For Complex Intervals, Exact Range Computation is NP-Hard Even For Single Use Expressions (Even for the Product)

Martine Ceberio
The University of Texas at El Paso, mceberio@utep.edu

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Guenter Mayer

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

Part of the Computer Engineering Commons

Recommended Citation

https://scholarworks.utep.edu/cs_techrep/198

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.
For Complex Intervals, Exact Range Computation Is NP-Hard Even for Single Use Expressions (Even for the Product)

Martine Ceberio
Vladik Kreininovich
Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
mceberio@cs.utep.edu,
vladik@utep.edu

Günter Mayer
Fachbereich Mathematik
Universität Rostock
Universitätsplatz 1
D-18051 Rostock, Germany
guenter.mayer@uni-rostock.de

ABSTRACT
One of the main problems of interval computations is to compute the range \(y \) of the given function \(f(x_1, \ldots, x_n) \) under interval uncertainty. Interval computations started with the invention of straightforward interval computations, when we simply replace each elementary arithmetic operation in the code for \(f \) with the corresponding operation from interval arithmetic. In general, this technique only leads to an enclosure \(Y \supseteq y \) for the desired range, but in the important case of single use expressions (SUE), in which each variable occurs only once, we get the exact range. Thus, for SUE expressions, there exists a feasible (polynomial-time) algorithm for computing the exact range.

We show that in the complex-valued case, computing the range \(y \) of the given function \(f(z_1, \ldots, z_n) \) is NP-hard even for such simple expressions as the product \(x_1 \cdot \ldots \cdot x_n \). Computing this estimate \(\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \) differs from the actual value \(y = f(x_1, \ldots, x_n) \) even when we know the exact algorithm for the dependence \(y = f(x_1, \ldots, x_n) \) between \(x \) and \(y \).

1. INTRODUCTION
1.1 Interval computations are important
In many practical problems, we are interested in the value of a physical quantity \(y \) that is difficult or even impossible to measure directly. Since it is difficult to measure \(y \) directly, we then measure \(y \) indirectly, i.e., we measure the values of easier-to-measure quantities \(x_1, \ldots, x_n \) which are related to \(y \) in a known way \(y = f(x_1, \ldots, x_n) \), and then we use the results \(\tilde{x}_i \) of measuring \(x_i \) to compute the estimate \(\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \) for the desired quantity \(y \).

Measurements are never 100% accurate; as a result, the measured value \(\tilde{x}_i \) is, in general, different from the actual value \(x_i \) of the measured property: \(\Delta x_i = \tilde{x}_i - x_i \neq 0 \). As a result, the estimate \(\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \) differs from the actual value \(y = f(x_1, \ldots, x_n) \) of the desired quantity – even when we know the exact algorithm for the dependence \(y = f(x_1, \ldots, x_n) \) between \(x \) and \(y \).

Traditionally in science and engineering, it is assumed that we know the probability of different values of measurement errors \(\Delta x_i \). These probabilities are usually determined when we calibrate the measuring instrument used to measure \(x_i \), i.e., when we compare the results of measuring with this instrument and the results of measuring with a much more accurate standard measuring instrument. However, in many real life situations, we do not know these probabilities:

- in state-of-the-art measurements, the instrument we use is the best available; in such situations, there is no better measuring instrument and so, calibration is not possible;
- in manufacturing, calibration is, in principle, possible, but its cost is often much higher than the cost of the sensor itself.

In such cases, instead of the probabilities, we only know the bounds \(\Delta_i \) on the absolute value of the measurement error provided by the manufacturer of the measuring instrument. In this case, after we get the measurement result \(\tilde{x}_i \), the only information that we have about the (unknown) actual value \(x_i \) of the \(i \)-th measured quantity is that \(x_i \) belongs to the interval \(x_i \equiv [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i] \). In this case, we must determine the range

\[
\{ f(x_1, \ldots, x_n) : x_1 \in x_1, \ldots, x_n \in x_n \}
\]

of possible values of \(y = f(x_1, \ldots, x_n) \). Computing this range is the main problem of interval computations; see, e.g., [3].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Copyright 2007 ACM ...$5.00.
1.2 Interval arithmetic

