
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

4-1-2007

Architectural Assertions: Checking Architectural
Constraints at Run-Time
Hyotaeg Jung

Carlos E. Rubio-Medrano

Eric Wong

Yoonsik Cheon
University of Texas at El Paso, ycheon@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Reports: UTEP-CS-07-18

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Jung, Hyotaeg; Rubio-Medrano, Carlos E.; Wong, Eric; and Cheon, Yoonsik, "Architectural Assertions: Checking Architectural
Constraints at Run-Time" (2007). Departmental Technical Reports (CS). Paper 139.
http://digitalcommons.utep.edu/cs_techrep/139

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/139?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Architectural Assertions:

Checking Architectural Constraints at Run-Time

Hyotaeg Jung, Carlos E. Rubio-Medrano, Eric Wong, and Yoonsik Cheon

TR #07-18
April 2007; revised May 2007

Keywords: Architectural assertion, architectural constraint, runtime assertion checks, software
architecture, architectural description language, Java Modeling Language.

1998 CR Categories: D.2.4 [Software Engineering] Software/Program Verification⎯assertion checkers,
class invariants, formal methods; programming by contract; D.2.11 [Software Engineering] Software
Architectures⎯Languages (e.g., description, interconnection, definition); F.3.1 [Logics and Meanings of
Programs] Specifying and Verifying and Reasoning about Programs⎯assertions, invariants, pre- and post-
conditions, specification techniques.

To appear in The 6th International Workshop on System and Software Architecture, June 25-28, 2007, Las
Vegas, NV.

Department of Computer Science
The University of Texas at El Paso

500 West University Avenue
El Paso, Texas 79968-0518, U.S.A

1

Architectural Assertions:
Checking Architectural Constraints at Run-Time

Hyotaeg Jung1, Carlos E. Rubio-Medrano2, W. Eric Wong1, and Yoonsik Cheon2

1Department of Computer Science
The University of Texas at Dallas

Dallas, TX 75083

2Department of Computer Science
The University of Texas at El Paso

El Paso, TX 79968-1580

Abstract – The inability to express architectural concepts
and constraints explicitly in implementation code invites
the problem of architectural drift and corrosion. We
propose runtime checks as a solution to mitigate this
problem. The key idea of our approach is to express
architectural constraints or properties in an assertion
language and use the runtime assertion checker of the
assertion language to detect any violations of the
constraints. The architectural assertions are written in
terms of architectural concepts such as components,
connectors, and configurations, and thus they can be
easily mapped to or traced back to the original high-level
constraints written in an architectural description
language. We believe that our approach is effective and
more practical than and complements static techniques.

Keywords: architectural assertion, software architecture,
architectural constraints, runtime assertion checking,
architectural constraint language, JML language

1 Introduction
 The architecture of a software system is a blueprint,
abstracting from the system into constituent elements such
as components, connectors, and configurations. The
software architecture, described in an architectural
description language (ADL), provides a great help to
developers not only for the construction but also the
maintenance and evolution of the system. However, even
with rigorous development and maintenance, software
tends to lose its original architectural structure, often
referred to as architectural drift and corrosion, and
becomes difficult to understand and modify [14].

 The problem of architectural drift and corrosion
becomes aggravated in reality because there are only a few
programming languages available such as ArchJava [1] that
directly support architectural concepts as built-in language
constructs; unless a special framework such as Prosm-MW
[11] is used, the architecture specified in ADL should be
reified into implementation artifacts and thus gets lost in
the implementation code. The inability to express

architectural concepts explicitly in the code opens the door
wide for architectural drift and corrosion. As the
architectural information is not explicitly expressed in
code, a modification to the code may cause the design of
the system to begin to drift or deviate from the original
architecture without being noticed by the developer.

 In this position paper, we propose runtime assertion
checks as a partial solution to the problem of architectural
drift and corrosion. In particular, we advocate documenting
architectural constraints or properties in code in a form that
can be evaluated and checked at run-time that we call
architectural assertions. An architectural assertion not only
detects architectural drift at run-time but also provides an
excellent document of the architecture that is always
synchronized with the implementation. We expect that we
can translate automatically a wide range of architectural
constraints and properties from descriptions written in
ADLs to architectural assertions.

 We believe that architectural assertions provide a
practical and effective way to detect architectural drift and
complement static techniques such as formal validation and
verification.

2 Research Hypotheses and Claims
 In programming, an assertion is a predicate placed in
a program to indicate the truth of the assertion at that place
[15]. It is used to specify and reason about the correctness
of a program both statically, as in Hoare-style pre and post-
conditions [8], and dynamically, as in Design by Contract
[12] and assert macros of C/C++.

