Mapping MoS2-Co Catalytic Nanostructures Using HRTEM and TEM Simulations

Eduan Martínez-Soto
AGMUS-Institute of Mathematics, Universidad Metropolitana, Puerto Rico, martinez.eduan@gmail.com

Brenda Torres
Materials Research and Technology Institute, The University of Texas at El Paso

Domingo Ferrer
Microelectronics Research Laboratory, The University of Texas at Austin

Gilles Berhault
Institut de Recherches sur la Catalyse et l’Environnement, IRCELYON, CNRS – Université de Lyon, France

Russell Chianelli
Materials Research and Technology Institute, The University of Texas at El Paso

See next page for additional authors

Follow this and additional works at: http://digitalcommons.utep.edu/couri_abstracts_sum11

Recommended Citation
http://digitalcommons.utep.edu/couri_abstracts_sum11/18

This Article is brought to you for free and open access by the COURI Symposium Abstracts at DigitalCommons@UTEP. It has been accepted for inclusion in COURI Symposium Abstracts, Summer 2011 by an authorized administrator of DigitalCommons@UTEP. For more information, please contact lweber@utep.edu.
Mapping MoS$_2$-Co Catalytic Nanostructures using HRTEM and TEM Simulations

Eduan Martínez-Soto1, Brenda Torres2, Domingo Ferrer4, Gilles Berhault5, Russell R. Chianelli2 and Manuel Ramos2,3

1) AGMUS-Institute of Mathematics, Universidad Metropolitana, Puerto Rico
2) Materials Research and Technology Institute, University of Texas at El Paso, Texas
3) Department of Physics-Mathematics, Universidad Autónoma de Cuidad Juárez, Mexico
4) Microelectronics Research Laboratory, University of Texas at Austin, Texas
5) Institut de Recherches sur la Catalyse et l'Environnement, IRCELYON, CNRS –Université de Lyon, France

Understanding the morphology of catalytically active materials has been approached in past decades with very good results when using field electron microscopy in scanning and transmission modes. In the past some simulated TEM measurements for alumina supported molybdenum sulfide AlO$_2$/MoS$_2$ provided some insights about molecular structure in those catalytic layered transition metal sulfides (LTMS). However, due to resolution, color enhancement, tomography and other factors, sections of those materials observed under TEM do not resolve the structure by itself; in particular for localization of cobalt atoms for MoS$_2$ unsupported catalyst. This work concludes a lattice distance of 0.62 nm and 0.299 nm for Mo-S and Co respectively; results presented here were obtained using experimental HRTEM and molecular modeling to produced TEM simulations, which performs a full dynamical calculation by multi-slice method with a slice thickness of 0.1 Å and using projected potential $f(U) = \sum_{i=1}^{N} a_i e^{-b_i U^2}$, where a_i and b_i are coefficients to be determined. The variable $U = (u, v, w)$ is used to represent coordinates in reciprocal space (Fourier space) quantities (spatial frequencies). $f(U)$ is the atomic dispersion factor.