Functions \(f(x_1, x_2) \) that represent elementary arithmetic operations such as +, -, *, etc., are monotonically each of their variables. For such functions, the desired range can be computed by considering the appropriate endpoints of the inputs intervals. Specifically:

- the range for the sum \(f(x_1, x_2) = x_1 + x_2 \) is equal to \([x_1 + x_2, \pi_1 + \pi_2]\);
- the range for the difference \(f(x_1, x_2) = x_1 - x_2 \) is equal to \([x_1 - \pi_2, \pi_1 - x_2]\);
- the range for the product \(f(x_1, x_2) = x_1 \cdot x_2 \) is equal to \([y_1 \cdot \pi_1, \pi_1 \cdot \pi_2, \pi_1 \cdot x_2, x_2 \cdot \pi_2]\), where
 \[y = \min(x_1 \cdot x_2, x_1 \cdot x_2, x_1 \cdot x_2, x_2 \cdot \pi_2),\]
 \[y = \max(x_1 \cdot \pi_1, \pi_1 \cdot x_2, x_1 \cdot x_2, x_2 \cdot \pi_2).
\]
- the range for the inverse \(f(x_1) = 1/x_1 \) is equal to \([1/\pi_1, 1/x_1] \) if \(0 \not\in [x_1, \pi_1]\).

Similarly, we can derive explicit formulas for the range of elementary functions. For example, for \(f(x_1) = x_1^2 \), the range is equal:

- to \([x_1^2, \pi_1^2]\) if \(0 \leq x_1\);
- to \([\pi_1^2, x_1^2]\) if \(\pi_1 \leq 0\);
- to \([0, \max(x_1^2, \pi_1^2)]\) if \(x_1 \leq 0 \leq \pi_1\).

These formulas form interval arithmetic:

- the range of the sum is called the sum of the intervals,
- the range of the difference is called the difference between the intervals,
- the range of the square equals the square of the interval, etc.

1.3 General case: need for enclosure

In general, computing the exact range of the given function \(f(x_1, \ldots, x_n) \) is an NP-hard problem – even for quadratic functions \(f(x_1, \ldots, x_n) \); see, e.g., [5]. This means, in effect, that any algorithm for computing the range will need, in the worst case, computation time which grows exponentially with the number \(n\) of inputs. For large \(n\), the resulting computation time becomes unrealistically long.

Since we cannot compute the exact range \(y\), we can therefore compute an enclosure \(Y \supseteq y\) for this range.

1.4 Straightforward interval computations

One technique for computing such an enclosure, called straightforward interval computations, consists of the following:

- First, we parse the expression \(f(x_1, \ldots, x_n) \), i.e., represent it as a sequence of elementary arithmetic operations. We do not have to invent new algorithms for this parsing: parsing is what compilers do anyway when they translate the code for computing \(f(x_1, \ldots, x_n) \) into a sequence of hardware-supported elementary operations.

 - Second, we replace each elementary arithmetic operation with the corresponding operation of interval arithmetic.

It is known that the resulting interval is always an enclosure for the desired range.

Sometimes, this enclosure coincides with the exact range. For example, to compute the range of the function \(f(x_1) = \frac{1}{4} - \left(x_1 - \frac{1}{2}\right)^2 \) over the interval \(x_1 = [0, 1]\), we first parse this expression into the following sequence of elementary operations:

\[
\begin{align*}
\text{let } r_1 &= x_1 - \frac{1}{2}; \\
r_2 &= r_1^2; \\
y &= \frac{1}{4} - y_2;
\end{align*}
\]

and then replace each of these three operations with the corresponding operation from interval arithmetic:

\[
\begin{align*}
\text{let } r_1 &= [x_1 - 1/2]; \\
r_2 &= r_1^2; \\
y &= [1/4 - y_2];
\end{align*}
\]

This is the exact range of this function \(f(x_1) \).

However, in general, straightforward interval computations is a feasible procedure, while the problem of computing the exact range is NP-hard. This implies that in some situations, the resulting enclosure will not be exact. Indeed, we get excess width for the same function as above – if we first open the parentheses and simplify the expression into \(f(x_1) = x_1 - x_1^2 \). For this new expression, parsing leads to \(r_1 = x_1^2 \), \(y = x_1 - r_1 \), and thus, straightforward interval computations lead to

\[
\begin{align*}
\text{let } r_1 &= [0, 1]; \\
y &= [0, 1] - [0, 1]; \\
\end{align*}
\]

This result is much wider than this range.

