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Overview: 
A variety of groups in El Paso, Texas have long been interested in a county-wide technology 

usage and access survey. In large part, the interest stems from the original Digital Divide study conducted 

by the National Telecommunications and Information Administration (NTIA) in 1995. This first study, 

Falling through the Net: A Survey of the “Have Nots” in Rural and Urban America, showed how African 

Americans, Hispanics, and—at the time—women trailed behind their white, male, more affluent 

counterparts in terms of computer ownership and Internet access. Subsequent NTIA studies released in 

1998, 2000, and 20021 showed significant gains among minorities and low-income groups in terms of 

improved access; but they still trailed well behind their more affluent non-minority counterparts. More 

importantly, the limited data available suggest that as an underserved community, El Paso may be at 

even greater risk as technology becomes a cornerstone of the modern education and workplace 

environments. Only recently, however, has the funding become available to conduct such a study. The 

Institute for Policy and Economic Development (IPED) at the University of Texas at El Paso (UTEP), El 

Paso Electric, El Paso Water Utilities, and El Paso County 911 incurred all costs for this study in order to 

provide a baseline for technology use in El Paso County.  

One year after the most recent NTIA study, El Paso lags behind the rest of the U.S. in terms of 

computer ownership and Internet access, although local Hispanics are doing at least as well (or better) 

than Hispanics nationally. More important, however, are the factors that influence computer ownership 

and Internet access at the local level, where local taxes and local officials, not federal intervention, assist 

in regional economic development and provide the access many poor children have to technology in 

school. The findings below suggest that income and education, as at the national level, continue to be the 

most important factors in determining whether a household owns a computer or has Internet access, 

while being of Hispanic origin does not. The level to which these factors explain that access in El Paso is 

surprising. 

 

Methodology and Participants: 
The survey was conducted from September 16th through the 28th, 2002, using a Random Digit 

Dialing (RDD) sample of El Paso County phone numbers that was pre-tested for disconnects and fax 

machines. With random digit dialing, every household with a working phone within a county has an equal 

probability of being selected, as the numbers are generated at random based only on the working 

prefixes (first three numbers) for a selected area. In total, 609 surveys were completed. All interviewers 

were bilingual in English and Spanish, and calls were made from 12:00 p.m. to 8:00 p.m. each day, 

Monday through Sunday. Potential participants were informed of the purpose of the study, that 

participation was voluntary, and that all responses would remain confidential and reported only in the 

aggregate. 

At the 95 percent confidence level, a county-wide sample of 609 provides an accuracy level of 

plus or minus four percent of the mean (i.e., a range of 96 percent to 104 percent of the county-wide 
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mean).  The ninety-five percent confidence level can be interpreted to mean only that if the above interval 

was constructed for many different samples of the same sample size, for approximately 95 percent of the 

samples, the interval would include the unknown population mean. Further, all statistical procedures 

below have sufficient power at the α = .05 level, as effect sizes ( 2R ) of .10 have power of .80 with 110 

subjects.  

Participants generally mirrored the demographic and socioeconomic composition of El Paso 

County in the 2000 Census (Chart 1). Over 73 percent (73.4) of the sample were Hispanic, followed by 

Whites, who composed 18.7 percent of the sample. The remainder was made up of 7.9 percent self-

identifying as “Other.” The largest income group reported a total household income of $20,000 or less 

(48.4 percent). Twenty-five percent (24.8) had household incomes between $20,000 and $40,000; 13.3 

percent earned between $40,000 and $60,000; 8.5 percent earned between $60,000 and $80,000; 3.3 

percent earned between $80,000 and $100,000; and 1.6 percent earned above $100,000. The majority of 

the sample also fell into lower education categories. Nearly a fifth (18.6 percent) had less than a high 

school education, and 28.4 percent graduated from high school. More than a quarter (28.4 percent) had 

some college (includes technical school training), followed by 16.4 percent who held at least a bachelor’s 

degree. Eight (8.2) percent of the sample had a graduate degree. 
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Chart 1: Sample Ethnicity, Education, and Income

 
 

El Paso, Texas 
 El Paso, Texas is located in far West Texas along the U.S. –Mexico Border and sits just across 

the Rio Grande from Ciudad Juarez, Chihuahua Mexico. In 2001, just under 690,000 people lived in El 
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Paso,2 less than was estimated prior to the 2000 Census when over 700,000 were expected. This 

mismatch begins to tell part of the El Paso story. From 1990 through about 1994 El Paso experienced 

relatively strong growth both in terms of birth rates and in-migration. After 1994, however, El Paso 

actually had a negative migration rate. Explanations for the exodus abound, but many point to higher 

salaries in other metropolitan areas and El Paso’s relatively high unemployment rate, which typically 

hovers two to three points above the national and state rates (Chart 1).  As of December 2002, El Paso’s 

unemployment rate climbed above nine percent (9.1),3 well above the state rate of 6.5 percent.4  

