Las Cruces Housing Price Dynamics: 1971-2019

Steven L. Fullerton
University of Texas at El Paso, slfullerton@utep.edu

Thomas M. Fullerton Jr.
University of Texas at El Paso, tomf@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/border_region

Part of the [Regional Economics Commons](https://scholarworks.utep.edu/border_region)

Comments:

Technical Report TX22-1
A revised version of this study is forthcoming in *Asian Journal of Economic Modelling*.

Recommended Citation

https://scholarworks.utep.edu/border_region/139

This Article is brought to you for free and open access by the Economics and Finance Department at ScholarWorks@UTEP. It has been accepted for inclusion in Border Region Modeling Project by an authorized administrator of ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.
LAS CRUCES HOUSING PRICE DYNAMICS: 1971-2019
UTEPA Border Region Econometric Modeling Project

Corporate and Institutional Sponsors:

El Paso Water
TFCU
National Science Foundation
UTEP College of Business Administration
UTEP Department of Economics and Finance
UTEP Center for the Study of Western Hemispheric Trade

Special thanks are given to the corporate and institutional sponsors of the UTEP Border Region Econometric Modeling Project. In particular, El Paso Water and The University of Texas at El Paso have invested substantial time, effort, and financial resources in making this research project possible.

Continued maintenance and expansion of the UTEP business modeling system requires ongoing financial support. For information on potential means for supporting this research effort, please contact Border Region Modeling Project - CBA 236, Department of Economics and Finance, 500 West University, El Paso, TX 79968-0543.
Abstract: To examine housing price dynamics for Las Cruces, New Mexico, a theoretical model is developed that takes into account the supply and demand sides. The ARDL estimation methodology employed allows for more realistic market dynamics than prior studies of this residential real estate market, the second largest in New Mexico. A slightly larger sample size is also utilized. Results obtained corroborate evidence reported in several previous housing studies. Some unexpected outcomes also indicate that consistently reliable interlinkages between housing prices and explanatory variables may be elusive. Among the latter, an inverse relationship between apartment rents and single-family housing prices is most surprising. That outcome may be a consequence of a large university and college student population within Las Cruces. As post-secondary enrollments grow, faculty numbers also increase, potentially allowing both housing prices and apartment rents to increase simultaneously. That implies that apartments and single-unit houses may be complements rather than substitutes in college towns like Las Cruces. Additional research using data for other small- and medium-sized urban economies would be helpful.

Keywords: Housing Economics, Urban Economics, Las Cruces

JEL Classifications: R21 Housing Demand; C20 Single Equation Models; R15 Regional Econometrics

Acknowledgements: Financial support for this research was provided by El Paso Water, TFCU, National Science Foundation Grant DRL-1740695, Texas Department of Transportation ICC 24-OXXIA001, and the UTEP Center for the Study of Western Hemispheric Trade.

* A revised version of this study is forthcoming in *Asian Journal of Economic Modelling.*
INTRODUCTION

Residential real estate is among the most important segments of any metropolitan economy. In many urban economies, the greatest number of housing units are existing, or previously built, single-family residential homes. Although it is the second-largest metropolitan economy in New Mexico, to date, relatively few studies analyze the Las Cruces housing sector.

One recent effort examines factors that influence Las Cruces housing price fluctuations (Fullerton et al., 2021). Results in that study indicate that local housing price changes are correlated with local income variations and national housing price movements. The empirical framework employed does not allow for elaborate dynamic patterns. Given that, plus the exploratory nature of the research, confirmation of the empirical outcomes reported would be useful.

This study extends the earlier inquiry in two manners. First, it updates the data sample by including additional information. Second, it employs a different estimation methodology that allows for more intricate temporal linkages than those contemplated in the original study.

Subsequent sections of the study are as follows. Section two provides a brief review of the theoretical model. Section three summarizes the data employed and the empirical results obtained. Section four encapsulates principal outcomes and offers concluding remarks.

THEORETICAL MODEL

The supply function is based upon DiPasquale and Wheaton (1994). As shown in Equation (1), the housing stock \(S \) is expected to increase as the real price per unit \(P \) increases. The annual rate of depreciation is \(\delta \). The \(t \) subscript is a time index. Model parameters in Equation (1) are \(\alpha_0, \alpha_1, \) and \(\alpha_2 \).

\[
\begin{align*}
\Delta S_t &= \alpha_0 + \alpha_1 P_t - \delta S_{t-1} \\
S_t - S_{t-1} &= \alpha_0 + \alpha_1 P_t - \delta S_{t-1} \\
S_t &= \alpha_0 + \alpha_1 P_t + S_{t-1} \\
S_t &= \alpha_0 + \alpha_1 P_t + (1-\delta)S_{t-1} \\
S_t &= \alpha_0 + \alpha_1 P_t + \alpha_2 S_{t-1}
\end{align*}
\]

The variables shown above include the Las Cruces housing supply, or stock, per capita, denoted by \(S \), and the median real price per single-family housing units in Las Cruces is indicated by \(P \). An annual time index is denoted by the subscript \(t \). In Equation (1), the variable \(S \) is hypothesized to be positively correlated with the contemporaneous lag of \(P \) and with a one-year lag of \(S \). As \(P \) increases, home builders will be able to construct more expensive single-family housing units because higher costs of material and labor can be covered (DiPasquale and Wheaton, 1994). A depreciation/
The demolition rate coefficient is also included. The rate of demolition is generally less than 2 percent of the existing stock.

