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Abstract – The inability to express architectural concepts 
and constraints explicitly in implementation code invites 
the problem of architectural drift and corrosion. We 
propose runtime checks as a solution to mitigate this 
problem. The key idea of our approach is to express 
architectural constraints or properties in an assertion 
language and use the runtime assertion checker of the 
assertion language to detect any violations of the 
constraints. The architectural assertions are written in 
terms of architectural concepts such as components, 
connectors, and configurations, and thus they can be 
easily mapped to or traced back to the original high-level 
constraints written in an architectural description 
language. We believe that our approach is effective and 
more practical than and complements static techniques. 

Keywords: architectural assertion, software architecture, 
architectural constraints, runtime assertion checking, 
architectural constraint language, JML language 

 

1 Introduction 
  The architecture of a software system is a blueprint, 
abstracting from the system into constituent elements such 
as components, connectors, and configurations. The 
software architecture, described in an architectural 
description language (ADL), provides a great help to 
developers not only for the construction but also the 
maintenance and evolution of the system. However, even 
with rigorous development and maintenance, software 
tends to lose its original architectural structure, often 
referred to as architectural drift and corrosion, and 
becomes difficult to understand and modify [14]. 

 The problem of architectural drift and corrosion 
becomes aggravated in reality because there are only a few 
programming languages available such as ArchJava [1] that 
directly support architectural concepts as built-in language 
constructs; unless a special framework such as Prosm-MW 
[11] is used, the architecture specified in ADL should be 
reified into implementation artifacts and thus gets lost in 
the implementation code. The inability to express 

architectural concepts explicitly in the code opens the door 
wide for architectural drift and corrosion. As the 
architectural information is not explicitly expressed in 
code, a modification to the code may cause the design of 
the system to begin to drift or deviate from the original 
architecture without being noticed by the developer. 

 In this position paper, we propose runtime assertion 
checks as a partial solution to the problem of architectural 
drift and corrosion. In particular, we advocate documenting 
architectural constraints or properties in code in a form that 
can be evaluated and checked at run-time that we call 
architectural assertions. An architectural assertion not only 
detects architectural drift at run-time but also provides an 
excellent document of the architecture that is always 
synchronized with the implementation. We expect that we 
can translate automatically a wide range of architectural 
constraints and properties from descriptions written in 
ADLs to architectural assertions. 

 We believe that architectural assertions provide a 
practical and effective way to detect architectural drift and 
complement static techniques such as formal validation and 
verification. 

2 Research Hypotheses and Claims 
 In programming, an assertion is a predicate placed in 
a program to indicate the truth of the assertion at that place 
[15]. It is used to specify and reason about the correctness 
of a program both statically, as in Hoare-style pre and post-
conditions [8], and dynamically, as in Design by Contract 
[12] and assert macros of C/C++. 

 We claim that assertions can be an effective and 
practical way to express and check at run-time the 
architectural constraints or properties of a software system. 
We further hypothesize that, with a suitable assertion 
framework in place, a wide class of important architectural 
constraints and properties can be automatically translated 
to executable assertions. In the next section, we explain our 
approach to checking architectural constraints at run-time 
by presenting our conceptual framework and a particular 
instantiation of it.  
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3 Our Approach 
 The underlying idea of our approach is to employ the 
runtime assertion checker of an assertion language to detect 
at run-time violations of architectural constraints or 
properties, thus architectural drift and corrosion. The key 
component of our approach is thus to (automatically) 
translate architectural constraints or properties written an 
architectural constraint language (ACL) X to executable 
assertions in an assertion language (AL) Y (see Figure 1). 
We call the resulting executable assertions architectural 
assertions, and there are several different types of 
architectural assertions, such as structural assertions, 
behavioral assertions (e.g., protocols), and non-functional 
assertions (e.g., security and performance). 

 
Figure 1. Conceptual framework of our approach 

 Two key requirements of our approach are semantic 
preservation and traceability. The translation from ACL to 
AL should preserve the semantics of ACL in that if an 
architecture model A satisfies a constraint C, its correct 
implementation I should also satisfy the translated 
architectural assertion P and vice versa; this is the 
soundness and completeness requirement of the translation. 
We expect to be able to prove at least the soundness of our 
translation: if an execution results in a violation of an 
architectural assertion, it means a violation of the 
corresponding architectural constraint. 