 El Paso’s weak economy was brought about by a variety of factors. For close to two decades 

(1970s and 1980s), the city hinged its future on the low wage garment industry, and when companies like 

Levi Strauss finally moved on in search of even lower wages in South America, very few groups were 

prepared to develop a new economic base. The recovery has been a slow one, but as of yet the13 

percent unemployment rates of 1996 have yet to return. This is in part a function of the evolution of the 

local economy to a service base, but many obstacles must still be overcome if the transition is to be 

made. 

Chart 2: U.S., Texas, and El Paso Unemployment Rates
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 Most important is El Paso’s educational attainment rate. Aside from the strong correlation 

between education and income along the U.S. Mexico border,5 a well educated and population ensures 

that industries that do locate to an area can find trained employees. Thus far, fixing the educational 

pipeline locally has met with mixed results. As of 2000, El Paso trailed both the state and nation in the 
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percentage of the population with high school degrees. Only 65.8 percent had graduated from high 

school, compared to 75.7 and 80.4 percent at the state and national level, respectively. The same trend is 

evident for those with bachelor’s degrees or higher. In 2000, only 16.6 percent of El Paso residents had 

four year college degrees, far less than state (23.2 percent) and national (24.4 percent) averages.   

 Not surprisingly, the above challenges have led to lower overall income rates and higher poverty 

rates. El Paso’s median household income in 1999 was $31,051, 77 and 74 percent of the state 

($39,927) and national ($41,994) totals, respectively. Per capita income figures are even more disturbing, 

as El Paso’s per capita income level is only 62 percent of the national amount. Poverty figures tell a 

similar story; in the 2000 Census, 23.8 percent of El Paso residents fell below the federal poverty limit. 

Texas had only 15.4 percent of its population below the poverty level, while the U.S. average was even 

lower at 12.4 percent.  

 
How El Paso Compares6: 
 Although the most recent NTIA study is over a year old, it is still useful for El Paso to compare 

itself to the rest of the nation, where income, education, age, and ethnicity each play a significant role in 

explaining computer ownership and Internet access. Nationwide in 2001, 65.6 percent of households 

owned computers, compared to 57.6 percent of households in El Paso. Hispanics in El Paso actually 

fared better than their U.S counterparts, with 50.3 percent reporting that they owned computers, although 

this figure is well within the margin of error for this study. The same general trend holds true for Internet 

access. Across the nation, fifty-four percent of homes had Internet access in 2002, compared to 42.9 

percent for El Paso. El Paso Hispanics also had somewhat higher Internet use rates (35.1percent) than 

Hispanics nationally (31.6 percent). Neither of the findings is surprising, however, given that El Paso’s 

Hispanic community is largely heterogeneous, as would be expected in any county where the largest 

ethnic group makes up 78 percent of the total population.7  
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For El Paso, the real question is whether the same predictors used at the national level (income, 

education, age, and ethnicity) help to explain computer ownership and Internet access locally. To this 

same end, the 1999 NTIA study adopted binary logistic regression as its primary explanatory tool. This 

statistical procedure allows researchers to specify a model that explains, at least in part, the variability of 

the dependent variable in terms of the probabilities of an attribute being absent or present. For the 

discussion below, computer ownership and Internet access from home are either absent (coded 0) or 

present (coded 1).  

 
Statistical Overview: 

Income, education, age, and ethnicity variables are fit sequentially to a binary logistic model. The 

order the variables are added to the model generally follows the importance assigned to each predictor by 

the NTIA.  Unlike traditional multiple regression analysis, logistic regression is used when the dependent 

variable is dichotomous, coded 0-1, and is intended to indicate the absence or presence of some 

attribute. Like traditional multiple regression, it can provide the “expected” value of Y. This expected value 

of Y is “equivalent to the probability of Y.”8 The probability of an event happening (between 0 and 1) is 

then given by zezf −+= 1/1)( , where ∑ =
+=

k

j jj Xz
10 ββ 9.  

The statistical significance of both the model as a whole and individual predictors can be 

evaluated several ways. In the analysis below, overall model significance will be evaluated using the chi-

square statistic ( 2χ ). The Wald statistic, which is given by 1

^^

1

^
/ ββ Var  and has a distribution similar to 
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that of the chi square with large samples, functions in the same manner as t statistics in traditional 

multiple regression and will be used to judge the significance of individual predictors.  

