Zirconium Mediated One-pot Synthesis of γ-Amino Acids from Carbon Dioxide

Diego A. Pedroza^
University of Texas at El Paso, dapedroza@miners.utep.edu

Shizue Mito*
University of Texas at El Paso, smito2@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/couri_abstracts_spring12

Recommended Citation
http://digitalcommons.utep.edu/couri_abstracts_spring12/37

This Article is brought to you for free and open access by the COURI Symposium Abstracts at DigitalCommons@UTEP. It has been accepted for inclusion in COURI Symposium Abstracts, Spring 2012 by an authorized administrator of DigitalCommons@UTEP. For more information, please contact hweber@utep.edu.
Zirconium Mediated One-pot Synthesis of γ-Amino Acids from Carbon Dioxide

Diego A. Pedroza*, Shizue Mito*

Department of Chemistry, University of Texas at El Paso

The usage of organometallic compounds will offer a broad exploration for new methods and techniques in organic synthesis. One of our interests lies in the utilization of CO$_2$ with the application of organometallics because metal complexes have been displaying a wide variety of coordination modes with CO$_2$. The purpose of this project is to develop zirconium mediated processes for the synthesis of γ–amino acids using CO$_2$. CO$_2$ insertion to zirconium complexes will provide a new method for γ–amino acid synthesis in one-pot reaction. The complexes are air sensitive and the reaction requires to be carried out under nitrogen. In our method zirconium complexes are prepared from a variety of α,β–unsaturated imines to form five-membered azazirconacyclopentenes, followed by insertion of CO$_2$ into the resulting complexes which afford seven-membered azazirconacarboxylates. NMR spectroscopy is utilized to confirm these intermediates. To obtain the desired γ–amino acids, hydrolysis of the seven-membered zirconacycle is the key to cleave zirconium-oxygen and zirconium-nitrogen bonds. Our methodology for γ–amino acid synthesis will demonstrate the reaction efficiency of transition metals and CO$_2$.