

αv2 , αv3 , αe2
k , 2 ≤ k ≤ pe2 by means of the transition matrices Mpe2

L , Mpe2

R .

The higher-order coefficients αe9
k , 2 ≤ k ≤ ps1,1 and αs2

n1,n2
, αs3

n1,n2
, 2 ≤ n1 ≤ ps1,1, 2 ≤ n2 ≤

ps1,2 are only constrained by the higher-order edge coefficients αe3
k , 2 ≤ k ≤ pe3 and αe4

l ,

2 ≤ l ≤ pe3 , and by the higher-order face coefficients αs1
n1,n2

, 2 ≤ n1 ≤ ps1,1, 2 ≤ n2 ≤ ps1,2.

Without loss of generality let us assume the following compatibility between the edge and

face parametrizations:

• The face s1 is parametrized by a smooth bijective mapping from a master face ŝq =

[−1, 1]2,

xs1 : ŝq → IR3.

• The edges e3, e4 and e9 are parametrized by smooth bijective maps from a master edge

ê = [−1, 1],

xej : ê → IR3, j = 3, 4, 9,

such that
xe3(oe3ζ) = xs1(ζ,−1) ∀ζ ∈ [−1, 1],

xe4(oe4ζ) = xs1(ζ, 1) ∀ζ ∈ [−1, 1],

xe9(ζ) = xs1(ζ, 0) ∀ζ ∈ [−1, 1],

(2.16)

where oe3 , oe4 are ±1 orientation factors that compensate for the inconsistency between

the orientations of the edges e3, e4 and the orientation of the face s1. The edge e9 is,

by definition, oriented in harmony with the orientation of its father, the face s1.

23

All operations are done on the quadrilateral reference face ŝq as shown in Figure 2.4. This is

a natural setting since the global orientation of the face s1 depends on the global enumeration

of grid vertices only.

s
2

s
3

v
1

v
2

v
3

4
v

v

6
v

5

4
e

e
2

e
8

e
7

e
9

e
6

e
1

e
3

e
5

ζ

ζ

2

1
0−1 1

−1

1 1
sx

Figure 2.4: Quadrilateral reference face ŝq = [−1, 1]2, s1 = (xs1)(ŝq).

On the reference face ŝq, the higher-order part of the trace of the approximation reads

pe3∑

k=2

oe3αe3
k lk(ζ1)l0(ζ2)

︸ ︷︷ ︸
contribution of e3−edge functions

+

pe4∑

k=2

oe4αe4
k lk(ζ1)l1(ζ2)

︸ ︷︷ ︸
contribution of e4−edge functions

(2.17)

+

ps1,1∑

k=2

ps1,2∑
n2=2

αs1
k,n2

lk(ζ1)ln2(ζ2)

︸ ︷︷ ︸
contribution of s1−face functions

Restricted to the edge (xs1)−1(e9), (2.17) yields

ps1,1∑

k=2

αe9
k lk(ζ1) =

pe3∑

k=2

oe3αe3
k lk(ζ1)l0(0) +

pe4∑

k=2

oe4αe4
k lk(ζ1)l1(0)

+

ps1,1∑

k=2

ps1,2∑
n2=2

αs1
k,n1

lk(ζ1)ln2(0) ∀ζ ∈ [−1, 1].

Thus it is easy to write down the relations for all constrained higher-order edge coefficients

for the edge e9,

αe9
k = oe3αe3

k l0(0) + oe4αe4
k l1(0) +

ps1,2∑
n2=2

αs1
k,n1

ln2(0), k = 2, . . . , ps1,1.

24

What remains to be done is to calculate the constrained higher-order coefficients αs2
n1,n2

,

αs3
n1,n2

, 2 ≤ n1 ≤ ps1,1, 2 ≤ n2 ≤ ps1,2, corresponding to face functions on the small faces

s2, s3.