Statistical significance, however, is simply a function of sample size10; what is more important are 

measures of effect size.  Classical multiple regression uses 2R , the closest analog to which in logistic 

regression is the Nagelkerke 2R .11 As an analog to classical 2R , this statistic can generally be 

understood to mean that the given set of predictors explain x amount of variability in the dependent 

variable Y. However, one of the strengths of logistic regression is its ability to predict the presence or 

absence of some attribute. As such, the percentage predicted correct given by the model becomes 

important as well, so long as the predictors are statistically significant. Significant increases (in a practical, 

not statistical sense) in the predictive power of the model over the constant suggest that the model is 

effective. 

 

Findings: 
 Two different sets of equations were fit for this evaluation. The first includes income, education, 

age, and ethnicity sequentially as independent variables in models with computer ownership and Internet 

access from home as dependent variables, respectively. Table 1 provides a summary for each of the 

models discussed below and can be found at the end of the models discussion. Detailed tables including 

additional measures of model fit and confidence intervals are included for each step of the analysis below 

in Appendix 1.  

 

Computer Ownership 
 Equation one uses only income as a predictor of computer ownership. The income variable had 

six possible response categories:12 $0 to $20,000; $20,000 to $40,000; $40,000 to $60,000; $60,000 to 

$80,000; $80,000 to $100,000; and $100,000 and above. This model is presented below, along with the 

fitted values:  

logit [pr(Y=1)] = β0 + β1(income) 

logit [pr(Y=1)] = -1.427 + .965(income) 

Both the model and income variable are statistically significant beyond the p = .005 level ( 2χ  [1] = 

122.012 p<.005; Wald[1] = 80.909  p<.005). More revealing is the fact that with income alone, the model 

explains 24.4 percent of the variability in computer ownership (Naglekerke 2R ) and correctly predicts 70 

percent of all cases, which is somewhat better than the 57.6 percent predicted correctly with only the 

constant included. Not surprisingly, the coefficient for income is positive, suggesting that as income 

increases the probability of owning a computer also increases.  

 Equation two adds education to the model. Response categories for education included: less than 

high school, high school graduate, some college, college graduate, and graduate degree. In this iteration, 
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the model and each individual predictor are again statistically significant beyond the p = .005 level ( 2χ  [2] 

= 145.754 p<.005; Income, Wald[1] = 51.650  p<.005, Education, Wald[1] = 22.580  p<.005). The overall 

variability in computer ownership explained by the equation increases by about 4 percent (Naglekerke 
2R  = .286), while the model’s predictive power increases only slightly to 70.3 percent. While the increase 

in predictive power is low, the increase in variability explained along with the statistical significance of the 

education variable would suggest that no heuristic standards for model parsimony are being violated. The 

coefficients for both independent variables are again positive, which would suggest a positive correlation 

between income and educational attainment and computer ownership. The fitted equation is presented 

below.  

 

logit [pr(Y=1)] = β0 + β1(income)+ β2(education) 

logit [pr(Y=1)] = -.221 + .799(income)+ .423(education) 

 

 Equation three adds an age variable, which is divided into five possible response categories: 18-

25, 25-39, 40-49, 50-59, and 60 and above. The model and each of the individual predictors is statistically 

significant ( 2χ  [3] = 156.592 p<.005; Income, Wald[1] = 52.556  p<.005, Education, Wald[1] = 22.820  

p<.005; Age, Wald[1] = 10.595  p<.005), while variability explained and percentage predicted correct also 

increase to 30.5 percent and 70.9, respectively. Examining the fitted model below shows that as people 

get older, the probability of their owning a computer decreases. This finding is somewhat unexpected in 

that the correlation between education and income is well-documented, particularly along the border,13 

but each of these is also generally positively correlated with age.  

 

logit [pr(Y=1)] = β0 + β1(income)+ β2(education)+ β3(age) 

logit [pr(Y=1)] = -1.318 + .796 (income)+ .429(education)-.238(age) 

 

 The final variable included in this analysis was ethnicity. Since ethnicity cannot serve as a 

covariate, it was entered into the equation as a set of categorical dummy variables. Given El Paso’s 

overall demographic composition the only ethnicity categories created were Hispanic, Caucasian, and 

Other. The variable for the Hispanic category was statistically insignificant, which seems contrary to NTIA 

research which suggests that there are true gaps between ethnic groups, but this is not surprising given 

the heterogeneity of El Paso’s Hispanic population.  