Housing demand, \(D \), is specified in a manner similar to DiPasquale and Wheaton (1994) and Fullerton and Kelley (2008). As was the case in Equation (1), \(P \) is the real median price for a stand-alone dwelling in Las Cruces. INC is real per capita income for Las Cruces. RM denotes the real mortgage rate, calculated as the difference between the nominal mortgage rate and the personal consumption expenditures deflator inflation rate. The real monthly rent variable, RENT, controls for competition from the non-owner portion of the residential real estate market. The national real median price for single-family houses, NHP, is included in Equation (2) to account for the investment motive that underlies housing demand.

\[
D_t = \beta_0 + \beta_1 INC_t - \beta_2 RM_t + \beta_3 RENT_t + \beta_4 NHP_t - \beta_5 P_t \tag{2}
\]

Equation (3) develops an expression for \(P \) by equating Equations (1) and (2) and solving for \(P \). The result expresses \(P \) as a function of contemporaneous lags of INC, RM, RENT, and NHP. It also includes a one period lag of \(S \) as a right-hand regressor.

\[
S_t = D_t
\]

\[
\alpha_0 + \alpha_1 P_t + \alpha_2 S_{t-1} = \beta_0 + \beta_1 INC_t - \beta_2 RM_t + \beta_3 RENT_t + \beta_4 NHP_t - \beta_5 P_t
\]

\[
\alpha_1 P_t + \beta_5 P_t = \beta_0 - \alpha_0 + \beta_1 INC_t - \alpha_2 S_{t-1} - \beta_2 RM_t + \beta_3 RENT_t + \beta_4 NHP_t
\]

\[
(\alpha_1 + \beta_5) P_t = \beta_0 - \alpha_0 + \beta_1 INC_t - \alpha_2 S_{t-1} - \beta_2 RM_t + \beta_3 RENT_t + \beta_4 NHP_t
\]

\[
P_t = (\beta_0 - \alpha_0 + \beta_1 INC_t - \alpha_2 S_{t-1} - \beta_2 RM_t + \beta_3 RENT_t + \beta_4 NHP_t) / (\alpha_1 + \beta_5)
\]

The algebra for Equation (3) yields a specific hypothesis for each of the explanatory variable reduced form coefficients. Two of the five slope parameters above are hypothesized to be negative: \(\gamma_2 < 0; \gamma_3 < 0 \). The three remaining slope parameters are postulated to be positive: \(\gamma_1 > 0; \gamma_4 > 0; \gamma_5 > 0 \). Because it has fairly reasonable data requirements, Equation (3) offers a good starting point for analyzing prices in smaller urban housing markets.

Greater detail on the various components associated with this model are found in Fullerton et al. (2021). Results in that study indicate that local income, INC, and national housing prices, NHP, provide useful information regarding Las Cruces housing prices. The specification shown in Equation (3) does not allow for very elaborate dynamic linkages between the regressors and \(P \). To provide better insights on that aspect of the Las Cruces housing market, an autoregressive distributed lag (ARDL) modeling framework is employed. An ARDL approach is useful because it can capture both short-run and long-run dynamics associated with local housing prices (Pesaran et al., 2001; Ozturk and Acaravci, 2011).
SAMPLE DATA

Table 1 lists the names, descriptions, units, and sources of all of the variables that have been collected for the data sample. Of the six variables included in the data set, four of the variables were missing observations: median Las Cruces single-family housing price (P), median 2-bedroom apartment rent (RENT), single-family housing stock (S), and real mortgage rate (RM). For P, RENT, and RM, linear regression equations are applied to impute the missing values (Friedman, 1962). As for single-family housing stock (S), percentage changes in households and population were used to extrapolate the per capita housing stock data (Sweet and Grace-Martin, 2012). Each variable was converted from nominal to real figures except for the single-family housing stock.

Table 1. Variable Names, Definitions, and Units of Measure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Units of Measure</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Las Cruces Real Median Single-Unit Housing Price</td>
<td>2012 Real $, 1000s</td>
<td>IHS and BRMP</td>
</tr>
<tr>
<td>INC</td>
<td>Las Cruces Real Income Per Capita</td>
<td>2012 Real $, 1000s</td>
<td>BEA and Census</td>
</tr>
<tr>
<td>S</td>
<td>Las Cruces Single-Family Housing Stock Per Capita</td>
<td>SF Houses Per Person</td>
<td>IHS, Economy.com, and BRMP</td>
</tr>
<tr>
<td>RM</td>
<td>Real Mortgage Rate</td>
<td>Percent</td>
<td>BRMP</td>
</tr>
<tr>
<td>RENT</td>
<td>Las Cruces Real Median 2-BR Apartment Rent</td>
<td>2012 Real $, 1000s</td>
<td>HUD and BRMP</td>
</tr>
<tr>
<td>NHP</td>
<td>USA Real Median SF Housing Price</td>
<td>2012 Real $, 1000s</td>
<td>FRED and BRMP</td>
</tr>
</tbody>
</table>

Notes:
BEA, U.S. Bureau of Economic Analysis.
Census, U.S. Census Bureau.
Economy.com, Moody’s Analytics Economy.com.
FRED, Federal Reserve Bank of St. Louis Economic Data.
HUD, U.S. Department of Housing and Urban Development.
IHS, IHS Markit, formerly Wharton Econometrics.
BRMP, University of Texas at El Paso Border Region Modeling Project.

