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ABSTRACT

In this report the problem of solving the Schrodinger equation for an anharmonic
potential is treated using the technique known as the linear delta expansion. The
method works by identifying three different scales in the problem: an asymptotic
scale, which depends uniquely on the form of the potential at large distances; an
intermediate scale, still characterized by an exponential decay of the wavefunction;
and, finally, a short distance scale, in which the wavefunction is sizable. The method

is found to be suitable to obtain both energy eigenvalues and wavefunctions.



Contents

List of Figures 7
1 INTRODUCTION 1
2 The Linear Delta Expansion 3
2.1 Introduction . . . . . . ... 3
2.2 The Linear Delta Expansion . . . . . . . .. .. ... ... ...... )
2.2.1 The Ansatz for the Wavefunction . . . . . ... .. ... ... 5

2.2.2  The Linear Delta Expansion . . . . . .. ... ... ... ... 7

2.2.3 The Principle of Minimum Sensitivity . . . . . . . . ... ... 7

3 Results 9
3.1 Order Zero. . . . . . . . 9
3.2 Order One . . . . . . . . 10
3.2.1 Ground State & and Ey to Order One . . . . ... ... ... 10

3.2.2 Applying the PMS . . . .. .. ... 11

3.3 Order Three . . . . . . . . . ... 12
3.3.1 Ground State Energy to Order Three . . . . . . .. ... ... 12

3.4 Higher Orders . . . . . . . . ... 13



4 Conclusions

5 Appendix
5.1 Computer codes . . . . . . . . ..
5.1.1 Eigenenergy of ground state to order 6% . . . . . . ... .. ..
5.1.2  Wavefunction of 1%¢ excited state to order 6% . . . . . . . . ..

5.1.3  Wavefunction of 15 excited state to order 6° . . . . . . . . ..



List of Figures



Chapter 1

INTRODUCTION

Subatomic particles trapped in potentials are bound to have specific values of the
energy, and their behavior inside the well described by a set of denumerable wave-
functions. These eigenenergies and eigenfunctions are obtained by solving the
Schrodinger equation for the proposed potential; unfortunately, this valuable in-
formation can only be obtained exactly for a few specific potentials and, in most
realistic cases, one must resort to perturbative methods or numerical solutions.

The most commonly used method, Rayleigh-Schrodinger perturbative expansion,
usually generates divergent asymptotic series [1], and thus improvements on the
standard perturbative expansion have been proposed in the past (see, e.g., [2, 3,
4, 5, 6] and references therein). These efforts, however, are limited in practice by
the complexity of the corrections beyond the first few orders in the perturbative
expansion.

Recently, a novel method that works equally well for eigenenergies and eigen-
functions has been proposed [7, 8]. This method, based on the so-called linear
delta expansion (LDE) [16]-[30], improves accuracy by correcting the perturbative

expansion by means of solving algebraic equations.



The LDE has been extensively applied to, for example, disordered systems [31],
the slow roll potential in inflationary models [32], BoseEinstein condensation prob-
lem [33], the O(N)(¢?)%, model [34], the Walecka model [35], and to the ¢* theory
at high temperature [36]. More recently, the LDE has been applied with success to
the study of classical nonlinear systems [37, 38].

In this report the method is applied to the quantum anharmonic oscillator
(AHO). This case has been studied by several perturbative and non-perturbative
methods [3, 4, 5, 6, 12, 13, 14, 15].

The report is organized as follows. In chapter 2 the method is introduced. Next,
in chapter 3, the method is applied to the quantum anharmonic oscillator and results

are presented. Finally, in chapter 4, conclusions are drawn.



Chapter 2

The Linear Delta Expansion

2.1 Introduction

The problem at hand is the solution of the Schrodinger equation with a quartic

anharmonic potential of the form V(x) = mw?x?/2 + px?t/2:

R d2 mw?
— e+
2m dx? 2

2 + %:ﬁ Un(x) = Eyihp(x) (2.1)

where m is the mass of the particle, w the angular frequency, p the anharmonic
coupling, and 1, (z) and E, the eigenfunction and eigenenergy of the n'* excited
state.

A thorough analysis of this problem is given in [5], but here a different path
is followed. First, just like in the multiple-scale perturbation theory [9, 10, 11}, a
suitable ansatz for the wavefunction will be drafted by identifying different length
scales in the problem, and, then, it will be used to generate an optimized perturba-
tive expansion.