1.5 Single use expressions (SUE)

There is an important class of expressions for which straightforward interval computations are feasible, while the problem of computing the exact range is NP-hard. This implies that in some situations, the resulting enclosure will not be exact. Indeed, we get excess width for the same function as above – if we first open the parentheses and simplify the expression into \(f(x_1) = x_1 - x_1^2 \). For this new expression, parsing leads to \(r_1 = x_1^2 \), \(y = x_1 - r_1 \), and thus, straightforward interval computations lead to

\[
\begin{align*}
\text{let } r_1 &= [0, 1]^2 = [0^2, 1^2] = [0, 1]; \\
y &= [0, 1] - [0, 1]; \\
\end{align*}
\]

The resulting interval encloses the actual range \([0, 0.25]\) but is much wider than this range.

1.6 From real arithmetic to complex arithmetic

Many physical quantities are complex-valued, e.g., complex amplitude and impedance in electrical engineering (not
to mention wave function in quantum mechanics). Due to measurement uncertainty, after measuring a value of such a physical quantity, we do not get its exact value, we only get a set of possible values of this quantity; see, e.g., [4, 6].

For a real-valued quantity, we can describe this uncertainty by providing an interval $[x, \bar{x}]$ that is guaranteed to contain the (unknown) actual value of the measured quantity. A complex-valued quantity $z = x + i \cdot y$ consists, in effect, of two real-valued quantities: the real part x and the imaginary part y. To describe the uncertainty with which we know x, it is therefore reasonable to use two intervals:

- an interval $x = [x, \bar{x}]$ that is guaranteed to contain the real part x, and
- an interval $y = [y, \bar{y}]$ that is guaranteed to contain the imaginary part y.

Such a pair of intervals forms a complex interval; it will be denoted by $z = x + i \cdot y$.

On a complex plane, possible complex values $z \in z$ from a complex interval form a rectangle $[x, \bar{x}] \times [y, \bar{y}]$.

1.7 Processing complex intervals: precise formulation of the problem

Similarly to the real-valued case, it is often difficult (or even impossible) to directly measure the value of the desired complex quantity z. In such situations, we can do the following:

- we measure auxiliary quantities z_1, \ldots, z_n (in general, also complex-valued) which are related to z by a known relation $z = f(z_1, \ldots, z_n)$, and
- we apply the algorithm f to the results $\tilde{z}_1, \ldots, \tilde{z}_n$, of direct measurements, and produce $\tilde{z} = f(\tilde{z}_1, \ldots, \tilde{z}_n)$ as the estimate for the desired quantity z.

Since measurements are never 100% accurate, the actual values z_i are, in general, different from the measured values \tilde{z}_i; hence, our estimate \tilde{z} is, in general, different from the actual value of the desired quantity. Once we know the complex intervals z_1, \ldots, z_n that describe the uncertainty of each direct measurement, we would like to know which complex values z are possible values of the desired quantity. In precise terms, we are given:

- a computable function $f(z_1, \ldots, z_n)$ from complex numbers to complex numbers;
- n intervals z_1, \ldots, z_n, and
- a complex number z.

We want to find out whether z belongs to the range

$$\{ f(z_1, \ldots, z_n) : z_1 \in z_1, \ldots, z_n \in z_n \}.$$

We will call this problem the range computation problem for complex intervals.

Comment. In the real-valued case, the range of a continuous function $f(x_1, \ldots, x_n)$ over the set $x_1 \times \ldots \times x_n$ is itself an interval $y = [y, \bar{y}]$. Thus, to find out whether a given value y belongs to this interval, it is sufficient:

- to find the endpoints \underline{y}, \bar{y} of the range interval, and
- to compare a given number y with these endpoints: y belongs to the desired range if and only if $y \leq \underline{y} \leq \bar{y}$.

In view of this fact, in the real-valued case, it was sufficient to compute the two endpoints of the range.

In the complex case, the range can have a complicated shape; so, it is no longer easy to characterize this shape and we have to consider the range computation problem in the above more complicated form.