Summary statistics for each of the variables are reported in Table 2. Over the course of the 49-year sample period, P, the real price of single-family housing units in Las Cruces ranges from a minimum of $71.73 thousand in 1971 to a maximum of $163.04 thousand in 2007. As in many other regions, the price peak occurred during the global housing bubble (Kim and Renaud, 2009).

Real per capita income (INC) tallies a low of $16.27 thousand in 1971 and reaches a maximum of $34.23 thousand in 2019. Although the peak years differ for P and INC, the correlation coefficient between the two variables is 0.925. S, per capita single-family housing stock, reached a low of 0.193 in 1993 and 1994 before ascending to 0.255 in 2019. Although a greater supply of single-family housing stock is generally associated with lower prices, the variables P and S are positively correlated with each other over time.
The real mortgage rate, RM, reaches negative territory during the first global oil shock in 1974 at -1.2 percent. Due to several factors, including fairly tight monetary policy, RM rose to 10.49 percent in 1982 (Brazleton, 1994). RM and P have a negative correlation coefficient of -0.081. Adjusted for inflation, the median 2-bedroom apartment rent in Las Cruces, RENT, registers a nadir of $584 per month in 1996 and an apex of $763 per month in 2014. The median real national single-family housing price, NHP, posts a minimum of $115.496 in 1971 and achieves an apex of $304.221 thousand in 2017. The correlation coefficient for P and NHP is 0.901.

ECONOMETRIC METHODOLOGY AND EMPIRICAL

Variations in the median price of single-family housing are analyzed utilizing an autoregressive distributed lag (ARDL) approach. The model includes five independent variables as shown in Equation (3) and described in Tables 1 and 2. With the exception of RM, all of the data are transformed using natural logarithms prior to parameter estimation. Performing that step on the non-zero “amount” variables in the sample helps ensure that the normality assumption is satisfied (Gelman and Hill, 2006).

Lag length selection for the unit root ADF tests was determined using the Akaike information criterion (Pindyck and Rubinfeld, 1998). First differencing is required to induce stationarity in all of the variables. After first differencing, all of the variables are stationary at the standard 5-percent significance threshold (Table 3).
Table 3. Augmented Dickey-Fuller Unit Root Test Results

<table>
<thead>
<tr>
<th>Series</th>
<th>Computed Statistic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(LP)</td>
<td>-3.95</td>
<td>0.0035</td>
</tr>
<tr>
<td>D(LINC)</td>
<td>-7.25</td>
<td>0.0000</td>
</tr>
<tr>
<td>D(LS)</td>
<td>-2.92</td>
<td>0.0499</td>
</tr>
<tr>
<td>D(LRM)</td>
<td>-6.27</td>
<td>0.0000</td>
</tr>
<tr>
<td>D(LRENT)</td>
<td>-2.98</td>
<td>0.0442</td>
</tr>
<tr>
<td>D(LNHP)</td>
<td>-4.68</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

Notes:
- All data transformed using natural logarithms prior to differencing.
- Intercept, without trend outcomes presented.

Estimation results for the ARDL model are reported in Table 4. Of particular relevance is a lag structure that goes substantially beyond that of the theoretical starting point provided by Equation (3). Two autoregressive lags of P, plus multi-year lags of S, RM, and RENT, are included in the empirical counterpart to Equation (3).

