Measurement's result and its error as fuzzy variables: background and perspectives

Gennady N. Solopchenko

Konstantin K. Semenov

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Leon Reznik

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

Part of the Computer Engineering Commons

Technical Report: UTEP-CS-09-18

Recommended Citation
https://scholarworks.utep.edu/cs_techrep/45

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.
Measurement's result and its error as fuzzy variables: background and perspectives

Guennady N. Solopchenko, Konstantin K. Semenov
Saint-Petersburg State Polytechnical University, 29, Polytechnicheskaya str., Saint-Petersburg, 195251, Russia
Email: g.n.solopchenko@mail.ru
semenov.k.k@gmail.com

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso, El Paso, TX 79968-0518
Email: vladik@cs.utep.edu

Leon Reznik
Department of Computer Science
Rochester Institute of Technology
102 Lomb Memorial Drive, Rochester, NY 14623-5608
Email: lr@cs.rit.edu

Abstract
The possibility of using fuzzy variables for describing measurands and their error characteristics is investigated. The elementary arithmetic operations within the limits of such representation are considered.

Keywords: fuzzy variables, measurands, measurement results and characteristics of their errors, result’s processing.

1. Introduction
Planning and performing measurements in modern measuring intelligent systems (MIS) are carried out in the following sequence:
a) formation of the measurand’s apriori model;
b) univocal analog-to-digital converting and entering the measurement’s information into computer memory;
c) mathematical processing of measurements results corresponding to MIS software;
d) possible using of databases and expert systems (artificial intelligence techniques) for MIS adjustment or self-adjustment if required;
e) presenting of measurements, their processing results and their errors characteristics.
In stages a) and d) the information is represented generally as fuzzy variables and its uncertainty – as a segment of the of the membership function cut at the specified level of degree of belief. Errors, which are generated by interactions between measuring instruments and objects of measurements, can be described in the same way.
Errors (uncertainty), which are caused by inaccuracy of physical transformations of a measured signal, are given by their statistical characteristics. As a rule noone normalizes or estimates errors, which are generated by computational software, except for rare occasions, when these calculations are statistical data processing.
Expressing the errors with the statistical models doesn’t correspond to the data representation as fuzzy numbers. In the present report an attempt to represent measurements results and its errors (uncertainties) as fuzzy variables is made.
The main attention is given to the search for a practical implementation of mathematical operations with fuzzy variables with minimal complexity. An ultimate goal is the development of "self-verified" software for MIS that can provide not only an actual result but also an estimate of characteristics of its errors at the end of the execution cycle.
The Law of the Russian Federation «On supporting of measurements’ unanimity» demands this. Also this principle corresponds to the requirements of the international recommendations towards expressing an uncertainty in measurements.
Attempts to create such "self-verified" software have been already made. Their basic drawback is an application of the interval arithmetic, which gives too overestimated characteristics of error (which cannot satisfy the user in all cases).

2. Background

The main principles of the fuzzy numbers’ theory are described, for example, in [2].

Let \(x \) and \(y \) be fuzzy numbers, \(S_x \) and \(S_y \) be their supports, \(z \) is a result of an arithmetical operation, \(\otimes \) is symbol of arithmetical operation. Then membership function (MF) of number \(z \) can be determined by rule:

\[
\mu_z(z) = \sup_{z=x \otimes y} \left[\mu_x(x) \cdot \mu_y(y) \right].
\]

As the membership function of measurand we offer to use symmetric curvilinear trapezium, which has height equal to one and presents information about characteristics of systematic error and total error:

\[
\mu_z(z) = \begin{cases}
\exp\left(-\left(z - a\right)^2 / \left(2 \cdot \sigma^2\right)\right), & a - 3 \cdot \sigma < z \leq a \\
1, & a < z < b \\
\exp\left(-\left(z - b\right)^2 / \left(2 \cdot \sigma^2\right)\right), & b + 3 \cdot \sigma > z \geq b
\end{cases}
\]

This format of membership functions allows satisfying to the following conditions (*):

- averaging-out of multiple measurements results, which are characterized by only Type A uncertainty, must bring to reducing an standard uncertainty in a reverse proportion to the square root of averaged measurements results;
- input data and estimation of final result’s error must be shown by the standard way: in the form of intervals of Types A and B uncertainties or in the form of combined uncertainty;
- intervals corresponded to Types A and B uncertainties of measurements results must be unequivocally separated / taken from such format of membership function.

On picture 2a membership function of fuzzy interval is given and intervals for Types A and B uncertainties components are marked. When it is no Type A uncertainty (random component of error), the membership function has a form of rectangle (fig. 2b). When it is no Type B uncertainty (error systematic component) – a form of Gaussian density (fig. 2c):

\[
\mu_z(x) = \exp\left(-\frac{x^2}{2 \cdot \sigma^2}\right).
\]

We can compute the parameter \(\sigma \) depending on specified level of degree \(\alpha \) by formula

\[
\sigma = \frac{\Delta_{\text{rand}, \alpha}}{\sqrt{-2 \cdot \ln(\alpha)}}.
\]
The coordinates of points S_4 for case of fig 2a we can compute as $(-4 \cdot \sigma, 0)$ and $(4 \cdot \sigma, 0)$ or $(-3.5 \cdot \sigma, 0)$ and $(3.5 \cdot \sigma, 0)$.