The expansion will be obtained within the method known as the linear delta

3



expansion (LDE) [16, 17, 18, 19, 30|, and the optimization will be performed by
means of the principle of minimum sensitivity (PM.S) [41].

The LDE has been extensively applied to quantum [31, 32, 33, 34, 35, 36| and
classical systems [37, 38]. At a difference from most of these applications, in this
work, the LDE is used in a non—canonical way. In most previous applications of the

LDE, a Hamiltonian is generically rearranged as:

H = 21); +V(q) — Hs = Hy+ 6H' (2.2)
with Hy = p?/2m + pz*/4 and H' = V(z) — pa?/4 with V(x) = mw?z?/2; so that
Hs_, = H. Next, physical quantities are expanded in ¢, which is then set equal to 1.
Although this yields an expansion with p-dependent terms, the expansion can be
optimized by using the principle of minimal sensitivity on a given observable, say
the energy, to determine the most appropriate pu.

Here this method is modified by introducing the trial parameter of the LDE not
in the potential of the Hamiltonian, but into the wavefunction. The first step of this
approach consists in the identification of three different scales in the problem: large
distances (asymptotic behavior determined by the anharmonic potential), interme-
diate distances (exponential decay governed by harmonic term), and short distances
(wavefunction is sizable). After this division of the wavefunction, an arbitrary para-
meter is introduced in the last two scales to implement the LDE. The optimization

of the perturbative expansion through the PM S is then performed over a suitable

parameter.



2.2 The Linear Delta Expansion

In this section the linear delta expansion will be used on the wavefunction. First
three different scales will be identified in the problem and the wavefunction will be
designed accordingly. Next, an arbitrary parameter will be introduced in the wave-
function to implement the linear delta expansion. Finally, the resulting perturbative
expansion will be optimized through the use of the principle of minimum sensitivity

over a chosen parameter.

2.2.1 The Ansatz for the Wavefunction

Although one cannot solve the Schrédinger equation (2.1) exactly, it is possible to
infer the behavior of ¢, (z) in the different regions. At short distances, where the
quartic terms is negligible, equation (2.1) resembles the Hamiltonian of a quadratic
potential and, thus, its solution should approximate the Hermite polynomials.

At large x, on the other hand, the equation is dominated by the quartic term
and the wavefunction should be a decreasing exponential of some sort. It is possible
to extract the asymptotic behavior of v, (x) in the region of large = by substituting
the ansatz 1, (z) o< e”71#” into equation (2.1). One obtains v = (y/um/2 )/3h and
p=3.

Thus, the three scales can be made explicit in the wave function by writing [8]

() = eI (), (2.3)

The exponentials yield the correct behavior in the limit | z | — oo, the quadratic term
in the exponential dominates at scales where | x |< 3/, and &, is a function which

satisfies the equation (2.4) below. Here f = mvw? + Q?/2h is the coefficient of a



harmonic oscillator of frequency Q = vw? 4+ Q2, where € is an arbitrary parameter.

&, satisifies:

i)~ [YA 4 2 ¢ 24)

\/2,um3Q2$3 mQQQ%2 B \/2um$ N 2mkE,

+ K2 h? I K2

+

mQ
- &n(x) = 0.

In this way, equation (2.3) is divided into three different regimes which, in turn,
simplifies the creation of a perturbative expansion.

The behavior of the wavefunction on each of these regions can be analyzed sep-
arately. In the asymptotic regime (| x |— oo) the cubic term in the exponential
dominates; the intermediate regime | x | is large enough to expect the wavefunction
to be exponentially damped; in the regime of small | = | the physics is contained
in the £&. The last two regimes have a dependence on the arbitrary frequency 2,
and the intermediate regime displays a non-perturbative dependence upon 2. The
limit (u,Q2) — 0 yields an equation for the harmonic oscillator of frequency w, with
solutions of the form of the Hermite polynomials [8].

As expected, both the function, ¢, (x), and the energy, E,,, depend on the anhar-
monic coefficient p. On the other hand, they also have a fictitious dependence (i.e.
not in the original equation (2.1)) on the arbitrary frequency 2. This dependence

will be used to produce an expansion for the solution of equation (2.1).