Again it is the minimum rule that ensures that pe3 ≤ ps1,1 and pe4 ≤ ps1,1, allowing us to

simplify the summation in (2.17) to

ps1,1∑

k=2

lk(ζ1)


oe3αe3

k l0(ζ2) + oe4αe4
k l1(ζ2) +

ps1,2∑
n2=2

αs1
k,n2

ln2(ζ2)


 (2.18)

(the α’s with newly introduced indices are zero). Hence, for each k = 0, . . . , ps1,1 we define

a vector coefficient

αk = (oe3αe3
k , oe4αe4

k , αs1
k,0, . . . , α

s1

k,ps1,2)

corresponding to the “long edge” basis functions l0, l1, . . . , lps1,2 . The vector

αL
k = (oe3αe3

k , αe9
k , αs2

k,0, . . . , α
s2

k,ps1,2)

corresponding to the “short edge” basis functions lL0 , lL1 , . . . , lL
ps1,2 is obtained as

αL
k = Mps1,2

L αk.

Analogously for all k = 0, . . . , ps1,1 the vector

αR
k = (αe9

k , oe4αe4
k , αs3

k,0, . . . , α
s3

k,ps1,2),

corresponding to the “short edge” basis functions lR0 , lR1 , . . . , lR
ps1,2 is obtained as

αR
k = Mps1,2

R αk.

2.5 Higher-Order Numerical Quadrature

As stated before, we are restricted only on hexahedra, whose geometry have a product form.

It implies that the numerical quadrature will also have a product form. So, we can start

with one-dimensional case and then extend it to 3D.

25

2.5.1 One-dimensional reference domain Ka

Let g(y) be a function continuous in interval [a,b], a < b. The numerical quadrature of order

n on this interval is defined as

∫ b

a

g(y)dy ≈
n∑

k=0

An,kg(yn,k), (2.19)

where the symbols An,k and yn,k, k = 0, 1, . . . , n denote the quadrature coefficients and

nodes, respectively. The nodes yn,k, k = 0, 1, . . . , n are assumed distinct. Putting

y = cξ + d, c =
b− a

2
, d =

b + a

2
, (2.20)

substituting into (2.19) and rearranging, we get a formula corresponding to the one-dimen-

sional reference domain Ka = (−1, 1),

∫ 1

−1

f(ξ)dξ ≈
n∑

k=0

wn,kf(ξn,k) (2.21)

where f(ξ) = g(cξ + d) and wn,k = An,k/c. Symbols wn,k are called weights.

There are a number of possibilities for choosing suitable weights wn,k and nodes ξn,k for the

numerical quadrature of the function f(ξ). Specific characteristics will be discussed in the

following.

Selection of Shape Functions

The problem of determining the integration points and weights is crucial for all types of

quadrature rules. In general we can use various systems of linearly independent functions

(not only polynomials) whose integrals can be determined analytically. The choice of such

functions usually does not matter as long as the order of accuracy is reasonably small. In this

case probably the easiest choice is the monomials ξi. For higher-order monomials, however,

the inversion of the system matrix becomes problematic. The reason is roundoff errors in

the evaluation of higher-order monomials for arguments close to zero. Probably the most

natural choice is to use either the Legendre polynomials or H1-hierarchic shape functions.

26

2.5.2 Gauss Quadrature

The quadrature rules of the Gauss type are based on the summation of weighted function

values on nonequidistantly distributed integration points. The n-point Gauss quadrature

rule for the one-dimensional reference domain Ka = (−1, 1) reads

∫ 1

−1

f(ξ)dξ ≈
n∑

i=1

wn,if(ξn,i) (2.22)

The integration points and weights can be obtained after inserting sufficiently many linearly

independent functions with known integrals and resolving the resulting system of nonlinear

algebraic equations. Since we have 2n unknown parameters at our disposal (n integration

points ξn,i and n weights wn,i), the resulting formula will be accurate for all polynomials of

order 2n− 1 and lower.