1.8 Processing complex intervals: computational complexity of the general case

Real numbers are a particular case of complex intervals – when the imaginary part is 0. Similarly, a real interval $x = [x, \bar{x}]$ can be always viewed as a particular case of a complex interval – namely, an interval $z = x + i \cdot [0, 0]$. Thus, the problem of computing the range of a real-valued function under interval uncertainty is a particular case of the range computation problem for complex intervals. Since for real-valued intervals this problem is, in general, NP-hard, it is NP-hard for complex intervals as well.

1.9 Natural question: what is the computational complexity of processing complex intervals in the SUE case

For real-valued intervals, there are many important cases when there is a feasible (polynomial-time) algorithm for exactly computing the range; the simplest such case is the case of SUE expressions.

A natural question is: can we feasibly solve the problem of (exactly) computing for SUE expressions in the complex case as well? In this paper, we show that the answer to this question is negative: for complex intervals, the range computation problem is NP-hard even for SUE expressions. Moreover, we show that it is NP-hard for such simple expressions as the product of several fuzzy numbers, bilinear expressions, or the second population moment.

2. MAIN RESULTS

The simplest possible arithmetic operations are addition, subtraction, and multiplication.

If we only allow addition and subtraction (or even multiplication by a real-valued constant), then we end up with a general linear expression of the type $f(z_1, \ldots, z_n) = a_0 + a_1 \cdot z_1 + \ldots + a_n \cdot z_n$. For this expression, we can explicitly compute the range $z = x + i \cdot y$, where

$$x = a_1 \cdot x_1 + \ldots + a_n \cdot x_n; \quad y = a_1 \cdot y_1 + \ldots + a_n \cdot y_n.$$

Both intervals can be explicitly computed, and a given complex value $z = x + i \cdot y$ is possible if and only if $x \in x$ and $y \in y$. So, for functions consisting only of such operations, there is a feasible (actually, linear-time) algorithm for computing the corresponding complex range exactly.

However, if instead of only allowing additions, we only allow multiplications, the problem becomes NP-hard:

Theorem 1. The problem of computing the exact range of the product $f(z_1, \ldots, z_n) = z_1 \cdot \ldots \cdot z_n$ of complex numbers under interval uncertainty is NP-hard.

Comment. For reader’s convenience, we placed all the proofs in the last section.
Since the product is a SUE expression, we get the following corollary:

Theorem 2. The problem of computing the exact range for complex intervals is NP-hard even for SUE expressions.

The product of \(n \) numbers is a polynomial of order \(n \). Maybe the problem is computationally simpler if we restrict ourselves to lower order SUE polynomials — e.g., quadratic or bilinear ones? Alas, no:

Theorem 3. The problem of computing the exact range of the scalar (dot) product \(f(z_1, \ldots, z_n, t_1, \ldots, t_n) = z_1 \cdot t_1 + \ldots + z_n \cdot t_n \) under complex interval uncertainty is NP-hard.

Theorem 4. The problem of computing the exact range of the second population moment \(f(z_1, \ldots, z_n) = \frac{1}{n} \sum_{i=1}^{n} z_i^2 \) under complex interval uncertainty is NP-hard.

3. AUXILIARY RESULTS

For the product, the problem remains NP-hard even if instead of computing the actual range, we simply want to compute the smallest box \(x \times y \) that contains the actual range:

Theorem 5. The problem of computing the smallest box \(x \times y \) that contains the range of the product \(f(z_1, \ldots, z_n) = z_1 \cdot \ldots \cdot z_n \) of complex numbers under interval uncertainty is NP-hard.

In the real-valued case, for SUE expressions, we can compute the smallest interval containing the actual range by using straightforward interval computations, i.e., by replacing each operation with numbers in the original formula \(f \) by the corresponding operation with intervals. For the product of complex numbers, only we do not get the smallest box at the end, but the result of the corresponding operation-by-operation interval operations may actually depend on the order of multiplications — because for complex numbers, multiplication is, in general, not associative. For example, for \((1-i) \cdot (1+i) \cdot (0,1-i) \), we get:

\[
(1+i) \cdot (0,1-i) = (0,1) + i \cdot (-1,0); \\
(1-i) \cdot (1+i) \cdot (0,1-i) = (1,2) + [-1,0]; \\
(1-i) \cdot (1+i) \cdot (0,1-i) = (1,2) + [-1,0]; \\
\]

while \((1-i) \cdot (1+i) = 2 \) hence

\[
2 \cdot (0,1-i) = [0,2] + i \cdot [-3,-1],
\]