2.2.2 The Linear Delta Expansion

To produce an expansion, equation (2.4) is first modified by introducing a parameter

Jd, to be used as a power-counting device:

e R e 2
- g [T e o)

The effect of the parameter § disappears when § = 1: equation (2.5) reduces exactly
to (2.4). Notice that the left-hand side of equation (2.5) corresponds to a harmonic
oscillator of frequency €, with &, = exp[—(m€Q/2h)z?].

Even though ¢ is not a small parameter, it can now be used to produce a per-

turbative expansion. Using the expansions

=0 7=0

on equation (2.5), a hierarchy of equations, corresponding to the different orders in

J, can be generated and used to obtain approximations to &,(x) and E,.

2.2.3 The Principle of Minimum Sensitivity

The results produced by (2.6) will depend on the arbitrary frequency € introduced
in (2.4). These results can be optimized by eliminating this dependence; this is
achieved through the principle of minimum sensitivity (PMS).

Since the dependence on () is fictitious, i.e. it did not exist in the original

Schrodinger equation, it must be eliminated. This can be done by requiring that a



given observable O (the energy, for example) be locally independent of €2

00

879—0.

This, in essence, is the principle of minimum sensitivity.



Chapter 3

Results

Now the procedure outlined before is illustrated explicitly up to order one, and

results are also presented for higher orders.

3.1 Order Zero

To lowest order (i.e to 6") the expansions reduce to

&n() = &no(2) Ey = En , (3.1)

and the equation (2.5) to

o)~ |25 o) + |22 = (e =0 32)

As this is the equation for the harmonic oscillator of frequency w, the solutions &,

correspond to the Hermite polynomials &,o(z) = H,( mTQ x) with eigenvalues given

by Eno = h2(n + 1/2) with n =0,1,2, - --
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3.2 Order One

To next order (i.e. to §') the expansions are:

gn(x) = §n0<x> +0&m (x) E,=FE,+0FE, , (3.3)

with &,0(x) = H,( mTQ z) and Epo = hQ(n + 1/2) with n = 0,1,2, - - -. Extracting

the term proportional to d' from equation (2.5) yields:
ZmQx] ¢ 2mg)

no- |2 et + 2 g (3.0

omE,; /2um 2()2 \/ 2um3Q)2
= {_m Ly Ve, Ml e VAR }x3§no(aﬁ).

K2 B K2 K2

Again, n =0,1,2,--- denotes the different excited states of the system.

3.2.1 Ground State £ and E; to Order One

The eigenfunctions and eigenvalues can be obtained to O(4') from equations (3.2)

and (3.4). Equation (3.2) simply yields:

1

Soo(z) =1 Eoo = 57@ ; (3.5)

but solving equation (3.4) for &y (x) and Ep; on the other hand, is a bit more
complicated. Given that equation (3.4) has terms up to x*, one could try a solution
of the form

€o1(z) = ag + a1z + azr® + azx®. (3.6)
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Since in the case of n = 0, equation (3.4) leaves ag undefined, one is free to set it as

ap = 0. Substituting the remaining £y () into equation (3.4) yields:

sz 1 u
—0, ay = 7~, L e 2 5 (3.7
{m as o as = 37 } = &oi (2 4hQ + 57 3 - T (3.7)

and the 1% order contribution to the ground-state eigenenergy is found to be

hO?2
40

01 — —

(3.8)

Thus, the total ground-state eigenfunction and eigenenergy evaluated up to 1% order

are
mS)? 1
6" (1) = o) + () = 14 Lo ea” + o0y [ 500 (39)
and
(1) 1.~ hO?
ES" = Eoo + Epy = - 1
0 00 + Lot 5 10 (3.10)

To evaluate these results it is necessary to know what € is, this can be obtained by

means of the principle of minimum sensitivity.

3.2.2 Applying the PMS

As predicted in the previous chapter, the results (3.9) and (3.10) depend on the
arbitrary frequency €2, this dependence will be now eliminated through the principle
of minimum sensitivity.

To continue with the illustration, the PM.S will be applied to the ground state

Energy, Eél). Remembering that harmonic oscillator frequency is Q = vw? + 22,
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where () is the arbitrary parameter, PM S implies that

o8 0B o0 QoE
o 90 N Q o0
QOMLQ)  QOMRN2/4Q) RO Q202
Q2090 Q09 202 4 (2
which leads immediately to 2 = 0, and to
1~ hQ? hiw
EW —{Zp0 - =, A2
‘ |PMS {2 4Q }Q:O 2 (3 )

which is the expected result for the ground-state energy of the quadratic potential.