2.5.3 Reference brick KB

This section is devoted to higher-order numerical quadrature on the reference brick domain

KB. The product geometry of KB is analogous to the geometry of the reference quadri-

lateral Kq, and therefore also the quadrature schemes exhibit common features. Again we

will mention a simple and less efficient product scheme with practically unlimited order of

accuracy, and several more economical Gaussian quadrature rules.

2.5.4 Composite Gauss quadrature

The simplest quadrature rules can be constructed by combining one-dimensional Gauss for-

mulae in the three axial directions ξ1, ξ2, ξ3. Let the quadrature rule

∫

Ka

f(ξ) dξ ≈
Ma∑
i=1

wga,if(yga,i),

where yga,i, wga,i are Gauss integration points and weights corresponding to the one-dimen-

sional reference domain Ka, integrate exactly all polynomials of the order p and lower. It is

easy to see that the formula

∫

K3
a

g(ξ1, ξ2, ξ3) dξ1 dξ2 dξ3 ≈
Ma∑
i=1

Ma∑
j=1

Ma∑

k=1

wga,iwga,jwga,kg(yga,i, yga,j, yga,k) (2.23)

27

has the order of accuracy p for functions of three independent variables ξ1, ξ2, ξ3 defined in

KB. The formula (2.23) can easily be generalized to polynomials with different directional

orders of approximation.

Similarly as for quadrilaterals, more efficient formulae can be used when integrating complete

polynomials of the order p (with generally n = (p + 1)(p + 2)(p + 3)/6 nonzero terms).

28

Chapter 3

Arbitrary Level Hanging Nodes in 3D

This chapter describes an arbitrary level hanging nodes, which are required for automatic

mesh adaptivity.

3.1 Irregularity rules

Let us demonstrate the irregularity rules on 2D example, since it is easier to show. The

extension to 3D is then straightforward. Figure 3.1 demonstrates how the regularity rule

forces refinements that are not needed by the solution, which results in the larger number of

degrees of freedom and also larger stiffness matrix to solve.

Figure 3.1: Forced refinements

To avoid such forced refinements, we can introduce 1-irregularity rule, which prevents the 2

forced refinements of the upper left and the lower right element. This is all right until we

want to refine one of the four upper right elements (3.1c), then the force refinements appear

again. We could introduce 2-irregularity rule, but obviously this in not a good way how

to deal with forced refinement. The solution to this is a completely irregular mesh, thus

k-irregularity rule with k = ∞.

The figure 3.2 shows regular (a), 1-irregular (b) and 2-irregular mesh (c). The vertices

29

marked A, B are hanging nodes of the first order, vertices marked C, D are hanging nodes

of the second order.

Figure 3.2: Irregular meshes

3.2 Multiple-level Hanging Nodes

We use a hexahedron as the base mesh element, because it is easy to refine and the numerical

quadrature has the product form. The hexahedron can be refined in 7 ways: 3 refinements

into 2 sub-elements (cutting plane parallel with x-, y-, z-plane), 3 refinements into 4 sub-

elements (cutting planes parallel with x,y or x,z or y,z planes) or into 8 sub-elements (cutting

planes are x,y,z planes), see Figure 3.3.

Figure 3.3: Refining a hexahedron

The requirement of continuity of approximation across a face which contains hanging nodes

yields in three situations on faces that has to be solved, see Figure 3.4.

30

Figure 3.4: Possible refinements on hexahedron faces

In 3D, there are several types of constraints that has to be calculated:

• vertex by vertex, vertex by edge, vertex by face,

• edge by edge, edge by face,

• face by face.

All cases are depicted on the Figure 3.5. Cases (a), (b), (c), (d) occurs when the face is

divided either horizontally or vertically. If the face is divided in both direction (e), the

situation is lot more complicated. First complication is, that edges EF and GH are not

physically present in the mesh, so to calculate associated constraints these edges have to be

artificially created in the code (they are needed only for calculations of constraints). The

case (e) is simplified for the illustration, for example, it does not include the constraints

where edge AB is constraining the edges AE, EB—such situation is shown in case (b).