 The second requirement is to facilitate error tracking 
and help in preventing divergence between architectural 
assertions and original architectural constraints (i.e., drift 
of documents). It states that once a violation of an 
architectural assertion is detected, the assertion should be 
easily traced back to the original constraint or property. 
Our approach is to write architectural assertions not in 
terms of implementation artifacts but in terms of an 
abstraction of the implementation artifacts from which the 
mapping to the original constraints is clear (see an example 
in Section 3.1). We call this abstraction an assertion model 
for architecture, and we expect to provide a suite of them, 
one for each ACL, perhaps organized in a class hierarchy 
in the form of an assertion or specification library.   

 

3.1 Illustration 
 We illustrate our approach with a small example by 
instantiating our conceptual framework with Armani and 
JML. Armani [13] is the constraint language of Acme, and 
JML [9] is a formal behavioral interface specification 
language for Java. JML allows one to document formally 
the behavior of Java program modules such as classes and 
interfaces, and a significant subset of JML assertions can 
be checked at run-time by the JML compiler (jmlc) [3] [4]. 

 Suppose that we would like to constrain a specific 
component of an architectural model such that each of its 
subcomponents should have fewer than five provided 
interfaces. This constraint taken from [16] is written in 
Armani as follows. 

invariant forall com: Component in self.Components | 
forall p: Port in com.Ports | 

  size({select p: Port in com.Ports | satisfiesType(p, inputT)}) < 5; 

 The above constraint is translated to the following 
JML specification, assuming that the component of interest 
is implemented by a pair of an interface and an 
implementing class, InterfaceA and ClassA. 

//@ model import org.jmlspecs.models.arch.armani.*; 
public interface InterfaceA { 
  //@ public model Component theModel; 

/*@ public invariant (\forall Component c;   
   @    theModel.getComponents().contains(c);  

     @    (\num_of  Port p; c.getPorts().contains(p); p.isInputT())  
     @    < 5; 
     @*/ 
     // the rest of definition of InterfaceA … 
} 
 
public class ClassA implements InterfaceA { 
//@ private represents theModel <- toMode(this); 
/*@ private model pure Component toModel(ClassA c) { 
   @    /* definition of abstraction function */ @*/ 
// the rest of definition of ClassA … 

} 

 As shown in the example, JML specifications and 
assertions are typically annotated to a Java source code file 
as a special kind of comment. The first annotation imports 
a set of model classes for use in JML assertions and 
specifications. The imported classes provide an abstract 
model for architectural concepts found in Armani; e.g., 
they include such immutable classes as Component and 
Port. The next annotation states that the field theModel, 
providing an abstract model of the interface InterfaceA, is a 
specification-only field; it can be used only in JML 
specifications and doesn’t have to be implemented by an 
implementing class. The next invariant clause is a direct 
translation of the constraint written in Armani. Note that, 
except for a minor syntactic difference, the structure of the 
invariant is the same as that of the original constraint. 

I: Implementation

Assertion 
model in ALY

A: Architecture 

Constraint 
C: ACLX 

Assertion 
P: ALY

reified 

translated 

Concepts 
in ACLX 

satisfied satisfied 

used used 

mapped 

abstracted
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The mapping from implementation artifacts to the abstract 
model is specified in an implementation class by using the 
represents clause. In the example, the abstraction function 
for the model field theModel is defined in terms of a side-
effect-free specification-only method toModel. Given an 
abstraction function, assertions written in terms of a model 
field, such as the invariant in the example, can be evaluated 
and checked at run-time [5]. 

 In summary, architectural assertions in JML are 
written in terms of model variables [5], and given a suitable 
model classes for Armani, the translation of architectural 
constraints in Armani to architectural assertions in JML is 
straightforward. 

3.2 Research Issues 
 In addition to its benefits, our approach to checking 
architectural constraints or properties at run-time poses 
several challenges for research, some of which are briefly 
discussed below. 

 What types of constraints to check? We’d like to 
know the types or kinds of architectural constraints that can 
be efficiently checked at run-time. Our goal is not to be 
able to check all sorts of constraints at run-time but to use 
runtime checks as a practical, complementary technique to 
traditional static techniques such as formal verification. For 
this, we first plan to classify and categorize different 
architectural constraints and properties (e.g., structural, 
protocol, security, and performance) and then evaluate the 
amenability of different properties for runtime checks. 

 How to specify architectural constraints or 
properties? There are several notations or languages to 
describe software architectures, called ADLs (e.g., 
WRIGHT [2], Acme [7], xADL [6], and Darwin [10]), 
some with a separate ACL (e.g., Armani for Acme). 
Ideally, the constraints should be specified formally so that 
they can be automatically translated to executable 
assertions in assertion languages. We’d like to leverage 
existing research efforts in this area by adopting and, if 
necessary, extending an existing ACL. The work of 
Tibermacine, et al.[16] is interesting in that it proposes to 
unify several ACLs. The key idea is to use the same core 
language based on the Object Constraint Language (OCL) 
[17] for writing constraints and to have different ACL 
profiles (MOF meta models) for different ACLs. 