3.3 Order Three

To illustrate the fact the higher orders yield improved results, the expression for the
energy up to third order is shown next, full details can be obtained through the use

of the codes included in the appendix 5.1.1, or can be found in reference [39].

3.3.1 Ground State Energy to Order Three

To third order, i.e. to 6%, the ground state energy is given by

I ~ - - - -
EY) = _ [6um(_w2 +20%) + m*(w® — 5w?Q? + 15w%Q* + 596)] . (3.13)
32m2Qp

Again, the 2 can be fixed from the PM S, which in this case, for h = w =m =1

yields
OESY
o0

1/3
—0 = Q=2 (35”) + O | (3.14)
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which, in turn yields

3 /753
EW® = 0 (8“) +O(u ) (3.15)

Even though these results are not given in full detail, their derivation, with the use
of Mathematica, is much easier than their reproduction in Latexr in this thesis.
The proceeding chapter presents results of this procedure extended to much higher

orders.

3.4 Higher Orders

The previous procedure can be repeated both for higher orders of ¢ and for higher
energy states. Appendices 5.1.2 and 5.1.3 list the Mathematica codes used to

evaluate the wavefunctions for the 1% excited state up to orders §° and &2, i.e.

P () and ¢i7 (z).



Chapter 4

Conclusions

14



Chapter 5

Appendix

5.1 Computer codes

5.1.1 Eigenenergy of ground state to order §°

The Mathematica code to evaluate the eigenenergy of the ground state to order 62,

i.e. Eég)(x) is C'olimaO(3).nb,

15
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¢ and E,, to order &6°

<< Calculus'DSolvelIntegrals"’

SetAttributes[m, Constant];
SetAttributes[h, Constant]; SetAttributes[w, Constant];
SetAttributes[u, Constant]; SetAttributes[e, Constant];
SetAttributes[Q, Constant]; SetAttributes[§, Constant]

H Solution requires two expansions:
Clear[§, e, Fef, e00, e01, €02, 03, £00, £01, £02, £03]
E[x_] := £00[x] +6 £01[x] +62 £02[x] +6 > £03[x]

e :=e00+6 €01 +62e02+6°%e03

W The differential equation is:

Fef[§_ , e_, x_:x, 6_:6] :=

2mQx
DIDIE, x], x] - ——DI&, x] + [ A

Vo2umiQ?2 m? (Q% -w 2) 2 V2mpu ]é‘]

2
D[&, x]—{ " X7+ " o

2me mQ)

2mu

m Using the expansions of £ and e we get:

Cl =D[Fef[&[x], e, x, 6], {6,3} /. 6-» 0

12e03m£00[x]  12e02m£0l[x]  12e01m£02(x]

h2 h2 h2
3 3 2 2 42 (_.2 2
6 (7 \/?xh\/mu , ﬁx h\/zm uQ L (hon +Q <) £02[x] +

h? h
12mxQ £03'[x]
h

2 ’
6(2e00m mQ) £03[x] - 6+/2 x x/iu £02 [x]

+6 £03"[x]
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ColimaO(3).nb

m The term proportional to 6! is obtained as:

£00([x_] :=1;
e00 :=hQ/2;
h (w?-Q2
e01:=—( ) 5
4Q
m (-w?+Q?2 Vm Vu
£01[x_] := ¢ ) x2 + %3
4ha 3vV2h
_3huQ+ m? (0 -02)°
£02[x_] := ( ) x2 +
16hmQ3
-2hpe+ m (0*-02)° , m¥2Vu (-w?+0?) | mu
> o2 + X~ + 2
32h2Q 12,\/2_}129 36h
h (3hue- m (w2 -2)7)
el02 :=
16 m2 Q3
f03[x_] :=alx + a2x?+a3x’+adx?+a5x’+a6x°+a7x’ +a8x®+a9x’;
EQ0O=Cl /. x>0
EQl =D[C1, x]/ . x>0
EQ2 =D[C1, {x, 2}]/ . x>0
EQ3 =D[C1, {x, 3}]/ . x>0
EQ4 =D[C1, {x, 4}]/ . x>0
EQ5 =D[C1, {x, 5}]/ . x>0
EQ6 =D[C1, {x, 6}]/ . x>0
EQ7 =D[C1, {x, 7}]/ . x>0
EQ8 =D[C1, {x, 8}]/ . x>0
EQ9 =D[C1, {x, 9}]/ . x>0