Cases (a) and (b) are the same as in 2D. New situation is case (c), where the edge on the

side (AC) is constraining the edge in the middle of the face (EF). This type of the constraint

is simple, because shape functions are in the product form, so we need to decompose the

shape function to the directional functions and remember the appropriate function value.

Another new situation is the face by edge constraint. We also use the advantage of the

product form of shape functions (face functions are the product of edge function and the

linear function). It makes the constraint a lot easier to solve then if they were not product

based.

The last 3D constraint is face by face type. This constraint is very simple to solve.

31

Figure 3.5: Constraints on the hexahedron face.

Indirect Constraints

So far, we dealt only with direct constraints. If one is using 1-irregularity rule, these are the

only constraints that have to be solved. Using k-irregularity rule, where k > 1 (in our case

K = ∞), the indirect constraints are introduced.

Indirect constraint is a situation where the function is constrained by another constrain

function (as opposed to the direct constraint where the function is constrained by a base

function).

32

Figure 3.6: Part of the basis function.

Figure 3.7: Example of a indirect constraint.

The figures 3.6 and 3.7 show how complicated the indirect constraints can be. On the figure

a face function that is constraining another face function along with edge functions on the

33

face. These edge functions are constraining other edge functions, which can constrain a

vertex function. Thus, we see another issue related to indirect constraints which is the large

support of the basis function— it can go through several elements. So, the handling of the

arbitrary level hanging nodes is not a trivial problem to solve.

34

Chapter 4

Automatic hp-Adaptivity

4.1 Reference Solution

The goal of the adaptivity is to find such a space Vh,p, which approximates the solution the

best. To find the solution uh,p the adaptivity has to have an error estimate, so it “knows”

where the mesh should be refined or where the polynomial order should be changed–in other

words how to modify the space Vh,p to reduce the approximation error. Our approach for this

is to introduce the reference solution, i.e. an approximation which is at least one order more

accurate than the coarse solution uh,p. Then the hp-adaptivity is guided by an a-posteriori

error estimate

eh,p = uref = uh,p (4.1)

We construct the enriched finite element space by uniform subdivision of all mesh elements

and by increasing the polynomial order of all elements by 1, ie. uref = uh/2,p+1.

Such approach is virtually equation-independent, but it assumes that the source of the error

is on the same element, which has the largest error. This is not always true. In such a case,

different approach has to be chosen.

4.2 Algorithm of hp-Adaptivity

The following paragraph outlines the algorithm which is used for the hp-adaptivity. It is

formally similar to algorithm described by Demkowicz et al. in [15] and Cerveny in [19].

1. Assume initial coarse mesh Th,p. User input includes prescribed tolerance TOL > 0 for

the norm of the approximate error function 4.1 and the threshold ERRT specifying

how many elements will be refined in each step.

2. Compute coarse mesh approximation uh,p ∈ Vh,p on Th,p.

35

3. Find reference solution uref ∈ Vref , Vh,p ⊂ Vref , where Vref is an enriched finite element

space.

4. Construct the approximate error function 4.1, calculate its norm ERRi on every ele-

ment Ki in the mesh, i = 1, 2, . . . , M and calculate the global error estimate

ERR =
M∑
i=1

ERRi.

5. if ERR < TOL, stop computation.

6. Sort all element into a list L by their value ERRi, in decreasing order.

7. Determine the maximum of element errors, ERRmax = max ERRi, by taking the first

item of L.

8. Let NDOF be the current number of degrees of freedom of Th,p. Repeat the following

cycle:

(a) Take the next element K from the list L.

(b) If ERRK < ERRT · ERRmax break the cycle

(c) Perform hp-refinement of K (to be described in more detail below).

(d) If the total number of added DOF is greater than NDOF ·MAXDOF , break

the cycle

9. Adjust polynomial degrees on elements.

10. Continue with step 2.

As described in [19], the crucial issue is the number of elements that should be refined.

The reference solution has to be obtained in every iteration, but it is very computationally-

intensive, especially for 3D problems, see Table 4.1 for the comparison of the coarse and the

reference solution sizes. It show the number of elements, number of degrees of freedom and

also the time required to assemble the stiffness matrix and time required for solving it.