 

Internet Access from Home 
 
 As above, the first variable used as a predictor of Internet access from home is income. Both the 

model and income variable are statistically significant ( 2χ [1] = 149.991 p<.005; Wald[1] = 104.244  
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p<.005). The variability explained (Naglekerke 2R  = .293) is higher than equations one and two above, 

and the percentage predicted correct (73.7 percent) is higher than in any of the three computer ownership 

equations (the baseline here is 57.1 percent correct with only the constant in the model). The coefficient 

is again positive, suggesting that as income increases, so does the probability of having home Internet 

access.  

 

logit [pr(Y=1)] = β0 + β1(income) 

logit [pr(Y=1)] = -2.2 + .979(income) 

 

 The education variable is also statistical, as is the model at this step ( 2χ  [2] = 176.917 p<.005; 

Income, Wald[1] = 67.260  p<.005, Education, Wald[1] = 25.859  p<.005). Both the variability explained 

by the model (Naglekerke 2R  = .338) and the percentage predicted correct (74.4 percent) are higher than 

any of the computer ownership equations above. The coefficients for both independent variables are 

positive.  

  logit [pr(Y=1)] = β0 + β1(income)+ β2(education) 

logit [pr(Y=1)] = -3.133  + .817(income)+ .461(education) 

 

 When age is included in equation three, results are similar to those above. The model and each 

of the three predictors is statistically significant ( 2χ  [3] = 183.314 p<.005; Income, Wald [1] = 68.669  

p<.005, Education, Wald[1] = 26.358; Age, Wald[1] =  6.267 p =.012), and the coefficient for age is again 

negative.  

 

logit [pr(Y=1)] = β0 + β1(income)+ β2(education)+ β3(age) 

logit [pr(Y=1)] = -2.450 + .823 (income)+ .470(education)-.190(age) 

The remainder of the results, however, are mixed. The Naglekerke 2R  value increases to .349, which one 

would expect from the addition off a statistically significant independent variable; but the percentage 

predicted correctly drops slightly to 73.1. It should be noted that percentage predicted correct is a 

qualitative measure of model effectiveness that is determined by the “cut point” in probability of the 

attribute being present (.5 here). As the other measures described above are statistical, the 

incongruence, particularly given only a small drop in correctly predicted cases, is of little consequence.  

 Ethnicity is used as the final predictor of Internet access from home. Entered as a categorical 

variable, the category for Hispanic is again statistically insignificant. These findings are most likely again 

due the heterogeneity of El Paso’s Hispanic population.  

 

Table 1: Model Summaries 
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Model Predictor 
Variables 

B Wald Significance 
Naglekerke

2R /PPC 
Chi-

Square 
Model Significance 

Computer Ownership 
logit [pr(Y=1)] = β0 + 

β1(income) 
 

Constant 
Income 

-1.427 
.965 

53.508 
80.909 

.000 

.000 
.244/70.0 122.012 .000 

logit [pr(Y=1)] = β0 + 
β1(income)+ 
β2(education) 

 

Constant 
Income 
Education 

-2.221 
.799 
.423 

69.813 
51.658 
22.580 

.000 

.000 

.000 

.286/70.3 145.754 .000 

logit [pr(Y=1)] = β0 + 
β1(income)+ 
β2(education)+ 

β3(age) 
 

Constant 
Income 
Education 
Age 

-1.318 
.796 
.429 
-.238 

12.307 
52.556 
22.820 
10.595 

.000 

.000 

.000 

.001 

.305/70.9 156.592 .000 

logit [pr(Y=1)] = β0 + 
β1(income)+ 
β2(education)+ 

β3(age)+ β4(Hisp)+ 
β5(White)+ β6(Other)14 

Constant 
Income 
Education 
Age 
Hispanic 
White 
Other 

-.322 
.753 
.353 
-.306 
-.636 
.186 
N/A 

.596 
46.289 
14.285 
15.387 
.2494 
.166 
.012 

.596 

.000 

.000 

.000 

.114 

.683 

.012 

.320/72.6 165.672 .000 

Internet Access from Home 
logit [pr(Y=1)] = β0 + 

β1(income) 
 

Constant 
Income 

-2.2 
.979 

119.557 
104.244 

.000 

.000 
.293/73.7 149.991 .000 

logit [pr(Y=1)] = β0 + 
β1(income)+ 
β2(education) 

 

Constant 
Income 
Education 

-3.133 
.817 
.461 

116.854 
67.260 
25.859 

.000 

.000 

.000 

.338/74.4 176.917 .000 

logit [pr(Y=1)] = β0 + 
β1(income)+ 
β2(education)+ 

β3(age) 
 

