Initialization of Structural Proteomic Studies of the Giant Marine Virus CroV

Duer Bolotaulo
University of Texas at El Paso, dbolotaulo@miners.utep.edu

Nancy Rondeau
University of Texas at El Paso, nulloa2@miners.utep.edu

Gustavo A. Avila
University of Texas at El Paso, gaavila@miners.utep.edu

Matthias G. Fischer
University of British Columbia, mfscher@eos.ubc.ca

Curtis A. Suttle
University of British Columbia, csuttle@eos.ubc.ca

See next page for additional authors

Follow this and additional works at: http://digitalcommons.utep.edu/couri_abstracts

Recommended Citation
http://digitalcommons.utep.edu/couri_abstracts/21

This Article is brought to you for free and open access by the COURI Symposium Abstracts at DigitalCommons@UTEP. It has been accepted for inclusion in COURI Symposium Abstracts, Spring 2011 by an authorized administrator of DigitalCommons@UTEP. For more information, please contact lweber@utep.edu.
Initialization of Structural Proteomic Studies of the Giant Marine Virus CroV

Duer Bolotaulo^, Nancy Rondeau, Gustavo A. Avila, Matthias G. Fischer, Curtis A. Suttle, and Chuan Xiao*

Department of Chemistry, University of Texas at El Paso and Department of Microbiology and Immunology, University of British Columbia

The existence of cellular genes in viruses such as the nucleocyttoplasmic large DNA viruses (NCLDV) has led to not only the redefinition of the virus but also the mystery of the origin of these genes. *Cafeteria roenbergensis* virus (CroV) is a giant marine virus in the NCLDV clade. Information obtained from structural proteomics studies of CroV can be compared with known cellular counterparts, elucidating the evolutionary relationship between virus and cell in a threedimensional structural aspect. CroV’s major capsid protein gene (MCP) and five CroV genes, (CDS 84, 115, 143, 149,152) including a photolyase and an oxidoreductase, have been chosen to be cloned, expressed, and crystallized to determine their atomic structures. Cloning will be accomplished using Invitrogen’s Gateway System, which confers the advantage of accessibility to different expression systems. Proteins will be purified to high homogeneity via affinity chromatography for screening of crystallization conditions. Atomic structures will be determined through x-ray crystallography. CroV genes 84, 115, 143, 149, and 152 are in the cloning phase and the MCP gene is in protein expression trials. Comparisons to homologous proteins, functional analyses, and mutagenesis studies will follow to extend the proteomics study of CroV.