Table 4. ARDL Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-statistic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP(-1)</td>
<td>0.874</td>
<td>0.162</td>
<td>5.403</td>
<td>0.0000</td>
</tr>
<tr>
<td>LP(-2)</td>
<td>-0.281</td>
<td>0.141</td>
<td>-1.990</td>
<td>0.0561</td>
</tr>
<tr>
<td>LINC</td>
<td>0.0779</td>
<td>0.085</td>
<td>0.916</td>
<td>0.3670</td>
</tr>
<tr>
<td>LS</td>
<td>-0.551</td>
<td>0.483</td>
<td>-1.139</td>
<td>0.2638</td>
</tr>
<tr>
<td>LS(-1)</td>
<td>0.344</td>
<td>0.764</td>
<td>0.450</td>
<td>0.6560</td>
</tr>
<tr>
<td>LS(-2)</td>
<td>-1.111</td>
<td>0.782</td>
<td>-1.420</td>
<td>0.1663</td>
</tr>
<tr>
<td>LS(-3)</td>
<td>0.835</td>
<td>0.743</td>
<td>1.124</td>
<td>0.2701</td>
</tr>
<tr>
<td>LS(-4)</td>
<td>0.900</td>
<td>0.504</td>
<td>1.784</td>
<td>0.0850</td>
</tr>
<tr>
<td>LRM</td>
<td>0.007</td>
<td>0.003</td>
<td>2.355</td>
<td>0.0255</td>
</tr>
<tr>
<td>LRM(-1)</td>
<td>0.001</td>
<td>0.004</td>
<td>0.237</td>
<td>0.8147</td>
</tr>
<tr>
<td>LRM(-2)</td>
<td>-0.006</td>
<td>0.003</td>
<td>-2.178</td>
<td>0.0377</td>
</tr>
<tr>
<td>LRENT</td>
<td>-0.158</td>
<td>0.103</td>
<td>-1.539</td>
<td>0.1346</td>
</tr>
<tr>
<td>LRENT(-1)</td>
<td>-0.183</td>
<td>0.108</td>
<td>-1.690</td>
<td>0.1017</td>
</tr>
<tr>
<td>LRENT(-2)</td>
<td>-0.107</td>
<td>0.112</td>
<td>-0.955</td>
<td>0.3472</td>
</tr>
<tr>
<td>LRENT(-3)</td>
<td>-0.254</td>
<td>0.106</td>
<td>-2.402</td>
<td>0.0199</td>
</tr>
<tr>
<td>LNHP</td>
<td>0.222</td>
<td>0.068</td>
<td>3.255</td>
<td>0.0029</td>
</tr>
<tr>
<td>C</td>
<td>5.695</td>
<td>1.427</td>
<td>3.990</td>
<td>0.0004</td>
</tr>
</tbody>
</table>
Residuals from the estimated ARDL equation are well behaved. Results from a Breusch-Godfrey Lagrange Multiplier (LM) test in Table 5 indicate that serial correlation is not present in the residuals (Asteriou and Hall, 2016). Outcomes for a Breusch-Pagan-Godfrey LM heteroscedasticity test in Table 6 further indicate that the residuals are homoscedastic.

Table 5. Breusch Godfrey LM Serial Correlation Test Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Computed Statistic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(2, 27)</td>
<td>2.878</td>
<td>0.0736</td>
</tr>
<tr>
<td>Chi-squared</td>
<td>8.083</td>
<td>0.0176</td>
</tr>
</tbody>
</table>

Table 6. Breusch-Pagan-Godfrey Heteroscedasticity Test Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Computed Statistic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(16, 29)</td>
<td>1.285</td>
<td>0.2702</td>
</tr>
<tr>
<td>Chi-squared</td>
<td>19.085</td>
<td>0.2643</td>
</tr>
</tbody>
</table>

Table 7 reports the outcomes of the ARDL bounds test. The computed F-statistic of 5.871 exceeds upper bound critical values calculated by Narayan (2005). That implies that a cointegrating relationship does exist and corroborates evidence obtained by Abraham and Hendershott (1996), Malpezzi (1999), and Capozza et al. (2004). It differs, however, from what is uncovered for other regional real estate markets by Gallin (2006). The CUSUM and CUSUMSQ test results shown in Figures 1 and 2 confirm the stability of the model parameters (Greene, 2000). Computed statistics for both tests remain within the 5-percent critical bounds.

Table 7. ARDL Bounds Test

<table>
<thead>
<tr>
<th>Test</th>
<th>Computed Statistic</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-statistic</td>
<td>5.781</td>
<td>5</td>
</tr>
</tbody>
</table>
Critical Value Bonds

<table>
<thead>
<tr>
<th>Significance</th>
<th>I(0) Bound</th>
<th>I(1) Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>2.26</td>
<td>3.35</td>
</tr>
<tr>
<td>5%</td>
<td>2.62</td>
<td>3.79</td>
</tr>
<tr>
<td>2.5%</td>
<td>2.96</td>
<td>4.18</td>
</tr>
<tr>
<td>1%</td>
<td>3.41</td>
<td>4.68</td>
</tr>
</tbody>
</table>

Figure 1: Cumulative Sum Structural Break Test Results

Figure 2: Cumulative Sum of Squares Structural Break Test Results
Tables 8 and 9 summarize the estimation output for the long-run cointegrating and the long-run level models. Table 9 contains several unexpected outcomes. The slope coefficient for INC, the local real income variable, is positive, as hypothesized. However, the standard deviation for that coefficient is also fairly large, indicating that the relationship is somewhat unreliable. The coefficient magnitude is, however, economically plausible (Ziliak, 2008). In contrast to what is expected, the parameter estimate for S, the per capita housing stock, is greater than zero and statistically significant.