ColimaO(3).nb
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Simplify[PowerExpand[Solve][

{EQ0 == 0, EQ1 ==0, EQ2==0, EQ3==0, EQ4 =0, EQ5==0, EQ6==0, EQ7 =0,

EQ8 == 0, EQ9 == 0}, {al, a2, a3, a4, a5, a6, a7, a8, a9, e03}]]]

h (w2 -0%) (-6huQ+r m? (0?2 -Q2)°)

{{al -0, e03 >

32m2 Q° !
(w? -Q2) ( -5huQ+ m? (w? —Qz)z)
ad »- 7
64 h2 o4
2
5 VH (3hper w W -0%)7) o w?y (w? 40?)
48+/2 n? v/m @3 ! 144 h3Q !
ad - m/2 p3/ a2 »- (wZ—Qz)(—6huQ+ m? (wZ—Q2)2)
324+/2 b 32hmQs !
m(w? -Q2) (-6hur m? (w? -0?%)°)
a3->0, a6 »- 38407 O3 7
. Vm Vi (-2 hpes m? (w2 —Q2)2) 1}
al —» —
96 /2 h3 02 J

B The n=0 energy to order &’ is obtained summing e00+ e01+e02+¢03:

h (0 -Q2%) (-6hua+ m? (@2 -0%)%)

ener03 := +
32m2 Q5
h (@*-@%) h (3hue- m* (o2 -02)%)
hQ/2 +
4Q 16m2 Q3
Simplify[ener03]

h (6huQ (-w?+20%) +m? (W -5w? Q% +15w? Q% +5Q°))
32 m? Q5
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5.1.2 Wavefunction of 1 excited state to order §°

The Mathematica code to evaluate the 1% excited state of the wavefunction to order

83, i.e. ¢§3)(9;) is Psi0.nb,



20

Expression for ¢ 1n the

first excited state up to
order §°

SetAttributes[{m, h, w, u, e, Q, 6}, Constant];
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Psi0.nb

m The expression for £ up to §°is:

s 2vV2 Vh Vi (-w?+02)Mt 22 2 Vu (-e?+e?)t*

53

m 2 Vh o

5/4 5/4

5/4
m3/2 x3 (—w? +02) / ] 52 x3 U (-w? +Q2) m5/2 %%y (-w? +Q?)

2h3/2Q J 2B Vm o * 160h7/2 Q

x6 Vi (-02+02)"* (60hpa- Tm? (? -22)%)
.

120 WV 2 h3/2 g3

Vi (~w? 02! (2huQ— m? (w? —92)2)

+
42 n32maot
Vm x5 (-02+02)%* (Thuos 2m? (0* -22)?)
64h5/2 QA *
3/2 7 2 2,5/4 2 (2 2,2
m3/2 x7 (-w? +Q?) (-76hpuo+ 3m? (0?2 -02)7)
+
576 h7/2 Q3

3vVh Vi (-w?+03) " (-anper 3m (0?-0%)%)

+

42 m3Q6

Vi (-02+02)"* (27hpe+ Tm? (0?2 -22)%)
N

42 vV/h m2 05
mx® Vi (-0?+02)"* (-40hpe+ 9Im? (0? -02)%)

560 V2 h7/2 Q2

5/4 5/4

13 (-w? +Q2) m5/2 %%y (-w? +Q2)
+
2V Vo ot 160 h7/2 Q
x5 Vi (-w?+02)** (60huQ- 7m? (w? -92)2)
120 V2 h5/2 @3
x* Vi (-02+02)"* (2hpe- m? (02 -02)?)
42 h3/2mot
5 2 2,574 2 (2 2,2
Vm x5 (-w? +Q?) (Thue+ 2m? (02 -02)7)

64 h5/2 g4
5/4 (

+

+

+

m3/2 x7 (-w? +Q2) -76hue+ 3m? (02 -0%)%)

+

576 h7/2 Q3



Psi0.nb

22

3Vh Vi (-02+02)"* (-4hues 3m? (02 -22)%)
4’\/2_m3£'26
Vi (-02+02)"* (27hpe+ Tm? (02 -22)%)
4'\/2_'\/?m2§25

mx® Vi (-02+02)"* (-40hpe+ 9Im? (0? -02)%)