Table 4.1: Comparison of coarse and reference solution sizes.

36

Coarse solution Reference solution
Elements DOF tassm [s] tsolve [s] Elements DOF tassm [s] tsolve [s]

8 27 0.27 0.000687 72 1331 20.41 0.072584
72 27 0.43 0.000565 584 3375 36.98 0.131171

328 155 3.62 0.001247 2632 16031 276.91 0.823985
776 415 11.65 0.002947 6216 38863 661.31 2.428407

2376 1519 43.46 0.013273 19016 124079 2350.14 9.161934

4.3 Selecting Optimal hp-Refinement

Very problematic issue in 3D problems is the number of possible refinements that can be

applied on one element. Lets consider increasing the polynomial order by one and two.

Then we have 2 p-refinements. We do not do pure h-refinements, since they do not have

mathematical sense. The h-refinements have to be connected with redistribution of the

polynomial order, then we speak about hp-refinements. There are 3 options how to refine a

hexahedron into 2 sub-elements, that gives us 9 possible refinements, then 3 options how to

refine a hexahedron into 4 sub-elements, that gives us 81 more refinements and 1 options how

to refine a hexahedron into 8 sub-elements, which gives us 6561(38) additional refinements.

Altogether we have 6653 choices how to refine one element.

Hexahedron elements have one speciality—directional orders. Each element can carry a

different order in each direction. Allowing this feature results in a better approximations for

boundary layer problems, in general where the solution has a big changes in one direction

but not in others. Taking in account the directional orders we get 26 p-refinements, 272

choices for diving into 2 sub-elements, 274 for dividing into 4 sub-elements and 278 choices

for dividing into 8 sub-elements, which altogether is over 282 billion of choices.

Apparently all the choices can not be tried, so we have to reduce the number of possible

refinements to some reasonable number. It is also very important that the error estimation

procedure is very fast, since we are not refining only one element per one adaptivity iteration.

The candidate with the smallest projection error with respect to the number of degrees of

freedom used is selected for refining the element K.

37

4.4 Electrostatic Problem

As a first example for the demonstration of the hanging nodes, let us use a problem from

electrostatics—distribution of the electrostatic potential in the Fichera corner domain Ω =

(−1, 1)3 \ [0, 1]3. We solve the problem:

−∆u = f in Ω

u = uD on ∂Ω

where f and uD are chosen to comply with the exact solution:

u(x, y, z) = (x2 + y2 + z2)
1
4

The solution of this problem is smooth (see Figure 4.1a) and the gradient of the solution has

a singularity at (0, 0, 0) (see Figure 4.1b).

a) b)

Figure 4.1: Distribution of the electrostatic potential, (a) the exact solution

and (b) the magnitude of the gradient

4.4.1 Comparison with h-adaptivity

For the comparison, we ran the h-adaptivity with the element polynomial degree set to

1 and two (standard linear and quadratic elements). We allowed only the division to 8

sub-elements, polynomial order was unchanged during the adaptivity process.

The convergence graph (Figure 4.2) shows the speed of convergence for hp-adaptivity and

h-adaptivity with polynomial orders 1 and 2.

38

 0.0001

 0.001

 0.01

 0.1

 1

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

E
rr

or
 [%

]

Degrees of Freedom

linear
quadratic

hp

Figure 4.2: Comparison of h-adaptivity with hp-adaptivity

The figure 4.3 show meshes obtained with h-adaptivity and linear elements along with the

number of degrees of freedom and error measured in H1 norm. The figure shows 4.4 the

same, but for hp-adaptivity. Table 4.2 show the number of elements in the mesh, number of

degrees of freedom, time needed for error estimation (terror), time needed by the adaptivity

step (tadapt) and the number of elements refined.

Table 4.2: Statistical data gathered during the run of automatic adaptivity.

