
xi

LIST OF FIGURES
Figure 1.1: Linearly Separable Problem (a), XOR Problem (b) ..2

Figure 1.2: Literature survey illustrating Machine Learning focus on lower prediction error,

while Hardware focus is on lower power consumption [Rea17]. ..4

Figure 2.3: Biological Neuron, ..6

Figure 4.2: Artificial Neuron Architecture (ANN) ...6

Figure 2.5: Comparison of Biological Neural Network (left figure) and Artificial Neural Network

(right figure) ...7

Figure 2.6: Deep Learning presented as a subfield of Artificial Intelligence8

Figure 2.7: Model Training Outcomes: (a) Underfitting, (b) Appropriate Fitting, (c) Overfitting

 ... 11

Figure 2.8: Basic Neural Network Topology ... 12

Figure 2.9: Traditional and Non-Traditional Activation Functions ... 14

Figure 2.10: Image Classification Using ANNs or DNNs .. 15

Figure 2.11: Neuron Backpropagation ... 17

Figure 2.12: Representation of Convolutional Neural Networks .. 20

Figure 2.13: Pooling Variations ... 21

Figure 2.14: (a) Simple Feedforward Network and (b)Recurrent Neural Network 22

Figure 2.15: Clock rate and Power for Intel x86 microprocessors over eight generations and 25

years [Hen12].. 28

Figure 2.16: Architectures specialized for parallel computing .. 30

Figure 2.17: Flynn’s Taxonomy of Parallel Processors in Computing .. 31

Figure 3.18: Principle component analysis of execution time per Fathom workload [Rea17] 34

Figure 3.19: General Floating-Point Encoding ... 37

14

Figure 2.9: Traditional and Non-Traditional Activation Functions

In older ANN models, traditional non-linear activation functions are frequently used. Since then,

however, interest has grown greatly in the need for activation functions that produce the same or

similar results but are computationally less demanding. This need has led to the development of

modern non-linear functions such as the Rectified Linear Unit (ReLU) and the Exponential Linear

Unit.

15

2.4 INFERRING AND TRAINING

Once a neural network is trained, or has learned to perform its designed task, running the

neural network, or program, on new and unseen inputs with the previously programmed weights

is referred to as “inferring.” In this section, image classification is used as an example (illustrated

in Figure 2.8) to illustrate training and inferring.

When a DNN or ANN is used for inference, an input image must be supplied. The output

of the network is the maximum value in a vector that indicates the probability that the object

contained in the image belongs to one of the designated classes [Sze17]. The difference between

the calculated probability and 1 is known as the loss (L). The objective of training this model is to

modify and adjust the weights in the network to be able to classify a wide variety of objects into

the appropriate categories and minimize the L.

Figure 2.10: Image Classification Using ANNs or DNNs

The most common method to adjust the weights is using a technique called

backpropagation. Note that the weights are designated as wij, where the subscript ij indicates the

direction of the input, i denotes the neuron in question, and j designates the neuron providing input

to the neuron in question. Backpropagation is a mathematical technique that calculates the gradient

of the loss relative to each weight, which is the partial derivative of the loss with respect to the

weight. This gradient, then, is used to update the weight. Equation 2.2 illustrates the calculations

16

for each weight, where α is commonly referred to as the learning rate. Alpha (α) is typically a small

value in order to allow each individual weight to converge to some value, however not necessarily

the same value. This process is repeated iteratively in order to minimize overall loss. Figure 2.9

provides a representation of the backpropagation process.

 (2.2)
Equation 2.2: Computing Gradient Loss with Respect to each Weight

Although backpropagation is one of the more popular techniques to train a neural network,

there are two major demerits of the strategy. First, the inherent nature of backpropagation requires

the intermediate outputs between layers to be stored in order to calculate the loss between layers.

This increases the storage requirements drastically. Second, gradient descent requires a high level

of precision, which also drastically increases storage demand alongside power consumption. To

mitigate some of these drawbacks, a variety of strategies are employed at the software level in

order to improve the efficiency of training. For example, oftentimes the loss from multiple sets of

input data is collected before weights are updated (i.e. batch updates) [Sze17]. This is one of many

strategies employed to speed up and stabilize the training process.

𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡+1 = 𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡 − 𝛼𝛼 �
𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

�

17

Figure 2.11: Neuron Backpropagation

18

2.5 LEARNING STRATEGIES

There are several popular strategies to train the network, i.e. determine the weights on

inputs to the neurons. Many of the most common strategies fall into a category called supervised

learning, where each training sample has an associated label (output). This is then compared with

the neural network’s output, which in turn generates adjusted weights. Many different methods for

adjusting the weights exist, but one of the most popular is by using backpropagation. Strategies

without labeled training samples fall into the category called unsupervised learning. This technique

does not label samples, instead allows the model to create its own classes and classify samples

accordingly. This technique is commonly used for pattern recognition, clustering and denoising

data [Ian17]. Semi-supervised learning is a combination of both supervised and unsupervised

learning, where only some or few samples are labeled and the model is left to create appropriate

classes for the remaining ones. Another common approach to obtaining network parameters, or

weights, is called fine-tuning, where the weights and architecture of a previous model are used as

a start and are then adjusted to the new data set. This approach typically results in quicker training

with higher precision.

19

2.6 ADVANCED NEURAL NETWORK ARCHITECTURES

The Deep Neural Networks discussed previously can theoretically learn any relationship

presented [Rea17]. However, through research and development, more sophisticated models have

been developed in order to target specific problems. These models typically offer a reduction in

computational intensity by being easier to train and more robust to noise in the training data

compared to traditional Deep Neural Networks.

2.6.1 Convolutional Neural Networks (CNNs)

“Convolutional networks are simply neural networks that use convolution in place of

general matrix multiplication in at least one of their layers” [Ian17]. These types of networks have

been known to excel in areas that involve image processing such as facial or object recognition

and detection. The reason they excel at this task is due to their excellent capability of recognizing

relationships between adjacent pixels in an image. In a traditional DNN, the network would treat

each pixel as exactly that, an individual pixel having initially little to no relationship with its

neighboring pixels. However, from basic intuition we know that is false: pixels in an image or

video generally have a heavy relationship with its neighboring pixels. CNNs are great at

recognizing these types of relationships because of the very nature of the convolution operation, a

mathematical operation that is essentially a moving weighted average across the provided data.

Inferring in this type of network is computed by creating, training then applying several

small filters across the image, the result of each convolutional layer is typically referred to as a

feature map (fmap). The way these networks are trained is similar to the training process in DNNs,

gradient descent is applied for each location where the filter is used and followed by summing the

result into a single value. An illustration of one convolutional layer is shown in Figure 2.10, which

20

illustrates how multiple filters are applied according the dimensionality of the input image. For

example, images are typically represented by their Red, Green, Blue (RGB) value, so in this case

we would apply one filter per dimension; one for the Red pixel values, one for the Green pixel

values and another for the blue pixel values. We would find the weighted average for the black

square, shift over according to a certain stride size and repeat this process until we have reached

the end of the image.

Figure 2.12: Representation of Convolutional Neural Networks

21

A common type of optimization seen in these types of networks is applying intermediate

layers that “normalize” the output from these convolutional layers. These layers can be

nonlinearity layers, which apply nonlinear activation functions as seen in section 2.3or pooling

layers, that are used to help “blind” the network to small or insignificant changes by combining or

“pooling” values. Examples of pooling operations are illustrated in Figure 2.11. Normalization

layers apply a transformation of the outputs in order to adhere to some constraint. In most cases,

this constraint is to have the output(s) within some range of each other.

Figure 2.13: Pooling Variations

2.6.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are models designed to process and recognize

relationships in sequential data, this means RNNs are typically more adept at recognizing time

dependent relationships or sequential dependencies. These sequential dependencies typically lie in

time series input commonly found in Speech and Natural Language Processing (SLP or NLP). For

example, a well-designed RNN will recognize the similarities between the following two phrases:

“I will be out of town on Friday” and “Friday I will not be in the city.” The similarities, in this

22

instance, being the date and location being referenced. Structurally, RNNs are similar to the regular

feedforward network except for the output layer. In an RNN, the output layer has some “internal

memory” that allows for long-term dependencies to affect the output. The difference between these

two networks is illustrated in Figure 2.12. A variation of this network is the Long Short-Term

Memory Network (LSTMs). Other than Google’s Tensor Processing Unit (TPU), developed in

order to meet projected demands of speech recognition in voice search [Hen17], little focus or

attention has been placed, to date, on hardware acceleration for most of these LSTMs.

Figure 2.14: (a) Simple Feedforward Network and (b)Recurrent Neural Network

23

2.7 EMBEDDED VS. CLOUD MACHINE LEARNING

The profession has recently entered into a very interesting era in computing where there

are two polar opposite computing schemes. The “traditional distributed computing” model is

where heavy workloads are sent over the network to be processed at server farms. Juxtaposed to

this is the “Internet of Things” (IoT) model, where every day items such as lightbulbs, speakers,

TVs, and refrigerators, have some sort processor (typically to perform simple but specific

computational tasks) and computing is pushed to the edge of the network. With the recent rise of

the IoT paradigm, the reader might ask, “why bother speeding up computation at the edge of the

network when all the computations can be performed on server farms?” This is especially relevant

when training often requires huge amount of data sets and computational resources typically only

available at these server farms. However, it is worth mentioning the advantages of having Domain

Specific Architectures (DSAs) at the edge of the network, even though it is not the focus of this

study.