+

+

560 V2 h7/2 g2

B The expression for ¥ is:
¥= Yum/2 /3h;
B= mQ/(2h);
h=1, m=1; u= 1; Q= 1; 6= 0; w= 0;
¥[x] = FullSimplify[Exp[-¥ x3)'° B x*] €[x1];

Plot[¢[x], {x, -3, 3}]

- Graphics =
6= 1;

¥[x] = FullSimplify[Exp[-¥ (x?) "~ -B x?] £[x1];
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Psi0.nb

Plot[¥[x], {x, -3, 3}]

40

20

40

-60

-80

- Graphics =

TeXSave["Psi0O.tex"]

PsiO.tex
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5.1.3 Wavefunction of 1 excited state to order &§°

The Mathematica code to evaluate the 1% excited state of the wavefunction to order

8%, i.e. %5)(@ is Psi2.nb,



25

Expression for ¢ 1n

second excited state to
order &°

SetAttributes[{m, h, w, u, e, Q, 6}, Constant];
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Psi2.nb

m The expression for £ to order 6°is:

Amx?V-0w2+Q?2

E[x]=-2+ ——mM8M ——+

|

_V—Z_\/;x3'\/u_(§2+ 6'\/—w2+§22) 2'\/2—x‘\/u_(§2+ 9‘V—a)2+§22)

h

+

hQ A/m @2

4h2Q

5 [_mxsu (Q+ 6V -w? +§22) .

53

m3/2 x5 Vu (w? —Qz)(Q+ 6V -w2 +Q2) 3xtyu (3Q+ 26V -0? +Qz)

32 h2 @2 8hq?
xVu (-40% (20+ 3V 02+0%) +02 (80+ 13V-0Z+02))
2VZ Vm o '

Vm x® Vi (20% (130+ 6V-0w2+02) -2 (26 0+ 15V w2 +02))
6V2 ho3 '

w2 %% u32 (0+ 6V w2 +02)  Tm2x®pu (02 -02) (Q+ 6V-w?+a?)

- N i

28VZ b0 144h3 @2

mx® p (@2 (337 Q- 201 V-0Z +02) +w? (-337 0+ 246 V-w? +02)) .

576 h2 Q3
! Vo % Vi

840 V2 h3 03
(-28m (@*-22)” (2+ 6 V-w2+22) +3hua (890+ 702 V-wZ+02))) +
x* u (-w? (277 Q+ 858 vV -w? +Q2) +Q? (277 @+ 881 vV -w? +Q2))

+

128 h @t
1
S ———
180 V2 h2 v/m o*
(9nue (70+ 26V -w2 +Q2) -2m® (0® -0%) (w? (101 0+ 156 V -w? +Q2) -
o? (101 0+ 166 V-2 +07)))) + !
24 '\/2_m5/2 Q6 V -w? +Q 2

(xVu (-3nhue (-31202 +0 (3230+ 174 V-2 +02)) -

2m? (0® -0%) (5160* -2w’ Q (5450« 166 V -w? +Q2) +Q3

574 Q+ 335V -w2 +Q?2 + ! (x* Vi
\
72V2 hm3/2 Q5 V -w? +Q2

(9hue (-644w? +Q (6550« 184 V-w? +Q2)) +m® (0®-2%) (10320" -
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64

23040 h3 Q¢

40%q (5510+ 175 V-wZ+02) +03 (1172 0+ 709 V-wZ +02)))) | +

m? x12 ;2 (Q+ 6V -w2 +92) 67 m5/2 x1 4372 (w? -Q?2) (Q+ 6V -w? +Qz)
.

560 h' @ 9072 4/2 ht 2

1
Toerem ey X0k (-413n® W -2%)” (ar 6V-wPia?) +
54huo (41 0+ 302'\/—w2+92)))+ 1

9216 h2m Q5 V-w2? +Q2
(x°u (12hpe (-8350w” +Q (8515 Q+ 2599 V -w?2 +Q2)) +
m? (0® -0?%) (10098 w* - 7 w® @ (3278 @+ 1673 V-w? +Q2 ) +
4% (32120+ 2975V -w2 +02)))) -
(x8 u (534 h uQ (—Q+ 2V-w?2+Q2 ) +m? (0?2 -Q2)
(w® (3931 0+ 4746 V -02 +Q2) -
o (39310« 5156 \ -w? +Q2)))) +

1

1
18432 hm? @5 V-w2 +Q2
(x*u (-36hue (-18498w? +Q (18751 0+ 4901 V-w2+02)) -

m? (w? -Q2) (310866 w* +2 Q> (166357 o+ 73751V -w2 +Q2) -

w? Q (643580 0+ 146467 V-w2+02)))) + !