 How to translate architectural constraints to 
executable assertions? A key concern here is to preserve 
the level of abstractions in the translated assertions so that 
they can be easily mapped back to the original constraints. 
An assertion language with extensible vocabularies would 
be of a great help. In JML, this is done through model 
elements such as model fields, model methods, and model 
classes and interfaces. The translation rules from 

constraints to assertions should be sound and, ideally, 
complete. In addition to defining the translation rules, 
developing a suitable specification vocabulary for the 
translation (e.g., model classes in JML) will be an 
important research topic in this area. 

 What extensions to the JML language and tools? We 
expect to be able to translate a majority of important 
classes of static and dynamic structural constraints directly 
to JML. However, JML may need to be extended for the 
translation of behavioral or non-functional constraints, 
though a limited form of support is already provided for 
them1. 

 How to minimize the runtime cost of checking 
architectural assertions? We can envision two different 
uses of architectural assertions, as a development tool for 
testing and debugging programs and as a runtime 
monitoring tool for deployed software systems. The second 
use, for example, will allow us to detect architectural 
deviation and corrosion due to dynamic reconfigurations or 
evolutions of the systems. However, for such a use to be 
practical, the runtime overhead of checking architectural 
assertions (e.g., time and space requirements) should be 
minimal. Another issue regarding the performance is, when 
measuring and checking performance constraints, how to 
identify and exclude the performance cost due to the 
runtime checking itse lf. 

4 Contributions 
 The primary contribution of this work is the 
conceptual framework that allows one to check at run-time 
architectural constraints or properties and thus to detect 
architectural drift and corrosion automatically, one of the 
biggest problems in software maintenance and evolution. 
The seminal feature of our framework is that it leverages 
the recent advances of two different but related areas, 
software architecture and runtime assertion checks. 
Research in software architecture provides a formal 
notation (and semantics) to document key architectural 
properties concisely and precisely. The advances in 
runtime assertion checks (e.g., model variables and 
quantifiers) allow us to express and check a wide class of 
architectural assertions. 

 The secondary contribution is an instantiation of our 
conceptual framework for a particular pair of an 
architectural constraint language and an assertion language, 
i.e., Armani and JML. A nice byproduct of this 
instantiation is a set of JML model classes to represent the 
architectural concepts expressible in Acme. 
                                                           
1 There are several extensions to JML that allow one to specify and check 
the allowed sequences of method calls, and one of these extensions may be 
used to check protocol properties of an architecture model. JML also 
provides a facility to document the time and space requirements of a 
program module; however, these so-called performance contracts are not 
supported by the runtime assertion checker yet. 
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 We will complete the implementation of the above 
instantiation and related automatic tools (e.g., Armani-to-
JML translator). 

5 Evaluation 
 We plan to perform several case studies on the 
applications of our approach and automated tools. The goal 
of our case studies is to evaluate the effectiveness and 
practicality of our approach and tools. We will measure 
qualitatively and, if possible, quantitatively such factors as 
characteristics of runtime-checkable constraints, 
expressiveness and readability of ACL and AL (especially, 
our extensions to ACL and JML), degree of automation 
translating ACL to AL, traceability of translated assertions, 
and runtime costs of architectural assertions in terms of 
time and space requirements. Initially, we will focus on 
functional properties of the architecture such as structural 
constraints and then extend to non-functional properties 
such as protocol, security, and performance constraints. For 
the evaluation of non-functional properties, we will 
consider applications such as Domain Name Service (DNS) 
that translates domain names to IP addresses. For example, 
we may be able to specify and check at run-time such 
performance constraints as response time and throughput. 

6 Conclusion 
 We propose architectural assertions as a practical way 
of detecting architectural drift and corrosion at run-time. 
Architectural assertions are assertions that document 
architectural constraints or properties in code in a form that 
can be evaluated and checked at run-time. The novelty of 
our approach lies in the fact that we take full advantage of 
existing runtime assertion checking facilities such as JML 
by automatically translating architectural constraints or 
properties written in architectural description or constraint 
languages such as Armani to assertion languages such as 
JML. We are currently performing a case study in JML to 
evaluate the effectiveness of our approach before we start 
full-blown development. Our case study focuses on 
developing an assertion library for JML that will assist us 
to translate architectural constraints and properties to JML 
assertions.  The assertion library is a set of immutable Java 
classes that models architectural concepts such as 
components, connectors, ports, and roles. 
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