A similar result holds if instead of box-shaped complex intervals, we consider circular complex intervals \((z,r) = \{ z : |z - \bar{z}| \leq \Delta \} \). Here, it is natural to ask a similar question: given a function \(f \), \(n \) circular intervals \(z_i \), and a complex number \(z \), does \(z \) belong to the range \(f(z_1, \ldots, z_n) \)? It turns out that this range computation problem is NP-hard as well:

Theorem 6. The problem of computing the exact range of the scale (real) product \(f(z_1, \ldots, z_n, t_1, \ldots, t_n) = z_1 \cdot t_1 + \ldots + z_n \cdot t_n \) under circular complex interval uncertainty is NP-hard.

Theorem 7. The problem of computing the exact range of the second population moment \(f(z_1, \ldots, z_n) = \frac{1}{n} \sum_{i=1}^{n} z_i^2 \) under circular complex interval uncertainty is NP-hard.

4. PROOFS

Proof of Theorem 1. To prove NP-hardness of our range computation problem, we will reduce, to this new problem, a known NP-hard partition problem; see, e.g., [1, 5]. The subset problem is as follows: given \(n \) positive integers \(s_1, \ldots, s_n \) and an integer \(s_0 \), to check whether there exists values \(\varepsilon_i \in \{-1,1\} \) such that \(\sum_{i=1}^{n} \varepsilon_i \cdot s_i = 0 \).

For every instance of the partition problem, we compute

\[
k = 1 + \left(\prod_{i=1}^{n} s_j \right), \quad \theta_i = k \cdot s_i, \quad t_i = \tan(\theta_i),
\]

and we take

\[
z_i = 1 + i \cdot [-t_i, t_i] \text{ and } z = \prod_{i=1}^{n} \sqrt{1 + t_i^2}.
\]

Let us prove that this number \(z \) belongs to the range of the product if and only if the original instance of the partition problem has a solution.

In this proof, we will use the known fact that every complex number \(z = x + yi \) can be represented in a polar form \(z = r \cdot e^{i \theta} \), where \(r = \sqrt{x^2 + y^2} \) is the absolute value (magnitude) of \(z \), and the "phase" \(\theta \) is the angle between the direction from 0 to \(z \) and the positive real semi-axis. When we multiply complex numbers, their magnitudes multiply and their phases add.

Let us first prove that if the original instance has a solution \(\varepsilon_i \), then \(z \) is equal to the product of \(n \) values \(z_1 = 1 + i \cdot \varepsilon_1 \cdot t_1 \in z_i \). Indeed, since \(|z_i| = \sqrt{1 + t_i^2} \), the product of the magnitude is the desired value \(z \). The angle \(\alpha_i \) corresponding to each \(z_i \) is equal to \(\alpha_i = \varepsilon_i \cdot \theta_i \), so the sum \(\alpha \) of these angles is equal to \(\sum_{i=1}^{n} \varepsilon_i \cdot \theta_i \). Since \(\theta_i = k \cdot s_i \), we conclude that \(\alpha = k \cdot \sum_{i=1}^{n} \varepsilon_i \cdot s_i \), i.e., \(\alpha = 0 \). So, this product \(z_1 \cdot \ldots \cdot z_n \) has the right magnitude and the right angle and is, thus, equal to \(z \).

Conversely, let us assume that \(z \) belongs to the range, i.e., that \(z \) can be represented as the product \(z_1 \cdot \ldots \cdot z_n \), for some \(z_i \in z_i \). In other words, for this product, the magnitude is equal to \(z \), and the phase \(\alpha \) is 0. For each value \(z_i = 1 + i \cdot y_i \in z_i \), its magnitude is equal to \(\sqrt{1 + y^2} \).

Since \(|y_i| \leq t_i \), this magnitude cannot exceed \(\sqrt{1 + t_i^2} \), and it is equal to \(\sqrt{1 + t_i^2} \) only for the two endpoints \(y_i = \pm t_i \).