1270080 /2 ht ot
(m*/2 x* Vi (3024m* (0 -22)° (2+ 6V-02+2%) +hu (0* (81359 a-
339018 V -w? +Q2) +0? (-81359 0+ 323223 V-02 +Q2 )))) +

1

1411200 V2 h3 Q3

(x5 Vi V-wz+02 (28m? (0?-Q2) (46680 w* - 4 w?
302400 V2 h2 Vm Q¢

Q (24709 @+ 7399 V-w? +Q2) +? (52156 + 29921 V-w?+02 )) +

3huQ (-2576130 w? +Q (2630249 Q+ 814017 V -w? +Q2 )))) +

u (Va " Vi (11202 (0% -22)*
(4 w* (439 0+ 870 vV -w? +Q2) -@? (1756 0+ 3641 V-w? +Q2)) +

3hue (-w? (447373 Q+ 1314570 V-w? +Q2) +02 (447373 0+

1
1348281V -w2+02)))) +
40320 V2 m5/2 08 V-w? 102

(x Vi (28m? (0® -02)" (93840 0" - 4 w® @ (49921 0+ 14656 V-0? +Q2 ) +
o® (105889 0+ 59744 V-w2 +02)) -
3huQ (9518280 0! -w? Q (19603211 Q+ 4408338 V-w2 +Q2) +

* (10084931 o+ 4430703 V-w?+02)))) +
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1
12096042 hm¥2 Q7 V-wZz+Q2
(93840 0* - 4 w® @ (52411 0+ 18526 V-w? +Q2 ) +

@* (115939 0+ 76964 V-wZ +02)) +

3hu@ (14110980 w* -w? 0 (29127131 Q+ 6443868 V-w?+Q2 ) +

(x° Vi (-28 % (o* -2%)°

Q* (15016151 Q+ 6483243 V-w? +Q2)))) |+

m>/2 x15 |;5/2 (Q+ 6V-w2+02 ) 13m3 x* p? (0? -Q2) ( Q+ 6 V-02+Q2 )
7280 V2 h® @ ' 34020 2
(w32 x*2 p3/2 (-83161m° (&? —a?)? (o+ 6 V-w2? +Q2) +
162hpu0 (2111 0+ 14850 V-w?+Q2)))/( 103783680 V2 h° Q%) +
1
SoreTesee o (m? x*% 4 (114345 m? (0? -02)° (Q+ 6V 02402 ) +
2huQ (w2 (174379 Q- 4447470V -w2 +Q2 ) +
Q% (-174379 0+ 4345896 V -w2 +Q2)))) + _r
90316800 h? Q5
(mx*u (7Tm? (0® -2%)” (302 (94363 0+ 171070 V-w? +Q2) -
Q? (283089 @+ 539929 V-w2 +Q2)) +

2huQ (—w2 (4416761 Q+ 11094450 V -w? +Q2 ) +

0% (4416761 0+ 11438169 V-wZ +02)))) -

8% |-

1
232243200 h3 Q6
(x*uV-w2+22 (-7m® (0 -Q%) (18768210 w* - 23 w? @ (1749209 0+

597899 V-w2 +Q2) +Q3 (21463597 0+ 13916177 V-wz +02 )) -

18 hu@ (-42432690 w® +Q (43445397 Q+ 14599681 V-2 +Q2 )))) -

1
(Vm x** Vi (133056m* (w? -2%)"

1005903360 /2 h5 @5
(2+ 6 V-w2+Q2) +378 1% 42 ©* (6449 Q+ 136862 V-w? +Q2 ) +
hm? e (0 -02) (w? (24576163 @+ 12239610 V-0Z 402 ) -
% (24576163 + 15129860 V-wZ+02)))) +
1
46448640h2mQ’ V-w? +02
(8793660 w* - 2 w? @ (11299222 @+ 6852937 V-w2 +Q2) +
@* (13839209 @+ 14412709 V-w2 +02)) +
18hu@ (117906570 w* + 13 0° (9766011 0+ 4686287 V -w? +02) -
w? Q (244864713 0+ 60514121V -w2 +02)))) +