 For many DNN applications, it is favorable to have the ANN/DNN inference close to the

sensor(s). In many cases, the information to be processed, such as images, video, and audio, have

heavy bandwidth requirements which can come at a communication cost. Other applications are

time sensitive such as autonomous vehicles, navigation, and robotics. So, the inherent latency of

the network cannot be trusted with many of these applications.

2.7.1 Computer Vision

As video continues to be the primary source of traffic on the internet—accounting for over

70% of traffic [Cvn16]—it is becoming extremely desirable to have inferences happen close to the

video source rather than transferring the information over a high latency network, waiting for it to

24

be processed at the clusters, and even still waiting for the result to be sent back. Other applications

simply do not have the luxury of waiting: ranging from applications such as autonomous cars that

rely on real-time, live video processing in order to identify hazards and obstacles, to security

cameras that can benefit from being able to identify threats as they surge.

2.7.2 Speech Recognition

Speech recognition and natural language processing have dramatically improved our

ability and experience when interacting with electronic devices. Although many of the virtual

assistant services such as Google Assistant and Amazon Alexa are still cloud services, it is very

attractive to have these services pushed onto a device. By having these computations on a local

device, the dependencies of network connectivity are decreased or even eliminated, the latency

between command and execution is reduced, and additionally, privacy is increased. This reduction

in latency is important, as in many cases natural language processing is the first step before being

able to perform any sort of task in AI.

2.7.3 Medical

 It is undeniable that there is a need to move the medical industry from reactive care—

treating the patient after the onset of a disease or condition—and preventative care—having the

patient come in for weekly/monthly/yearly screenings—to predictive care: a medical system where

a patient can wear a device that is capable of collecting long-term data that can help either detect

or diagnose various diseases, or monitor treatment [Sze17a]. For example, blood sugar can be

monitored, and based on the user’s previous A1C levels and glucose levels, hypoglycemia and

hyperglycemia can be predicted and prevented. However, due to the nature of these devices,

wearable or implantable, the energy consumption must be kept to a minimum.

25

2.8 COMPUTER ARCHITECTURE

“Computers have led to a third revolution for civilization, with the
information revolution taking its place alongside the agricultural and the industrial
revolutions. The resulting multiplication of humankind’s intellectual strength and
reach naturally has affected our everyday lives profoundly and changed the ways
in which the search for new knowledge is carried out… The computer revolution
continues…”

- David A. Patterson & John L. Hennessey

Applications that were economically infeasible have suddenly become practical. In the

recent past, the following applications were ‘computer science fiction’” [Hen12]: computers in

automobiles, cell phones, the human genome project, the World Wide Web and search engines.

Now that ANNs have been covered extensively in the first half of this chapter, the history

of computer architecture will be discussed next: Performance metrics when evaluating processors

and proposed guidelines for designing DSA, according to popular literature.

2.8.1 Computer History

Though it may surprise the reader, the “modern” concept of the general-purpose computer

is actually almost 200 years old! An English mathematician and inventor by the name of Charles

Babbage is widely credited with conceptualizing the first general-purpose computer in the early

1800’s. His Mechanical General-Purpose Computer included the concepts of control flow,

including branch statements such as if, then, else and looping, as well as the first concepts of

memory for storage of programs and instructions.

It took a little over 100 years to effectively use Babbage’s ideas in practice: during the era

after WWII when scientists and engineers from around the globe cooperated to further theory and

produce electronic computers. One of the most famous is Alan Turing, whose algorithms were

used to decrypt Nazi messages in WWII. Not coincidentally, he invented the notion of the “Turing

26

Machine,” which is, at this point, a yet-unattainable goal. Another pair of less well-known

scientists, John Eckert and John Mauchly, working at the University of Pennsylvania gave birth to

what we know today as the von Neumann architecture. This architecture is composed of a

processing unit, a control unit with instruction register and program counter, a main memory, an

external mass storage and input/output mechanism.

Early computers like the Electronic Numerical Integrator and Calculator (ENIAC),

Electronic Discrete Variable Automatic Calculator (EDVAC) and the Electronic Delay Storage

Automatic Calculator (EDSAC), were massive in size and would typically fill up entire rooms

with equipment. It would take roughly 20 years for the full development of transistors until we

would get the first microprocessor or single computer on a chip, the Intel 4004, in 1971.

2.8.2 Computer Organization

2.8.2.1 Classes of Computers

For the purpose of this thesis, the literature was surveyed and resulted in identifying three

major classes of computer systems: Desktop, Server, and Embedded computer systems. The

desktop has a strong emphasis on good performance at a low cost, typically used to serve one or

very few users. Most importantly however, is its Central Processing Unit (CPU), this CPU is

designed with the guideline to “do everything well enough.” The server is designed, generally,

with an emphasis on running larger programs for several hundred or thousand users at a time, and

is typically accessed via the network. This class of computer’s CPU is typically designed for very

high performance, as the workload is usually very heavy. The last class of computing system is

the embedded system, which is by far the most common type, as these are the computing systems

that are inside other devices running very specialized application or software.

27

The proposed DSA in this article may be placed in any one of these previously mentioned

computer systems, depending on whether the DSA is being used to train or infer. If an ANN

architecture that has already been trained to infer is utilized, the DSA would be placed in either a

desktop computer or embedded computer, ready to make these inferences at the edge of the

network as quickly as possible (short execution time). If, on the other hand, the DSA is used to

accelerate the learning process, it would be a DSA designed for training at a server farm.

2.8.2.2 Computing Metrics

How is it possible to quantify what is a “good” vs. “bad” or “fast” vs. “slow” computer?

This is a not a trivial answer, and if asked of an engineer, the most common answer would be:

“well, it depends.” For example, if there are two desktop computers, it would be logical to test by

running a sample program to see which one completes execution first. In this case, it could be said

that the “fast” computer is the one with the shortest execution time. If, however, the setting is a

datacenter, the “good” label would be more likely based on which of the two servers had the

highest throughput, or which one of the two completed the most work in a given amount of time

[Hen12].

In order to quantify the performance of CPUs, the focus will be primarily on two metrics:

execution time and power consumption. The execution time of a program is affected by three

factors: Program Instruction Count (IC), Clock Cycles per Instruction (CPI) and Clock Rate (R),

as shown in Equation 2.1, which yields Computing Execution Time, in seconds. Power

consumption, in Watts, is computed as shown in Equation 2.2, and is dependent on three factors:

Capacitive Load (C), Transistor Supply Voltage (V) and Transistor Switching Frequency (F).

28

 (2.3)
Equation 2.3: Processing time with respect to Instruction Time, Clock cycles per Instruction and Clock Rate

 (2.4)
Equation 2.4: Power consumption as a function of Capacitive load, Voltage and Frequency

In 1974, Robert Dennard made the observation that power density remained constant for a given

area of silicon regardless of the increase in resistors because of the constantly decreasing

dimensions of each transistor. This in turn meant that transistors could go faster and use less power.

However, since 2004, this characteristic has started to plateau, as seen in Figure 2.13 [Hen12].

This phenomenon is referred to, by engineers, as hitting the Power Wall. Essentially what has

happened is that we have reached a practical power limit for cooling the microprocessors in our

systems!

Figure 2.15: Clock rate and Power for Intel x86 microprocessors over eight generations and 25 years [Hen12]

29

The question is: how have we been able to achieve higher and higher clock rates while

keeping power consumption at relatively minimal incline? As one might be able to observe from

combining Equations 2.1 and 2.2, that by reducing the voltage within each generation, have higher

clock speeds can be achieved, for approximately the same power consumption. The problem with

this approach, however, is that by further lowering the voltage to the transistors, they start to

become leaky and this, in turn, causes unpredictable transistor performance. This issue has called

for newer but also substantially more expensive techniques to cool processors. However, another

approach to solve this problem has been a call for complete redesign of some of these computer

architectures (DSAs!).

2.8.3 Domain Specfic Architecture Design Guidelines

The following guidelines were certainly not the author’s own original ideas, they were

however meticulously researched through much reading and literature survey. Here, general

guidelines for designing any Domain Specific Architecture are presented, but will emphasize the

application of DNNs based on Hennessy and Patterson’s book, Computer Architecture, A

Quantitative Approach.

2.8.3.1 Memory

The first guideline suggested is to use dedicated memories to minimize distance over which

data is moved. In the case of DNNs, we want to have the Processing Units (PUs) as close to the

training/testing data as possible. An illustration of this type of architecture is shown in Figure 2.14.

These types of architectures are referred to as Spatial Architectures [Sze17], in which each

Arithmetic Logic Unit (ALU) can communicate with one another directly through dataflow

processing. Additionally, these ALUs should have their own control logic and local memory, such