Table 8. Long-Run Cointegrating Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-statistic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5.695</td>
<td>1.427</td>
<td>3.990</td>
<td>0.0004</td>
</tr>
<tr>
<td>LP(-1)</td>
<td>-0.407</td>
<td>0.073</td>
<td>-5.538</td>
<td>0.0000</td>
</tr>
<tr>
<td>LINC</td>
<td>0.078</td>
<td>0.085</td>
<td>0.916</td>
<td>0.3670</td>
</tr>
<tr>
<td>LS(-1)</td>
<td>0.417</td>
<td>0.139</td>
<td>2.995</td>
<td>0.0056</td>
</tr>
<tr>
<td>LRM(-1)</td>
<td>0.002</td>
<td>0.002</td>
<td>0.761</td>
<td>0.4531</td>
</tr>
<tr>
<td>LRENT(-1)</td>
<td>-0.702</td>
<td>0.187</td>
<td>-3.744</td>
<td>0.0008</td>
</tr>
<tr>
<td>LNHP</td>
<td>0.222</td>
<td>0.068</td>
<td>3.255</td>
<td>0.0029</td>
</tr>
<tr>
<td>D(LP(-1))</td>
<td>0.281</td>
<td>0.141</td>
<td>1.990</td>
<td>0.0561</td>
</tr>
<tr>
<td>D(LS)</td>
<td>-0.551</td>
<td>0.483</td>
<td>-1.139</td>
<td>0.2638</td>
</tr>
<tr>
<td>D(LS(-1))</td>
<td>-0.623</td>
<td>0.528</td>
<td>-1.180</td>
<td>0.2477</td>
</tr>
<tr>
<td>D(LS(-2))</td>
<td>-1.734</td>
<td>0.536</td>
<td>-3.236</td>
<td>0.0030</td>
</tr>
<tr>
<td>D(LS(-3))</td>
<td>-0.900</td>
<td>0.504</td>
<td>-1.784</td>
<td>0.0850</td>
</tr>
<tr>
<td>D(LRM)</td>
<td>0.007</td>
<td>0.003</td>
<td>2.355</td>
<td>0.0255</td>
</tr>
<tr>
<td>D(LRM(-1))</td>
<td>0.006</td>
<td>0.003</td>
<td>2.178</td>
<td>0.0377</td>
</tr>
<tr>
<td>D(LRR)</td>
<td>-0.158</td>
<td>0.103</td>
<td>-1.539</td>
<td>0.1346</td>
</tr>
<tr>
<td>D(LRR(-1))</td>
<td>0.361</td>
<td>0.129</td>
<td>2.805</td>
<td>0.0089</td>
</tr>
<tr>
<td>D(LRR(-2))</td>
<td>0.256</td>
<td>0.106</td>
<td>2.402</td>
<td>0.0229</td>
</tr>
</tbody>
</table>

R-squared 0.723 Mean dep. var. 0.015
Adj. R-squared 0.634 S.D. dependent var. 0.033
S.E. Regression 0.020 Akaike info. crit. -4.796
Sum sq. resid. 0.013 Schwarz criterion -4.317
Log likelihood 122.252 Hannan-Quinn crit. -4.615
F-statistic 8.083 Prob(F-statistic) 0.0000
Durbin-Watson 0.0000

Notes:
All data transformed using natural logarithms.

The regression coefficient for RM, the real mortgage rate, is also positive but is very close to zero and economically insignificant. The third slope parameter in Table 9 with a sign that runs counter to what is hypothesized is that for RENT, the real apartment rent regressor. The negative sign for the RENT coefficient indicates that stand-alone housing units and apartment units in Las Cruces
are not substitutes, but complements. That intriguing possibility may be related to the important role that higher education plays in the Mesilla Valley. When enrollments at New Mexico State University and Doña Ana County Community College increase, apartment rents also increase. The consequent increases in business and economic activity are also likely to increase the demand for owner-occupied housing and raise single-family home prices. The inclusion of INC in the model specification is designed to control for that channel of causality, so additional inquiry is merited.

Table 9. Long-Run Coefficients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-statistic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINC</td>
<td>0.191</td>
<td>0.197</td>
<td>0.972</td>
<td>0.3391</td>
</tr>
<tr>
<td>LS</td>
<td>1.024</td>
<td>0.305</td>
<td>3.361</td>
<td>0.0022</td>
</tr>
<tr>
<td>LRM</td>
<td>0.005</td>
<td>0.006</td>
<td>0.786</td>
<td>0.4382</td>
</tr>
<tr>
<td>LRENT</td>
<td>-1.725</td>
<td>0.392</td>
<td>-4.401</td>
<td>0.0001</td>
</tr>
<tr>
<td>LNHP</td>
<td>0.545</td>
<td>0.164</td>
<td>3.326</td>
<td>0.0024</td>
</tr>
</tbody>
</table>

Notes:
- All data transformed using natural logarithms.

Similar to what is reported in Fullerton et al. (2021), the real national housing price, NHP, slope coefficient is greater than zero in Table 9. Potentially reflective of the popularity of Las Cruces as a retirement location for residents from larger urban economies with higher residential real estate prices, the magnitude of this elasticity is fairly large (LCB, 2019). It indicates that when NHP increases by 10 percent, P increases by 5.45 percent. Higher values of NHP tend to be associated with greater mobility. Migrants who sell houses in one region tend to bid up housing values in retirement destinations such as Las Cruces. As posited above, investment motives also contribute to this result (Miles, 2019).

A one-year lag of the residuals from the long-run cointegrating model in Table 8 is employed as a regressor in the error correction model specification. Estimation outcomes for the short-run error correction regression are reported in Table 10. As expected, most of the short-run elasticities are smaller in magnitude than the corresponding long-run elasticities. Results in Table 8 do not support many of the model hypotheses.