1

10321920 hm2 Q8 V -w2 +Q2

(xs U (—7 m? (m2 —92)2

2
(x4 U (7 m? (w2 —Qz)
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(41397660 w* - 2 w? @ (43239093 0+ 10283723 V-w? +Q2) +
@* (45091101 @+ 20870801 V-w% 402 )) -
2huo (1263892170 w* -w? 0 (2585050669 0+ 488260497 V-w2 +Q2) +
@* (1321158499 @+ 490390527 V-wZ+Q2)))) +
(x* Vi (48384m* (w? -02)" (343507 -q (3567 0+ 1522V -w2 402 )) +
3780 h? 1% @ (-2338466 w? +Q (2396381 Q+ 820217 V-2 +Q2)) -
hm? uQ (0?-932)
(1359126150 w' + 4 0° (276580868 - 128091611V -w2 +Q2 ) +
w? Q (-2465449622 Q+ 490769819 V-w? +22))))/
(6401203200 V2 h® Vm 0f V-2 +Q2) + (x® Vi (-11340 02 2
Q% (-2217562 w? +Q (2246063 @+ 540777 V-w2 +Q2)) + 448 m*
(@? -22)” (9020400 * - 2 w? @ (9887757 0+ 3296465 V-w? +02 ) +
Q> (10763864 Q+ 6794929 V-02+02)) +hm? u@ (-0? +Q?2)
(52677100590 w* + 2 0* (28011121177 0+ 12081371879V -w? +Q2 ) -
©? Q (108699342944 0+ 24015380245V -wZ+02))))/
(508032000 V2 h? m*/2 @® Vw2 +02) +
(=7 Vi (2688 m* (® —0?)? (1638300 w* -2 w” @ (1724104 Q+
490405 V-2 +@2) +Q3 (1809908 @+ 990463 V-w2 +Q2)) -
11340 h? 1% @2 (-9611974 w? +Q (9735581 Q+ 2425519 V-w? +Q2)) -
hm? uQ (0?-02)
(65551950930 w* + 2 0> (34469781389 0+ 13683601903 V-w? +Q2) -
©? @ (134491513708 @+ 27230410115 V-w2+02))))/

1
(7112448000 V2 h*m3/2 Q" \/-w2 +Q2 ) +

67737600 V2 m%/2 Q10 (-2 +Q2)
(x Vi (3780n% 4% @ (-6 w? (2556629 + 7837124 V-w? +Q2) +
0% (15387899 Q+ 48543801 V-w? +Q2)) -
224m* (0*-22)° (80 w* (428461 0+ 532545V -0Z2+02) -
40%Q? (17584963 0+ 24029088 Vw2 +Q2) +
' (36067697 @+ 53659927 V-wZ 402 )) +
hm? 4@ (0 -Q2) (10 w* (7627902895 + 13875020556 V-w? +Q2 ) +
20" (38768784101 Q+ 76764532903V -w2 +Q2) -
w? Q? (153816597152 @+ 292239283691V -w2 +02)))) +
(x> Vi (11340102 42 0% (4 w? (2246117 @+ 6635437 V-w2 +Q2) -
0% (9015653 0+ 27482907 V-wZ +Q2)) +
112m* (o -22)° (80 w* (980087 @+ 1065090 V-w? +Q2 ) -
40% Q% (40411631 0+ 49597056 V-w? +Q2) +
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! (83253739 @+ 113592974 V-w? +02)) -

hm? u@ (0? -@2) (20 w* (6009428840 @+ 9704399403 V-w? +Q2 ) +
20" (61402004081 Q+ 110651866243V -w? +Q2 ) -
w? Q? (242992584962 @+ 415301128121V -w2 +2))))/

(203212800 V2 hm"/20° (-w? +?))

m The expression for i to order &° is:
¥= Vum/2 /3h
B=mQ/(2h)
h=1, m=1; u=1; Q= 1; 6= 0; w= 0;
¥[x] = FullSimplify[Exp[-y (x?) "~ -B x?] £[x]];

Plot[¢[x], {x, -3, 3}]

- Graphics =
6= 1;

¥[x] = FullSimplify[Exp[-¥ (x?) "~ -B x?] £[x]1];
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Plot[¥[x], {x, -3, 3}]
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