 We claim that assertions can be an effective and
practical way to express and check at run-time the
architectural constraints or properties of a software system.
We further hypothesize that, with a suitable assertion
framework in place, a wide class of important architectural
constraints and properties can be automatically translated
to executable assertions. In the next section, we explain our
approach to checking architectural constraints at run-time
by presenting our conceptual framework and a particular
instantiation of it.

2

3 Our Approach
 The underlying idea of our approach is to employ the
runtime assertion checker of an assertion language to detect
at run-time violations of architectural constraints or
properties, thus architectural drift and corrosion. The key
component of our approach is thus to (automatically)
translate architectural constraints or properties written an
architectural constraint language (ACL) X to executable
assertions in an assertion language (AL) Y (see Figure 1).
We call the resulting executable assertions architectural
assertions, and there are several different types of
architectural assertions, such as structural assertions,
behavioral assertions (e.g., protocols), and non-functional
assertions (e.g., security and performance).

Figure 1. Conceptual framework of our approach

 Two key requirements of our approach are semantic
preservation and traceability. The translation from ACL to
AL should preserve the semantics of ACL in that if an
architecture model A satisfies a constraint C, its correct
implementation I should also satisfy the translated
architectural assertion P and vice versa; this is the
soundness and completeness requirement of the translation.
We expect to be able to prove at least the soundness of our
translation: if an execution results in a violation of an
architectural assertion, it means a violation of the
corresponding architectural constraint.

 The second requirement is to facilitate error tracking
and help in preventing divergence between architectural
assertions and original architectural constraints (i.e., drift
of documents). It states that once a violation of an
architectural assertion is detected, the assertion should be
easily traced back to the original constraint or property.
Our approach is to write architectural assertions not in
terms of implementation artifacts but in terms of an
abstraction of the implementation artifacts from which the
mapping to the original constraints is clear (see an example
in Section 3.1). We call this abstraction an assertion model
for architecture, and we expect to provide a suite of them,
one for each ACL, perhaps organized in a class hierarchy
in the form of an assertion or specification library.

3.1 Illustration
 We illustrate our approach with a small example by
instantiating our conceptual framework with Armani and
JML. Armani [13] is the constraint language of Acme, and
JML [9] is a formal behavioral interface specification
language for Java. JML allows one to document formally
the behavior of Java program modules such as classes and
interfaces, and a significant subset of JML assertions can
be checked at run-time by the JML compiler (jmlc) [3] [4].

 Suppose that we would like to constrain a specific
component of an architectural model such that each of its
subcomponents should have fewer than five provided
interfaces. This constraint taken from [16] is written in
Armani as follows.

invariant forall com: Component in self.Components |
forall p: Port in com.Ports |

 size({select p: Port in com.Ports | satisfiesType(p, inputT)}) < 5;

 The above constraint is translated to the following
JML specification, assuming that the component of interest
is implemented by a pair of an interface and an
implementing class, InterfaceA and ClassA.

//@ model import org.jmlspecs.models.arch.armani.*;
public interface InterfaceA {
 //@ public model Component theModel;

/*@ public invariant (\forall Component c;
 @ theModel.getComponents().contains(c);

 @ (\num_of Port p; c.getPorts().contains(p); p.isInputT())
 @ < 5;
 @*/
 // the rest of definition of InterfaceA …
}

public class ClassA implements InterfaceA {
//@ private represents theModel <- toMode(this);
/*@ private model pure Component toModel(ClassA c) {
 @ /* definition of abstraction function */ @*/
// the rest of definition of ClassA …

}

 As shown in the example, JML specifications and
assertions are typically annotated to a Java source code file
as a special kind of comment. The first annotation imports
a set of model classes for use in JML assertions and
specifications. The imported classes provide an abstract
model for architectural concepts found in Armani; e.g.,
they include such immutable classes as Component and
Port. The next annotation states that the field theModel,
providing an abstract model of the interface InterfaceA, is a
specification-only field; it can be used only in JML
specifications and doesn’t have to be implemented by an
implementing class. The next invariant clause is a direct
translation of the constraint written in Armani. Note that,
except for a minor syntactic difference, the structure of the
invariant is the same as that of the original constraint.

I: Implementation

Assertion
model in ALY

A: Architecture

Constraint
C: ACLX

Assertion
P: ALY

reified

translated

Concepts
in ACLX

satisfied satisfied

used used

mapped

abstracted

3

The mapping from implementation artifacts to the abstract
model is specified in an implementation class by using the
represents clause. In the example, the abstraction function
for the model field theModel is defined in terms of a side-
effect-free specification-only method toModel. Given an
abstraction function, assertions written in terms of a model
field, such as the invariant in the example, can be evaluated
and checked at run-time [5].