The constant term indicates that real housing prices contain a deterministic component and increase by approximately $5.70 per year (2012 constant dollars). A one-year lag of the dependent variable, D(P), is used as a regressor. That implies a relatively pronounced inertial component in short-run housing price movements in Las Cruces. Both results partially corroborate the residential real estate investment rate of return hypothesis (D’Lima and Schultz, 2020).

In contrast to the long-run results, the lags of the per capita stock variable, S, exercise the hypothesized downward impact on price in Table 10. That is not the case for the real mortgage rate, RM. Both estimated parameters for RM are positive and surpass the 5-percent significance criterion. That is different from what has been documented in other studies (Chong, 2020) and may reflect the prevalence of alternate channels of influence in the Las Cruces housing market (Hattapoglu and Hoxha, 2021).
Table 10. Error-Correction Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-statistic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5.695</td>
<td>0.896</td>
<td>6.355</td>
<td>0.0000</td>
</tr>
<tr>
<td>D(LP(-1))</td>
<td>0.281</td>
<td>0.101</td>
<td>2.775</td>
<td>0.0095</td>
</tr>
<tr>
<td>D(LS)</td>
<td>-0.551</td>
<td>0.396</td>
<td>-1.392</td>
<td>0.1747</td>
</tr>
<tr>
<td>D(LS(-1))</td>
<td>-0.623</td>
<td>0.450</td>
<td>-1.385</td>
<td>0.1767</td>
</tr>
<tr>
<td>D(LS(-2))</td>
<td>-1.734</td>
<td>0.453</td>
<td>-3.832</td>
<td>0.0006</td>
</tr>
<tr>
<td>D(LS(-3))</td>
<td>-0.900</td>
<td>0.429</td>
<td>-2.099</td>
<td>0.0446</td>
</tr>
<tr>
<td>D(LRM)</td>
<td>0.007</td>
<td>0.002</td>
<td>3.123</td>
<td>0.0040</td>
</tr>
<tr>
<td>D(LRM)(-1)</td>
<td>0.006</td>
<td>0.002</td>
<td>2.720</td>
<td>0.0109</td>
</tr>
<tr>
<td>D(LRENT)</td>
<td>0.158</td>
<td>0.076</td>
<td>-2.076</td>
<td>0.0469</td>
</tr>
<tr>
<td>D(LRENT(-1))</td>
<td>-0.361</td>
<td>0.098</td>
<td>3.690</td>
<td>0.0009</td>
</tr>
<tr>
<td>D(LRENT(-2))</td>
<td>0.254</td>
<td>0.088</td>
<td>2.877</td>
<td>0.0075</td>
</tr>
<tr>
<td>COINTEQ(-1)</td>
<td>-0.407</td>
<td>0.064</td>
<td>-6.348</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Notes:
- All data transformed using natural logarithms.

The sum of the real rent, RENT, parameter estimates in Table 10 is positive as anticipated. This is in partial alignment with research that emphasizes the importance of taking into account the rental side of residential real estate markets when analyzing housing prices (Campbell et al., 2009; Gallin, 2008). Surprisingly, no lags of NHP, the real median national housing price, are included in the error correction model.

The last regression coefficient in Table 10 is that estimated for the one-year lag of the long-run cointegrating model residuals. The error correction term is negative as hypothesized. The magnitude of it implies that nearly 41 percent of any housing price disequilibrium will dissipate within one year in Las Cruces. Slightly less than 2.5 years are required for any deviation from the long-run equilibrium price to fully disappear. That is fairly close to what is calculated for national housing price disequilibrium adjustment by Riddel (2004).

CONCLUSION

Residential real estate represents an important sector of all metropolitan economies. While housing prices receive a lot of research attention, relatively few analyses are conducted for small- and medium-sized economies. Historically, that has resulted from data constraints. This study employs a theoretical model that takes into account both supply and demand side aspects of housing markets, but does not have very extensive data requirements.

Data are collected for Las Cruces, the second largest metropolitan economy in New Mexico. The sample period covers 1971 through 2019. As might be anticipated, the data exhibit interesting patterns of variability for this era of wide-ranging economic conditions.
An autoregressive distributed lag (ARDL) modeling procedure is used to allow for realistic housing market dynamics. Empirical results support a number of individual outcomes documented in other studies. Several unexpected results are also obtained that depart from what is implied by the underlying theoretical framework. In particular, the results indicate that rental apartments and single-family housing may be complements rather than substitutes in college towns like Las Cruces. More research using data for other small- and medium-sized real estate markets seems warranted.

REFERENCES

The University of Texas at El Paso

Announces

Borderplex Historical Data to 2018

UTEP is pleased to announce the 2020 edition of its primary source of Borderplex long-term historical economic information. Topics covered include demography, employment, personal income, retail sales, residential real estate, transportation, international commerce, and municipal water consumption. These data comprise the backbone of the UTEP Border Region Econometric Model developed under the auspices of a corporate research gift from El Paso Electric Company and maintained using externally funded research support from El Paso Water and Hunt Communities.