Satisfaction of the second requirement of the list (\ast) follows from possibility of presenting fuzzy number ξ, which reflects results of direct measurements and whose MF is organized as in case on fig. 2a, as summa $\xi = \xi_{\text{rand}} + \xi_{\text{syst}}$. Here the fuzzy number ξ_{rand} has MF of the form given on fig. 1c, and described only Type A uncertainty (random part of error) and the fuzzy number ξ_{syst} has MF of sort, which is shown on fig. 1b, and presents only Type B uncertainty (systematic part of error).

It is necessary to know or estimate Δ_{rand} and Δ_{syst} and input it to specialized computer software to allow them to present membership function of measurements results.

Presented formalization methodology and software allow to carry out processing of direct measurements’ results, accompanied by standard characteristics of errors, in the standard way.

3. Operations on measured variables presented as fuzzy numbers

In this article it is accepted to adhere formula (1) when evaluating elementary operations with fuzzy variables.

Calculating fuzzy intervals according to formula (1) is a very time consuming operation. This produces natural aspirations for its modifications in order to reduce the required resource consumption. We will begin optimization with operation of adding $z = x + y$.

For this purpose we carry out the maximum of expression $\max_{x+y=z}[\mu_x(x) \cdot \mu_y(y)]$ [1]. Required maximum is reached in the point of maximum of function $f(x, y) = -\frac{(x-x_0)^2}{2 \cdot \sigma_x^2} - \frac{(y-y_0)^2}{2 \cdot \sigma_y^2}$. We make substitution $y = z - x$ to determine the value of x_{max}. Then

$$\phi(x, z) = f(x, z-x) = -\frac{(x-x_0)^2}{2 \cdot \sigma_x^2} - \frac{(z-x-y_0)^2}{2 \cdot \sigma_y^2}, \quad \frac{d\phi(x, z)}{dx} = 0.$$

$$\sigma_y^2 \cdot (x-x_0) + \sigma_x^2 \cdot (x+y_0-z) = 0, \quad x \cdot (\sigma_y^2 + \sigma_x^2) = \sigma_y^2 \cdot x_0 + \sigma_x^2 \cdot (z-y_0)$$

$$x_{\text{max}} = \arg \max_{x+y=z}[\mu_x(x) \cdot \mu_y(y)] = \frac{\sigma_y^2 \cdot x_0 + \sigma_x^2 \cdot [z-y_0]}{\sigma_y^2 + \sigma_x^2}.$$

Easy to see that this point is a real maximum for function $f(x, y)$.

We got the result in the form of equations $x_{\text{max}} = \frac{\sigma_y^2 \cdot x_0 + \sigma_x^2 \cdot [z-y_0]}{\sigma_y^2 + \sigma_x^2}$ and $x_{\text{max}} = \frac{\sigma_y^2 \cdot x_0 + \sigma_x^2 \cdot [z-y_0]}{\sigma_y^2 + \sigma_x^2}$. Formulas for supremum arguments are symmetrical. This follows from commutative property of adding. The reducing of elemental operations number is observed: instead of $O(n^2)$ amount of adding’s and multiplication’s operations, where n is the quantity of points in MF’s discretization for operands x and y, we have got $O(n)$ operations of both types. It is always appropriate to use preliminary constants calculating:
The maximization of first summand is getting with correlations

\[x_{\text{rand, max}} = \pm \sqrt{\frac{\sigma_x}{\sigma_y} \cdot |z|}. \]

\[y_{\text{rand, max}} = \pm \sqrt{\frac{\sigma_y}{\sigma_x} \cdot |z|}. \]

Other operations of (4) represent:

- fuzzy number and coefficient multiplication (linear transform of support axis);
- addings of fuzzy numbers;
- removal of result support axis;
Instead of $O(n^2)$ elementary operations for fuzzy interval’s multiplication we have an optimized quantity, which complexity is $O(n)$ of addings, multiplications and extractions of the root. Degree of saving of time grows when the value of n is on the increase.

We offer to present the dividing operation $\frac{x}{y}$ in the form $\left(\frac{1}{y_i}\right) \cdot x$. Dividing of operands, one of which is fuzzy number, but another is not, may be made by ordinary transform of support abscissas, i.e. $S_y(y_i) \Rightarrow \tilde{S}_y(y_i) = \frac{1}{S_y(y_i)}$, $\forall i$. This would bring to us better results, than if we use optimization formulas of conditional extremum method, and allow to use expressions, that we mentioned above for fuzzy numbers multiplication.

4. Applications examples:

After determining of elementary arithmetic operations for fuzzy numbers at the way, that performs conditions (*), we receive whole system of operations, which allows us to carry out various transformations. Having given program library with operations over the fuzzy variables (operations (+, −, ×, /)) to the user we transfer him an ability to create the self-verified programs, input arguments of which are characterized by the uncertainty presented in the form of fuzzy variables and have the meaning of expert estimates.

As the example of offered framework’s using we present the result of getting a corridor of uncertainty for the specified degree of belief for signal’s amplitude-frequency characteristic, each point of which are fuzzy numbers.

![Example of signal, each point of which is fuzzy number.](image1)

Fig. 3. Example of signal, points of which are fuzzy numbers, and fragment of its Fourier spectrum with uncertainty intervals for degree of belief $\alpha = 0.05$.

References