 In summary, architectural assertions in JML are
written in terms of model variables [5], and given a suitable
model classes for Armani, the translation of architectural
constraints in Armani to architectural assertions in JML is
straightforward.

3.2 Research Issues
 In addition to its benefits, our approach to checking
architectural constraints or properties at run-time poses
several challenges for research, some of which are briefly
discussed below.

 What types of constraints to check? We’d like to
know the types or kinds of architectural constraints that can
be efficiently checked at run-time. Our goal is not to be
able to check all sorts of constraints at run-time but to use
runtime checks as a practical, complementary technique to
traditional static techniques such as formal verification. For
this, we first plan to classify and categorize different
architectural constraints and properties (e.g., structural,
protocol, security, and performance) and then evaluate the
amenability of different properties for runtime checks.

 How to specify architectural constraints or
properties? There are several notations or languages to
describe software architectures, called ADLs (e.g.,
WRIGHT [2], Acme [7], xADL [6], and Darwin [10]),
some with a separate ACL (e.g., Armani for Acme).
Ideally, the constraints should be specified formally so that
they can be automatically translated to executable
assertions in assertion languages. We’d like to leverage
existing research efforts in this area by adopting and, if
necessary, extending an existing ACL. The work of
Tibermacine, et al.[16] is interesting in that it proposes to
unify several ACLs. The key idea is to use the same core
language based on the Object Constraint Language (OCL)
[17] for writing constraints and to have different ACL
profiles (MOF meta models) for different ACLs.

 How to translate architectural constraints to
executable assertions? A key concern here is to preserve
the level of abstractions in the translated assertions so that
they can be easily mapped back to the original constraints.
An assertion language with extensible vocabularies would
be of a great help. In JML, this is done through model
elements such as model fields, model methods, and model
classes and interfaces. The translation rules from

constraints to assertions should be sound and, ideally,
complete. In addition to defining the translation rules,
developing a suitable specification vocabulary for the
translation (e.g., model classes in JML) will be an
important research topic in this area.

 What extensions to the JML language and tools? We
expect to be able to translate a majority of important
classes of static and dynamic structural constraints directly
to JML. However, JML may need to be extended for the
translation of behavioral or non-functional constraints,
though a limited form of support is already provided for
them1.

 How to minimize the runtime cost of checking
architectural assertions? We can envision two different
uses of architectural assertions, as a development tool for
testing and debugging programs and as a runtime
monitoring tool for deployed software systems. The second
use, for example, will allow us to detect architectural
deviation and corrosion due to dynamic reconfigurations or
evolutions of the systems. However, for such a use to be
practical, the runtime overhead of checking architectural
assertions (e.g., time and space requirements) should be
minimal. Another issue regarding the performance is, when
measuring and checking performance constraints, how to
identify and exclude the performance cost due to the
runtime checking itse lf.

4 Contributions
 The primary contribution of this work is the
conceptual framework that allows one to check at run-time
architectural constraints or properties and thus to detect
architectural drift and corrosion automatically, one of the
biggest problems in software maintenance and evolution.
The seminal feature of our framework is that it leverages
the recent advances of two different but related areas,
software architecture and runtime assertion checks.
Research in software architecture provides a formal
notation (and semantics) to document key architectural
properties concisely and precisely. The advances in
runtime assertion checks (e.g., model variables and
quantifiers) allow us to express and check a wide class of
architectural assertions.

 The secondary contribution is an instantiation of our
conceptual framework for a particular pair of an
architectural constraint language and an assertion language,
i.e., Armani and JML. A nice byproduct of this
instantiation is a set of JML model classes to represent the
architectural concepts expressible in Acme.

1 There are several extensions to JML that allow one to specify and check
the allowed sequences of method calls, and one of these extensions may be
used to check protocol properties of an architecture model. JML also
provides a facility to document the time and space requirements of a
program module; however, these so-called performance contracts are not
supported by the runtime assertion checker yet.

4

 We will complete the implementation of the above
instantiation and related automatic tools (e.g., Armani-to-
JML translator).

5 Evaluation
 We plan to perform several case studies on the
applications of our approach and automated tools. The goal
of our case studies is to evaluate the effectiveness and
practicality of our approach and tools. We will measure
qualitatively and, if possible, quantitatively such factors as
characteristics of runtime-checkable constraints,
expressiveness and readability of ACL and AL (especially,
our extensions to ACL and JML), degree of automation
translating ACL to AL, traceability of translated assertions,
and runtime costs of architectural assertions in terms of
time and space requirements. Initially, we will focus on
functional properties of the architecture such as structural
constraints and then extend to non-functional properties
such as protocol, security, and performance constraints. For
the evaluation of non-functional properties, we will
consider applications such as Domain Name Service (DNS)
that translates domain names to IP addresses. For example,
we may be able to specify and check at run-time such
performance constraints as response time and throughput.