Constant 
Income 
Education 
Age 

-2.450 
.823 
.470 
-.190 

39.506 
68.669 
26.358 
6.267 

.000 

.000 

.000 

.012 

.349/73.1 183.314 .000 

logit [pr(Y=1)] = β0 + 
β1(income)+ 
β2(education)+ 

β3(age)+ β4(Hisp)+ 
β5(White)+ β6(Other)15 

Constant 
Income 
Education 
Age 
Hispanic 
White 
Other 

-1.839 
.788 
.412 
-.248 
-.319 
.369 
N/A 

9.744 
61.772 
18.757 
9.475 
.739 
.797 
6.234 

.002 

.000 

.000 

.002 

.390 

.372 

.044 

.359/74.1 189.575 .000 

 

 

Discussion 
 The NTIA studies suggest a number of factors that influence computer ownership and Internet 

access from home. The most important of these, particularly at the local level, are income, education, 

age, and ethnicity. Understanding the importance of each of these variables can help to guide local policy 

implementation.  

 In attempting to predict computer ownership, there is no more important indicator than income. 

With only income information, 70 percent of computer owners in the sample were correctly identified. 
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These findings are not surprising, however, in that most technological tools are expensive, and the higher 

a household’s income the more likely they are to own a computer. What is somewhat surprising is the 

level of importance that income plays, explaining approximately 25 percent (24.4) of the variability in 

computer ownership.  

While education is also important in predicting computer ownership, its explanatory power is far 

less pronounced. Once included in the model, predictive power increases by only three tenths of one 

percent to 70.3, while overall variability explained increases only slightly by about four percent to 28.6. In 

a practical sense, the influence of education can easily be explained; increasing years of education, 

particularly in the educational setting of the past decade, have introduced a variety of new technologies to 

students. As those tools become important in education, the same tools often become an important part 

of life at home.  

Age also plays an important role in predicting computer ownership, but in the opposite direction of 

income and education. As a person gets older, the probability of his or her owning a computer actually 

decreases, although not markedly. The predictive power of the computer ownership model only increases 

by about six-tenths of one percent to 70.9, and the amount of variability explained also increases only 

slightly to 30.5 percent.  

Perhaps the most interesting finding for each of the sets of equations tested was the fact that 

ethnicity played no role in predicting computer ownership once the effects of income, education, and age 

had been accounted for. There has long been an interest in increasing minority access to technology, and 

federal programs at agencies ranging from NASA to the Department of Education have invested 

significantly in this goal. It would seem, however, that the correlation between income and ethnicity has 

far more to do how these programs are funded than between the correlation, at least in El Paso, between 

ethnicity and computer ownership. No doubt these programs are needed, but program implementation at 

the local level should pay special attention to the fact access should not necessarily be defined by 

ethnicity.  

No one should be surprised that each of the trends discussed above plays out when attempting to 

predict Internet access from home, nor should they be surprised that the most important predictor is again 

income. Income alone plays a stronger role in predicting Internet access than it does computer 

ownership, correctly identifying 73.7 percent of the sample who had Internet access from home. The 

overall variability explained by income was also higher at 29.3 percent.  

When education is entered into the model, predictive power and variability explained increase 

only slightly to 74.4 and 33.8 percent, respectively. What is somewhat surprising here is the fact that with 

education and income information, three-quarters of all households with Internet access from home were 

correctly identified.  

The increased predictive power of the model with age included is minimal, but what is again more 

interesting is the fact that age is negatively correlated with the probability of having Internet access from 

home, especially given the fact that the predictive power of the model actually decreases slightly.  
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Not surprisingly, ethnicity again plays no role in predicting computer ownership from home one 

the effects of income, education, and age have been accounted for. The same conclusions drawn above 

for computer ownership would seem applicable here.  

 
Conclusions: 
 Following the release of each of the NTIA studies, a broad range of measures were implemented 

by both private organizations and the federal government to address the “Digital Divide.” A good portion 

of these measures are aimed at increasing minority access to technology, and programs range from 

increasing educator training in elementary and secondary schools to increasing specific types of access 

at the college level.16 Such programs are well targeted in the sense that there is also a well documented 

correlation between income and ethnicity, but managers at the implementation (local) level should pay 

special attention to the fact that computer ownership and internet access seem to be more a function of 

income and education rather than ethnicity.  

 For some time, the idea that “softer variables” explain comfort with and use of new technologies 

has also existed.17 The premise of this idea is that certain ethnic groups, due to “cultural” reasons, are 

less likely to own computers or actively use them, which would logically lead one to purchase Internet 

access. The data above suggest that at least between Hispanics and Whites no such differences exist. 

This may be unsettling to some, but in an ever changing educational and work environment, the findings 

above on ethnicity are encouraging, not the opposite.  
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