If for some \(i \), we have \(y_i \in (-t_i, t_i) \), then the resulting magnitude is the product of several numbers all of which are \(\leq \sqrt{1 + t_i^2} \) and some are smaller — thus, the magnitude of the product will be smaller than \(z \). Since the magnitude of the product is equal to \(z \), then, for each \(i \), we have \(z_i = 1 + i \cdot \varepsilon_i \cdot t_i \) for some \(\varepsilon_i \in \{-1,1\} \). For each of these numbers \(z_i \), the phase \(\alpha_i \) is equal to \(\varepsilon_i \cdot \theta_i \). Thus, from the fact that the overall angle \(\alpha = \sum \varepsilon_i \cdot s_i \) is equal to 0, we conclude that

\[
\sum_{i=1}^{n} \varepsilon_i \cdot s_i = 0,
\]

and, since \(\theta_i = k \cdot s_i \), that \(\sum_{i=1}^{n} \varepsilon_i \cdot s_i = 0 \), i.e., the original instance of the partition problem indeed has a solution.

This completes the proof of the theorem.

Proof of Theorem 3. In this proof, we will use the reduction to the same partition problem as in Theorem 1. For every instance \(s_1, \ldots, s_n \) of the partition problem, we take \(z_i = t_i = \sqrt{s_i} \cdot (1 + i \cdot [-1,1]) \) and \(z = 0 \). Then, possible values \(z_i \in z_i \) have the form \(z_i = \sqrt{s_i} \cdot (1 + i \cdot a_i) \) for some \(a_i \in [-1,1] \), and possible values of \(t_i \) are of the form \(t_i = \sqrt{s_i} \cdot (1 + i \cdot b_i) \) with \(b_i \in [-1,1] \).

Let us show that \(z \) belongs to the range if and only if
the given instance of the partition problem has a solution. Indeed, for each \(i \), the product \(z_i \cdot t_i \) is equal to
\[
s_i \cdot (1 + i \cdot a_i) \cdot (1 + i \cdot b_i) = s_i \cdot ((1 - a_i \cdot b_i) + i \cdot (a_i + b_i)).
\]
Since \(|a_i| \leq 1 \) and \(|b_i| \leq 1 \), we have \(|a_i \cdot b_i| \leq 1 \), and therefore, \(1 - a_i \cdot b_i \geq 0 \). Thus, the real part of the sum \(\sum_{i=1}^{n} s_i \cdot t_i \) is equal to the sum of \(n \) non-negative numbers \(s_i \cdot (1 - a_i \cdot b_i) \). The only possibility for this sum to be equal to 0 if when all \(n \) non-negative terms are equal to 0, i.e., when \(a_i \cdot b_i = 1 \).

Since \(|a_i| \leq 1 \) and \(|b_i| \leq 1 \), the absolute value of the product \(|a_i \cdot b_i| \) cannot exceed 1, and the only possibility for this product to be equal to 1 is when both absolute values are equal to 1, i.e., when \(a_i = \pm 1 \) and \(b_i = \pm 1 \). Since \(a_i \cdot b_i = 1 \), the signs must coincide, i.e., we must have \(a_i = b_i = \varepsilon_i \in \{-1, 1\} \). For these values \(a_i \) and \(b_i \), the imaginary part of \(z_i \cdot t_i \) is equal to 0 if and only if \(a_i = b_i = \varepsilon_i \in \{-1, 1\} \). Thus, the fact that the imaginary part is equal to 0 is equivalent to \(2 \sum_{i=1}^{n} \varepsilon_i \cdot s_i = 0 \) i.e., to the fact that the original instance of the partition problem has a solution.

The theorem is proven.

Proof of Theorem 4. This proof is similar to the proof of Theorem 3; the only difference is that here, for \(z_i = \sqrt{n} \cdot (1 + i \cdot a_i) \), we have \(z_i^2 = s_i \cdot ((1 - a_i^2) + i \cdot (2a_i)) \). Since \(|a_i| \leq 1 \), we have \(1 - a_i^2 \geq 0 \), and the only possibility for the expression \(\frac{1}{n} \sum_{i=1}^{n} z_i^2 \) to have a zero real part is to have \(1 - a_i^2 = 0 \) for all \(i \), i.e., to have \(a_i = \pm 1 \) for every \(i \). In other words, we have \(a_i = \varepsilon_i \in \{-1, 1\} \). For these \(a_i \), the imaginary part of the expression \(\frac{1}{n} \sum_{i=1}^{n} z_i^2 \) is equal to
\[
\frac{2}{n} \sum_{i=1}^{n} \varepsilon_i \cdot s_i.
\]
Thus, the fact that the imaginary part is equal to 0 is equivalent to \(\sum_{i=1}^{n} \varepsilon_i \cdot s_i = 0 \), i.e., to the existence of the solution to the original instance of the partition problem.