6 Conclusion
 We propose architectural assertions as a practical way
of detecting architectural drift and corrosion at run-time.
Architectural assertions are assertions that document
architectural constraints or properties in code in a form that
can be evaluated and checked at run-time. The novelty of
our approach lies in the fact that we take full advantage of
existing runtime assertion checking facilities such as JML
by automatically translating architectural constraints or
properties written in architectural description or constraint
languages such as Armani to assertion languages such as
JML. We are currently performing a case study in JML to
evaluate the effectiveness of our approach before we start
full-blown development. Our case study focuses on
developing an assertion library for JML that will assist us
to translate architectural constraints and properties to JML
assertions. The assertion library is a set of immutable Java
classes that models architectural concepts such as
components, connectors, ports, and roles.

Acknowledgment
Hyotaeg Jung is supported by The University of Texas at
Dallas. Rubio-Medrano and Cheon are supported in part by
the NSF under grant CNS-0509299.

7 References
[1] J. Aldrich, C. Chambers, and D. Notkin, “ArchJava:

Connecting software architecture to implementation,” in
Proceedings of the 24th International Conference on

Software Engineering, pp. 187-197, Orlando, Florida, May
2002.

[2] R. J. Allen, “A Formal Approach to Software Architecture,”
Ph.D. Dissertation, CMU-CS-97-144, Carnegie Mellon
University, May 1997.

[3] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G.
T. Leavens, K. R. M. Leino, and E. Poll, “An overview of
JML tools and applications,” International Journal on
Software Tools for Technology Transfer, 7(3):212-232, June
2005.

[4] Y. Cheon and G. T. Leavens, “A runtime assertion checker
for the Java Modeling Language (JML),” in Proceedings of
International Conference on Software Engineering Research
and Practice, pp. 322-328, Las Vegas, Nevada, June 2002.

[5] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. Edwards,
“Model variables: Cleanly supporting abstraction in design
by contract,” Software-Practice & Experience, 35(6):583-
599, May 2005.

[6] E. M. Dashofy, A. Hoek, and R. N. Tylor, “An infrastructure
for the rapid development of XML-based architecture
description languages,” in Proceedings of the 24th
International Conference on Software Engineering, pp. 266-
277, Orlando, Florida, May 2002.

[7] D. Garland, R. Monroe, and D. Wile, “Acme: An architecture
description interchange language,” in Proceedings of the
1997 Conference on the Center for Advanced Studies on
Collaborative Research, pp.169-183, Toronto, Canada,
November 1997.

[8] C.A.R. Hoare, “An axiomatic basis of computer
programming,” Communications of ACM, 12(10):576-580,
October 1969.

[9] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary
design of JML: A behavioral interface specification language
for Java,” ACM SIGSOFT Software Engineering Notes,
31(3):1-38, March 2006.

[10] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer,
“Specifying distributed software architectures,” in
Proceedings of the 5th European Software Engineering
Conference (ESEC ’95), pp. 237-153, Barcelona, Spain,
September 1995.

[11] S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A style-
aware architectural middleware for resource-constrained,
distributed systems,” IEEE Transactions on Software
Engineering, 31(3):256-272, March 2005.

[12] B. Meyer, “Applying design by contract,” Computer,
25(10):40-51, October 1992.

[13] R.T. Monroe, “Capturing Software Architecture Design
Expertise with Armani,” Technical Report CMU-CS-98-163,
School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania, January 2001.

[14] D.E. Perry and A.L. Wolf, “Foundations for the study of
software architecture”, ACM SIGSOFT Software Engineering
Notes, 17(3):40-52, October 1992.

[15] D.S. Rosenblum, “A practical approach to programming with
assertions,” IEEE Transactions on Software Engineering,
21(1):19-31, January 1995.

[16] C. Tibermacine, R. Fleurqum, and S. Sadou, “Simplifying
transformation of software architecture constraints,” in
Proceedings of ACM Symposium on Applied Computing
2006, pp. 1240-1244, Dijon, France, April 2006.

[17] J. Warmer and A. Kleppe, “The Object Constraint Language:
Precise Modeling with UML,” Addison-Wesley, 1999.

	University of Texas at El Paso
	DigitalCommons@UTEP
	4-1-2007

	Architectural Assertions: Checking Architectural Constraints at Run-Time
	Hyotaeg Jung
	Carlos E. Rubio-Medrano
	Eric Wong
	Yoonsik Cheon
	Recommended Citation

