Equation of State of a Strongly Coupled Fermion System

Jason P. Keith^
Department of Physics, University of Texas at El Paso, jpkeith@miners.utep.edu

Efrain J. Ferrer*
Department of Physics, University of Texas at El Paso, ejferrer@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/couri_abstracts_spring12
Funding Source: COURI
Comments: Affiliated with COURI

Recommended Citation
http://digitalcommons.utep.edu/couri_abstracts_spring12/21

This Article is brought to you for free and open access by the COURI Symposium Abstracts at DigitalCommons@UTEP. It has been accepted for inclusion in COURI Symposium Abstracts, Spring 2012 by an authorized administrator of DigitalCommons@UTEP. For more information, please contact lweber@utep.edu.
Equation of State of a Strongly Coupled Fermion System

Jason P. Keith^, Efrain J. Ferrer*

Department of Physics, University of Texas at El Paso

The graphical representation of the equation of state of a relativistic fermion system with a four-fermion interaction in the strong coupling regime is obtained as a function of the four-fermion coupling constant. It is shown, by increasing the coupling constant strength, how the crossover from a superconducting BCS regime to a Bose-Einstein-condensate (BEC) regime is manifested in the nature of the quasiparticles' energy spectrum. It is found that when the system has a distinguishable BEC nature its pressure becomes negative if the pair interaction is neglected. It is shown how the system can be stabilized by introducing the self-interaction of the Cooper pairs. We discuss the implications for astrophysics of the possible existence of a strongly coupled fermion system in the region of moderate-high density.