Number of Refined
Elements DOF terror [s] tadapt [s] Elements

7 19 0.342877 1.441635 6
55 19 2.419289 2.562463 7

111 61 4.156678 7.202118 25
167 284 6.836485 12.231948 34
223 525 10.029116 7.310666 29
279 797 13.135698 18.000802 58
383 1518 21.273660 16.869027 76
607 2881 38.668589 24.866616 88

39

19 DOF, 14.79 % 38 DOF, 11.34 %

138 DOF, 8.03 % 509 DOF, 5.38 %

1660 DOF, 3.76 % 5161 DOF, 2.55 %

Figure 4.3: First 6 iterations obtained by h-adaptivity

40

19 DOF, 11.64 % 19 DOF, 13.97 %

61 DOF, 13.20 % 284 DOF, 9.01 %

525 DOF, 4.32 % 797 DOF, 2.17 %

Figure 4.4: First 6 iterations obtained by hp-adaptivity

41

Chapter 5

Conclusions

This thesis was concerned with adaptive hp-FEM for elliptic problem in 3D. The necessary

background was described in detail in Chapters 1 and 2, showing that dealing with numerical

solutions of PDEs in 3D is not trivial at all.

Chapter 3 describes how to handle arbitrary level hanging nodes in 3D. They are crucial

part of the program code, that can handle automatic hp-adaptivity, which is described in

Chapter 4. This chapter also includes one numerical example to demonstrate the exponential

convergence of the hp-adaptivity. The comparison with the h-adaptivity is included, too.

It clearly proves one of the advantages of the hp-adaptivity—reaching very high accuracy,

using a small number of DOF comparing to the classical FEM and h-adaptivity.

Presented algorithm of hp-adaptivity is using so called reference solution to estimate the

error of the numerical solution. Table 4.1 shows that the reference solution corresponding

to the coarse solution is very demanding in the sense of the number of DOF. Which means

that to solve a very simple problem in 3D one needs a huge amount of computer memory

just to fit the reference solution in. The reference solution is important for guiding the hp-

adaptivity. Because of the huge amount of the memory required, the numerical experiment

presented in this thesis used the analytical solution instead.

5.1 Future Work

This thesis served as the proof-of-the-concept that hp-adaptivity is capable of solving PDEs

in 3D. It clearly revealed several problems that have to be solved in the future.

The first problem is the high demand on the computer memory. It is not the data structures

required by the hp-adaptivity algorithm that would cause problems. It is the resulting

stiffness matrix that has to be assembled. There are several techniques how to deal with this

problem, one of them is the domain decomposition. This was not implemented, because it

is beyond the scope of this thesis. The domain decomposition portion up the computation

42

domain into a several parts which are handled by a separate machine–for example on nodes

of the computer cluster.

Another problem is the assembling of the stiffness matrix. Because of the higher-order shape

functions and 3D numerical quadrature, the assembling of the elements with higher order

takes much longer than for example assembling of only linear of quadratic elements. This

issue can also be solved by the domain decomposition technique.

The next problem revealed during the working on this thesis was the problem of inverting

the resulting stiffness matrix. We tried both iterative and direct solvers. The advantage of

iterative solvers is that they can handle large amount of equations, but on the other side,

they can be used only for elliptic problems—otherwise they wont converge. Direct solvers

can be used on any type of problems, but they require a large amount of memory for storing

the inverse of the stiffness matrix (the inverse of the sparse matrix is full matrix). That

results in handling only relatively small problems with very low accuracy, which means that

the advantage of hp-FEM (the high computational accuracy) is not used.

43

References

[1] P. Šoĺın, K. Segeth, I. Doležel, Higher-Order Finite Element Method, FIXME, 2004.

[2] P.G.Ciarlet, The Finite Element Method for Elliptic Problems, North- Holland, Ams-

terdam, 1979.

[3] I. Babuška, T. Strouboulis, Finite Element Method and Its Reliability, Clarendon Press,

Oxford, 2001.

[4] G.E. Karniadakis, S.J. Sherwin, Spectral/hp Element Methods for CFD, Oxford Uni-

versity Press, Oxford, 1999.