The authors of this publication are UTEP Professor and Trade in the Americas Chair Tom Fullerton and UTEP Border Region Modeling Project Associate Director and Economist Steven Fullerton. Dr. Fullerton holds degrees from UTEP, Iowa State University, Wharton School of Finance at the University of Pennsylvania, and University of Florida. Prior experience includes positions as economist in the Executive Office of the Governor of Idaho, international economist in the Latin America Service of Wharton Econometrics, and senior economist at the Bureau of Economic and Business Research at the University of Florida. Steven Fullerton has published research on Major League Baseball, the National Football League, and housing price fluctuations in Las Cruces.

The border long-range historical data reference can be purchased for $20 per copy. Please indicate to what address the report(s) should be mailed (also include telephone, fax, and email address):

Send checks made out to The University of Texas at El Paso for $20 to:

Border Region Modeling Project - CBA 236
UTEP Department of Economics and Finance
500 West University Avenue
El Paso, TX 79968-0543

Online orders can be placed via:
https://secure.touchnet.net/C21711_ustores/web/product_detail.jsp?PRODUCTID=800

Request information from 915-747-7775 or slfullerton@utep.edu if payment in pesos is preferred.
The University of Texas at El Paso

Announces

Borderplex Long-Term Economic Trends to 2049

UTEP is pleased to announce the 2020 edition of its primary source of long-term structural trend border economic information. Topics covered include demography, employment, personal income, retail sales, residential real estate, transportation, international commerce, and municipal water consumption. Forecasts are generated utilizing the 250-equation UTEP Border Region Econometric Model developed under the auspices of a corporate research gift from El Paso Electric Company and maintained using externally funded research support from El Paso Water and Hunt Communities.

The authors of this publication are UTEP Professor and Trade in the Americas Chair Tom Fullerton and UTEP Border Region Modeling Project Associate Director and Economist Steven Fullerton. Dr. Fullerton holds degrees from UTEP, Iowa State University, Wharton School of Finance at the University of Pennsylvania, and University of Florida. Prior experience includes positions as economist in the Executive Office of the Governor of Idaho, international economist in the Latin America Service of Wharton Econometrics, and senior economist at the Bureau of Economic and Business Research at the University of Florida. Steven Fullerton has published research on Major League Baseball, the National Football League, and housing price fluctuations in Las Cruces.

The border long-range outlook through 2049 can be purchased for $25 per copy. Please indicate to what address the report(s) should be mailed (also include telephone, fax, and email address):

Send checks made out to The University of Texas at El Paso for $25 to:

Border Region Modeling Project - CBA 236
UTEP Department of Economics and Finance
500 West University Avenue
El Paso, TX 79968-0543

Online orders can be placed via:
https://secure.touchnet.net/C21711_ustores/web/product_detail.jsp?PRODUCTID=810

Request information from 915-747-7775 or slfullerton@utep.edu if payment in pesos is preferred.
The UTEP Border Region Modeling Project and UACJ Press

Announce the Availability of

Basic Border Econometrics

The University of Texas at El Paso Border Region Modeling Project is pleased to announce Basic Border Econometrics, a publication from Universidad Autónoma de Ciudad Juárez. Editors of this new collection are Martha Patricia Barraza de Anda of the Department of Economics at Universidad Autónoma de Ciudad Juárez and Tom Fullerton of the Department of Economics and Finance at The University of Texas at El Paso.

Professor Barraza is an award winning economist who has taught at several universities in Mexico and has published in academic research journals in Mexico, Europe, and the United States. Dr. Barraza currently serves as Research Provost at UACJ. Professor Fullerton has authored econometric studies published in academic research journals of North America, Europe, South America, Asia, Africa, and Australia. Dr. Fullerton has delivered economics lectures in Canada, Colombia, Ecuador, Finland, Germany, Japan, Korea, Mexico, the United Kingdom, the United States, and Venezuela.

Border economics is a field in which many contradictory claims are often voiced, but careful empirical documentation is rarely attempted. Basic Border Econometrics is a unique collection of ten separate studies that empirically assess carefully assembled data and econometric evidence for a variety of different topics. Among the latter are peso fluctuations and cross-border retail impacts, border crime and boundary enforcement, educational attainment and border income performance, pre- and post-NAFTA retail patterns, self-employed Mexican-American earnings, maquiladora employment patterns, merchandise trade flows, and Texas border business cycles.

Contributors to the book include economic researchers from The University of Texas at El Paso, New Mexico State University, The University of Texas Pan American, Texas A&M International University, El Colegio de la Frontera Norte, and the Federal Reserve Bank of Dallas. Their research interests cover a wide range of fields and provide multi-faceted angles from which to examine border economic trends and issues.