Proof of Theorem 5. We will prove that computing the largest possible real part \(\tau \) of the product is NP-hard.

In this proof, we will use the same reduction as in Theorem 1. In this proof, we showed that when \(z_i \in \mathbb{Z} \), the product \(z = z_1 \cdots z_n \) has a magnitude which cannot exceed \(z = \prod_{i=1}^{n} \sqrt{1 + \varepsilon_i} \). Since the real part of a complex number cannot exceed its magnitude, the largest possible value \(\tau \) of the real part cannot exceed 2. The only possibility for \(\tau \) to be equal to 2 is when there is a point with real value 2, since the magnitude cannot exceed 2, the imaginary part of this point must be 0. Thus, the only way for \(\tau \) to be equal to 2 is to have 2 itself represented as a product of values \(z_i \in \mathbb{Z} \), and we already know that checking this condition is NP-hard. Thus, computing \(\tau \) is also NP-hard.

Proof of Theorem 6. Similarly to the proof of Theorem 3, take \(z_i = t_i = \sqrt{n} \cdot \left(1 + \frac{\sqrt{2}}{2}\right) \) and \(z = 0 \). One can easily check that for complex numbers \(z_i \in \mathbb{Z} \), the phase takes the values from \(-45^\circ\) to \(45^\circ\). The phase is equal to \(45^\circ\) only at a point \(\frac{\sqrt{2}}{2} \cdot (0.5 + i \cdot 0.5) \), and the phase is equal to \(-45^\circ\) only at a point \(\frac{\sqrt{2}}{2} \cdot (0.5 - i \cdot 0.5) \).

When we multiply complex numbers, their phases add up. Thus, for the product \(z_1 \cdot t_1 \), the angle is always between \(-90^\circ\) and \(90^\circ\), i.e., the real part of the product is always non-negative. So, the real part of the sum \(\sum_{i=1}^{n} z_i \cdot t_i \) is also always non-negative. The only possibility for this real part to be 0 is when the real parts of all the terms in the sum are equal to 0, i.e., when for each \(i \), the phase of the product \(z_i \cdot t_i \) is equal to either \(-90^\circ\) or to \(90^\circ\). This, in turn, is possible only if either both \(z_i \) and \(t_i \) have phases \(45^\circ\) or both \(z_i \) and \(t_i \) have phases \(-45^\circ\).

- In the first case, we have \(z_i \cdot t_i = \sqrt{n} \cdot (0.5 + i \cdot 0.5) \), hence \(z_i \cdot t_i = 0.5 \cdot \varepsilon_i \cdot s_i \).
- In the second case, we have \(z_i \cdot t_i = \sqrt{n} \cdot (0.5 - i \cdot 0.5) \), hence \(z_i \cdot t_i = -0.5 \cdot \varepsilon_i \cdot s_i \).

In both cases, we have \(z_i \cdot t_i = 0.5 \cdot \varepsilon_i \cdot s_i \cdot i \) for some \(\varepsilon_i \in \{-1, 1\} \).

Thus, the imaginary part of the sum \(\sum_{i=1}^{n} z_i \cdot t_i \) is equal to \(0.5 \cdot \sum_{i=1}^{n} \varepsilon_i \cdot s_i \). This imaginary part is equal to 0 if and only if \(\sum_{i=1}^{n} \varepsilon_i \cdot s_i = 0 \), i.e., if and only if the original instance of the partition problem has a solution. This completes the proof of the theorem.

Proof of Theorem 7 is similar.

5. **ACKNOWLEDGMENTS**

This work was supported in part by NSF grants EAR-0225670 and DMS-0532645 and by Texas Department of Transportation grant No. 0-5453.

The authors are thankful to the participants of 11th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics SCAN’2004 (Fukuoka, Japan, October 4–8, 2004) for inspiring discussions that led to this work.

6. **REFERENCES**