[5] B. Szabó, I. Babuška, Finite Element Analysis, John Wiley & Sons, New York, 1991.

[6] M. Ainsworth, B. Senior, Aspects of an hp-adaptive finite element method: Adaptive

strategy, conforming approximation and efficient solvers, Technical Report 1997/2,

Department of Mathematics and Computer Science, University of Leicester, England,

1997.

[7] I. Babuška, T. Strouboulis, K. Copps, hp-optimization of finite element approxima-

tions: Analysis of the optimal mesh sequences in one dimension, Comput. Methods

Appl. Mech. Engrg. 150 (1997), 89–108.

[8] I. Babuška, M. Suri, The optimal convergence rate of the p-version of the finite element

method, SIAM J. Numer. Anal. 24 (1987), 750–776.

[9] I. Babuška et al., Efficient preconditioning for the p-version finite element method in

two dimensions, SIAM J. Numer. Anal. 28 (1991), 624–661.

[10] I. Babuška, B.Q. Guo, Approximation properties of the hp version of the finite element

method, Comput. Methods Appl. Mech. Engrg. 133 (1996), 319–346.

[11] I. Babuška, M. Suri, The p- and h-p versions of the finite element method, Comput.

Methods Appl. Mech. Engrg. 80 (1990), 5–26.

44

[12] L. Demkowicz et al., De Rham diagram for hp-finite element spaces, Comput. Math.

Appl. 39 (2000), 29–38.

[13] L. Demkowicz, J.T. Oden, Application of hp-adaptive BE/FE methods to elastic scat-

tering, Comput. Methods Appl. Math. Engrg. 133 (1996), 287–318.

[14] L. Demkowicz et al., Toward a universal hp-adaptive finite element strategy. Part 1:

constrained approximation and data structure, Comput. Methods Appl. Math. Engrg.

77 (1989), 79–112.

[15] L. Demkowicz, W. Rachowicz, P. Devloo, A fully automatic hp-adaptivity, TICAM

Report 01-28, The University of Texas at Austin, 2001.

[16] W. Rachowicz, J.T. Oden, L. Demkowicz, Toward a universal hp-adaptive finite ele-

ment strategy. Part 3. Design of hp meshes, Comput. Methods Appl. Mech. Engrg.

77 (1989), 181–212.

[17] P. Šoĺın, L. Demkowicz, Fully automatic goal-oriented hp-adaptivity for elliptic prob-

lems, TICAM Report 02-32, The University of Texas at Austin, August 2002, accepted

by Comput. Methods Appl. Mech. Engrg.

[18] L. Demkowicz, D. Pardo, W. Rachowicz, 3D hp-adaptive finite element package

(3Dhp90). Version 2.0. The ultimate (?) data structure for three-dimensional, an-

isotropic hp-refinements, TICAM Report 02-24, The University of Texas at Austin,

June 2002.

[19] J.Červený, Higher-Order Adaptive FEM for Non-linear Problems, Master Thesis, 2007.

45

Curriculum Vitae

David Andrš was born on February 4, 1980 in Litoměřice, Czech Republic as the second son

of Eduard Andrš and Helena Andršová. He graduated from Josef Jungmann’s High School,

Litoměřice, Czech Republic in the spring of 1998.

In 1998 he entered the College of Computer Science at the University of West Bohemia in

Plzeň, Czech Republic, to pursue a master’s degree in Computer Science. After receiving his

master’s degree in the spring 2003, he continued at the same university in pursuing a PhD

degree in computer science, which he defended in the summer 2007.

In January 2007, he entered the Graduate school at The University of Texas at El Paso.

While pursuing a master’s degree in Applied Mathematics, he worked as a Teaching Assistant

at the department of Mathematical Sciences.

He gave a presentation at the 1st Joint NMSU/UTEP Workshop on Mathematics and Com-

puter Science.

Permanent address:

Seifertova 16

Litoměřice

412 01

Czech Republic

46