A limited number of Basic Border Econometrics can be purchased for $15 per copy. Please contact Professor Servando Pineda of Universidad Autónoma de Ciudad Juárez at spineda@uacj.mx to order copies of the book. Additional information for placing orders is also available from Professor Martha Patricia Barraza de Anda at mbarraza@uacj.mx.
The University of Texas at El Paso Technical Report Series:

TX97-1: Currency Movements and International Border Crossings
TX97-2: New Directions in Latin American Macroeconometrics
TX97-3: Multimodal Approaches to Land Use Planning
TX97-4: Empirical Models for Secondary Market Debt Prices
TX97-5: Latin American Progress under Structural Reform
TX97-6: Functional Form for United States-Mexico Trade Equations
TX98-1: Border Region Commercial Electricity Demand
TX98-2: Currency Devaluation and Cross-Border Competition
TX98-3: Logistics Strategy and Performance in a Cross-Border Environment
TX99-1: Inflationary Pressure Determinants in Mexico
TX99-2: Latin American Trade Elasticities
CSWHT00-1: Tariff Elimination Staging Categories and NAFTA
TX00-1: Borderplex Business Forecasting Analysis
TX01-1: Menu Prices and the Peso
TX01-2: Education and Border Income Performance
TX02-1: Regional Econometric Assessment of Borderplex Water Consumption
TX02-2: Empirical Evidence on the El Paso Property Tax Abatement Program
TX03-1: Security Measures, Public Policy, Immigration, and Trade with Mexico
TX03-2: Recent Trends in Border Economic Analysis
TX04-1: El Paso Customs District Cross-Border Trade Flows
TX05-1: Short-Term Water Consumption Patterns in El Paso
TX05-2: Menu Price and Peso Interactions: 1997-2002
TX06-1: Water Transfer Policies in El Paso
TX06-2: Short-Term Water Consumption Patterns in Ciudad Juárez
TX07-1: El Paso Retail Forecast Accuracy
TX07-2: Borderplex Population and Migration Modeling
TX08-1: Borderplex 911 Economic Impacts
TX09-1: Tolls, Exchange Rates, and Borderplex Bridge Traffic
TX09-2: Menu Price and Peso Interactions: 1997-2008
TX10-1: Are Brand Name Medicine Prices Really Lower in Ciudad Juárez?
TX10-2: Border Metropolitan Water Forecast Accuracy
TX11-2: Retail Peso Exchange Rate Discounts and Premia in El Paso
TX12-1: Borderplex Panel Evidence on Restaurant Price and Exchange Rate Dynamics
TX14-1: Freight Transportation Costs and the Thickening of the U.S.-Mexico Border
TX14-2: Are Online Pharmacy Prices Really Lower in Mexico?
TX15-1: Drug Violence, the Peso, and Northern Border Retail Activity in Mexico
TX15-2: Downtown Parking Meter Demand in El Paso
TX16-1: North Borderplex Retail Gasoline Price Fluctuations: 2000-2013
TX17-1: Southern Border Recession Predictability in the United States: 1990-2015
TX18-2: Infrastructure Impacts on Commercial Property Values across El Paso in 2013
TX19-1: Hotel Sector Forecast Accuracy in El Paso: 2006-2016
TX20-1: Borderplex Bridge Delay Headaches: 2010-2016
The University of Texas at El Paso Border Business Forecast Series:

SR00-1: Borderplex Economic Outlook: 2000-2002
SR01-1: Borderplex Long-Term Economic Trends to 2020
SR01-2: Borderplex Economic Outlook: 2001-2003
SR02-1: Borderplex Long-Term Economic Trends to 2021
SR02-2: Borderplex Economic Outlook: 2002-2004
SR03-1: Borderplex Long-Term Economic Trends to 2022
SR03-2: Borderplex Economic Outlook: 2003-2005
SR04-1: Borderplex Long-Term Economic Trends to 2023
SR05-1: Borderplex Long-Term Economic Trends to 2024
SR06-1: Borderplex Long-Term Economic Trends to 2025
SR06-2: Borderplex Economic Outlook: 2006-2008
SR07-1: Borderplex Long-Term Economic Trends to 2026
SR08-1: Borderplex Long-Term Economic Trends to 2027
SR08-2: Borderplex Economic Outlook: 2008-2010
SR09-1: Borderplex Long-Term Economic Trends to 2028
SR09-2: Borderplex Economic Outlook: 2009-2011
SR10-1: Borderplex Long-Term Economic Trends to 2029
SR10-2: Borderplex Economic Outlook: 2010-2012
SR11-1: Borderplex Economic Outlook: 2011-2013
SR12-1: Borderplex Economic Outlook: 2012-2014
SR14-1: Borderplex Economic Outlook to 2016
SR15-1: Borderplex Economic Outlook to 2017
SR16-1: Borderplex Economic Outlook to 2018
SR17-1: Borderplex Economic Outlook to 2019
SR18-1: Borderplex Economic Outlook to 2020
SR20-1: Borderplex Historical Data to 2018
SR20-2: Borderplex Long-Term Economic Trends to 2049
SR21-1: Borderplex Economic Outlook to 2022
SR22-1: Borderplex Economic Outlook to 2023

Most Border Region Modeling Project Technical Reports and Borderplex Economic Outlook Reports, can be downloaded for free from The University of Texas at El Paso Library:
scholarworks.utep.edu/border_region

Technical Report TX22-1 is a publication of the Border Region Modeling Project and the Department of Economics and Finance at The University of Texas at El Paso. For additional Border Region information, please visit the BRMP section of the UTEP web site: