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ABSTRACT

In this report the problem of solving the Schrödinger equation for an anharmonic

potential is treated using the technique known as the linear delta expansion. The

method works by identifying three different scales in the problem: an asymptotic

scale, which depends uniquely on the form of the potential at large distances; an

intermediate scale, still characterized by an exponential decay of the wavefunction;

and, finally, a short distance scale, in which the wavefunction is sizable. The method

is found to be suitable to obtain both energy eigenvalues and wavefunctions.
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Chapter 1

INTRODUCTION

Subatomic particles trapped in potentials are bound to have specific values of the

energy, and their behavior inside the well described by a set of denumerable wave-

functions. These eigenenergies and eigenfunctions are obtained by solving the

Schrödinger equation for the proposed potential; unfortunately, this valuable in-

formation can only be obtained exactly for a few specific potentials and, in most

realistic cases, one must resort to perturbative methods or numerical solutions.

The most commonly used method, Rayleigh-Schrödinger perturbative expansion,

usually generates divergent asymptotic series [1], and thus improvements on the

standard perturbative expansion have been proposed in the past (see, e.g., [2, 3,

4, 5, 6] and references therein). These efforts, however, are limited in practice by

the complexity of the corrections beyond the first few orders in the perturbative

expansion.

Recently, a novel method that works equally well for eigenenergies and eigen-

functions has been proposed [7, 8]. This method, based on the so-called linear

delta expansion (LDE) [16]–[30], improves accuracy by correcting the perturbative

expansion by means of solving algebraic equations.
1
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The LDE has been extensively applied to, for example, disordered systems [31],

the slow roll potential in inflationary models [32], BoseEinstein condensation prob-

lem [33], the O(N)(φ2)2
3d model [34], the Walecka model [35], and to the φ4 theory

at high temperature [36]. More recently, the LDE has been applied with success to

the study of classical nonlinear systems [37, 38].

In this report the method is applied to the quantum anharmonic oscillator

(AHO). This case has been studied by several perturbative and non-perturbative

methods [3, 4, 5, 6, 12, 13, 14, 15].

The report is organized as follows. In chapter 2 the method is introduced. Next,

in chapter 3, the method is applied to the quantum anharmonic oscillator and results

are presented. Finally, in chapter 4, conclusions are drawn.



Chapter 2

The Linear Delta Expansion

2.1 Introduction

The problem at hand is the solution of the Schrödinger equation with a quartic

anharmonic potential of the form V (x) = mω2x2/2 + µx4/2:

[
− h̄2

2m

d2

dx2
+

mω2

2
x2 +

µ

4
x4

]
ψn(x) = Enψn(x) (2.1)

where m is the mass of the particle, ω the angular frequency, µ the anharmonic

coupling, and ψn(x) and En the eigenfunction and eigenenergy of the nth excited

state.

A thorough analysis of this problem is given in [5], but here a different path

is followed. First, just like in the multiple-scale perturbation theory [9, 10, 11], a

suitable ansatz for the wavefunction will be drafted by identifying different length

scales in the problem, and, then, it will be used to generate an optimized perturba-

tive expansion.

The expansion will be obtained within the method known as the linear delta

3
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expansion (LDE) [16, 17, 18, 19, 30], and the optimization will be performed by

means of the principle of minimum sensitivity (PMS) [41].

The LDE has been extensively applied to quantum [31, 32, 33, 34, 35, 36] and

classical systems [37, 38]. At a difference from most of these applications, in this

work, the LDE is used in a non–canonical way. In most previous applications of the

LDE, a Hamiltonian is generically rearranged as:

H =
p2

2m
+ V (q) → Hδ = H0 + δH ′ (2.2)

with H0 = p2/2m + µx4/4 and H ′ = V (x) − µx4/4 with V (x) = mω2x2/2; so that

Hδ=1 ≡ H. Next, physical quantities are expanded in δ, which is then set equal to 1.

Although this yields an expansion with µ-dependent terms, the expansion can be

optimized by using the principle of minimal sensitivity on a given observable, say

the energy, to determine the most appropriate µ.

Here this method is modified by introducing the trial parameter of the LDE not

in the potential of the Hamiltonian, but into the wavefunction. The first step of this

approach consists in the identification of three different scales in the problem: large

distances (asymptotic behavior determined by the anharmonic potential), interme-

diate distances (exponential decay governed by harmonic term), and short distances

(wavefunction is sizable). After this division of the wavefunction, an arbitrary para-

meter is introduced in the last two scales to implement the LDE. The optimization

of the perturbative expansion through the PMS is then performed over a suitable

parameter.
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2.2 The Linear Delta Expansion

In this section the linear delta expansion will be used on the wavefunction. First

three different scales will be identified in the problem and the wavefunction will be

designed accordingly. Next, an arbitrary parameter will be introduced in the wave-

function to implement the linear delta expansion. Finally, the resulting perturbative

expansion will be optimized through the use of the principle of minimum sensitivity

over a chosen parameter.

2.2.1 The Ansatz for the Wavefunction

Although one cannot solve the Schrödinger equation (2.1) exactly, it is possible to

infer the behavior of ψn(x) in the different regions. At short distances, where the

quartic terms is negligible, equation (2.1) resembles the Hamiltonian of a quadratic

potential and, thus, its solution should approximate the Hermite polynomials.

At large x, on the other hand, the equation is dominated by the quartic term

and the wavefunction should be a decreasing exponential of some sort. It is possible

to extract the asymptotic behavior of ψn(x) in the region of large x by substituting

the ansatz ψn(x) ∝ e−γ|x|p into equation (2.1). One obtains γ = (
√

µm/2 )/3h̄ and

p = 3.

Thus, the three scales can be made explicit in the wave function by writing [8]

ψn(x) = e−γ|x|3−βx2

ξn(x). (2.3)

The exponentials yield the correct behavior in the limit | x |→ ∞, the quadratic term

in the exponential dominates at scales where | x |< β/γ, and ξn is a function which

satisfies the equation (2.4) below. Here β = m
√

ω2 + Ω2/2h̄ is the coefficient of a
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harmonic oscillator of frequency Ω̃ ≡ √
ω2 + Ω2, where Ω is an arbitrary parameter.

ξn satisifies:

ξ′′n(x) −
[√

2mµ

h̄
x2 +

2mΩ̃x

h̄

]
ξ′n(x) (2.4)

+




√
2µm3Ω̃2

h̄2 x3 +
m2Ω2

h̄2 x2 −
√

2µm

h̄
x +

2mEn

h̄2 − mΩ̃

h̄


 ξn(x) = 0.

In this way, equation (2.3) is divided into three different regimes which, in turn,

simplifies the creation of a perturbative expansion.

The behavior of the wavefunction on each of these regions can be analyzed sep-

arately. In the asymptotic regime (| x |→ ∞) the cubic term in the exponential

dominates; the intermediate regime | x | is large enough to expect the wavefunction

to be exponentially damped; in the regime of small | x | the physics is contained

in the ξ. The last two regimes have a dependence on the arbitrary frequency Ω,

and the intermediate regime displays a non-perturbative dependence upon Ω. The

limit (µ,Ω) → 0 yields an equation for the harmonic oscillator of frequency ω, with

solutions of the form of the Hermite polynomials [8].

As expected, both the function, ψn(x), and the energy, En, depend on the anhar-

monic coefficient µ. On the other hand, they also have a fictitious dependence (i.e.

not in the original equation (2.1)) on the arbitrary frequency Ω. This dependence

will be used to produce an expansion for the solution of equation (2.1).
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2.2.2 The Linear Delta Expansion

To produce an expansion, equation (2.4) is first modified by introducing a parameter

δ, to be used as a power-counting device:

ξ′′n(x)−
[
2mΩ̃x

h̄

]
ξ′n(x) +

[
2mEn

h̄2 − mΩ̃

h̄

]
ξn(x) (2.5)

= δ





√
2µm

h̄
x2ξ′n(x)−




√
2µm3Ω̃2

h̄2 x3 +
m2Ω2

h̄2 x2 −
√

2µm

h̄
x


 ξn(x)



 .

The effect of the parameter δ disappears when δ = 1: equation (2.5) reduces exactly

to (2.4). Notice that the left-hand side of equation (2.5) corresponds to a harmonic

oscillator of frequency Ω̃, with ξn = exp[−(mΩ̃/2h̄)x2].

Even though δ is not a small parameter, it can now be used to produce a per-

turbative expansion. Using the expansions

ξn(x) =
∞∑

j=0

δjξnj(x) En =
∞∑

j=0

δjEnj , (2.6)

on equation (2.5), a hierarchy of equations, corresponding to the different orders in

δ, can be generated and used to obtain approximations to ξn(x) and En.

2.2.3 The Principle of Minimum Sensitivity

The results produced by (2.6) will depend on the arbitrary frequency Ω introduced

in (2.4). These results can be optimized by eliminating this dependence; this is

achieved through the principle of minimum sensitivity (PMS).

Since the dependence on Ω is fictitious, i.e. it did not exist in the original

Schrödinger equation, it must be eliminated. This can be done by requiring that a
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given observable O (the energy, for example) be locally independent of Ω:

∂O
∂Ω

= 0. (2.7)

This, in essence, is the principle of minimum sensitivity.



Chapter 3

Results

Now the procedure outlined before is illustrated explicitly up to order one, and

results are also presented for higher orders.

3.1 Order Zero

To lowest order (i.e to δ0) the expansions reduce to

ξn(x) = ξn0(x) En = En0 , (3.1)

and the equation (2.5) to

ξ′′n0(x)−
[
2mΩ̃x

h̄

]
ξ′n0(x) +

[
2mEn

h̄2 − mΩ̃

h̄

]
ξn0(x) = 0 (3.2)

As this is the equation for the harmonic oscillator of frequency ω, the solutions ξn0

correspond to the Hermite polynomials ξn0(x) = Hn(
√

mΩ̃
h

x) with eigenvalues given

by En0 = h̄Ω̃(n + 1/2) with n = 0, 1, 2, · · ·

9
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3.2 Order One

To next order (i.e. to δ1) the expansions are:

ξn(x) = ξn0(x) + δξn1(x) En = En0 + δEn1 , (3.3)

with ξn0(x) = Hn(
√

mΩ̃
h

x) and En0 = h̄Ω̃(n + 1/2) with n = 0, 1, 2, · · ·. Extracting

the term proportional to δ1 from equation (2.5) yields:

ξ′′n1(x)−
[
2mΩ̃x

h̄

]
ξ′n1(x) +

2mΩ̃

h̄
nξn1(x) (3.4)

=



−

2mEn1

h̄2 +

√
2µm

h̄
x− m2Ω2

h̄2 x2 −
√

2µm3Ω̃2

h̄2



 x3ξn0(x).

Again, n = 0, 1, 2, · · · denotes the different excited states of the system.

3.2.1 Ground State ξ0 and E0 to Order One

The eigenfunctions and eigenvalues can be obtained to O(δ1) from equations (3.2)

and (3.4). Equation (3.2) simply yields:

ξ00(x) = 1 E00 =
1

2
h̄Ω̃ , (3.5)

but solving equation (3.4) for ξ01(x) and E01 on the other hand, is a bit more

complicated. Given that equation (3.4) has terms up to x3, one could try a solution

of the form

ξ01(x) = a0 + a1x + a2x
2 + a3x

3. (3.6)
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Since in the case of n = 0, equation (3.4) leaves a0 undefined, one is free to set it as

a0 = 0. Substituting the remaining ξ01(x) into equation (3.4) yields:

{
a1 = 0, a2 =

mΩ2

4h̄Ω̃
, a3 =

1

3h̄

√
mµ

2

}
⇒ ξ01(x) =

mΩ2

4h̄Ω̃
x2 +

1

3h̄

√
mµ

2
x3, (3.7)

and the 1st order contribution to the ground–state eigenenergy is found to be

E01 = − h̄Ω2

4Ω̃
. (3.8)

Thus, the total ground–state eigenfunction and eigenenergy evaluated up to 1st order

are

ξ
(1)
0 (x) = ξ00(x) + ξ01(x) = 1 +

mΩ2

4h̄Ω̃
x2 +

1

3h̄

√
mµ

2
x3. (3.9)

and

E
(1)
0 = E00 + E01 =

1

2
h̄Ω̃− h̄Ω2

4Ω̃
. (3.10)

To evaluate these results it is necessary to know what Ω is, this can be obtained by

means of the principle of minimum sensitivity.

3.2.2 Applying the PMS

As predicted in the previous chapter, the results (3.9) and (3.10) depend on the

arbitrary frequency Ω, this dependence will be now eliminated through the principle

of minimum sensitivity.

To continue with the illustration, the PMS will be applied to the ground state

Energy, E
(1)
0 . Remembering that harmonic oscillator frequency is Ω̃ ≡ √

ω2 + Ω2,
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where Ω is the arbitrary parameter, PMS implies that

∂E
(1)
0

∂Ω
=

∂E
(1)
0

∂Ω̃

∂Ω̃

∂Ω
=

Ω

Ω̃

∂E
(1)
0

∂Ω̃

=
Ω

Ω̃

∂(h̄Ω̃)

2∂Ω
− Ω

Ω̃

∂(h̄Ω2/4Ω̃)

∂Ω
=

h̄Ω2

2Ω̃2
+

Ω4

Ω̃4
− 2Ω2

Ω̃2
= 0. (3.11)

which leads immediately to Ω = 0, and to

E
(1)
0 |PMS =

{
1

2
h̄Ω̃− h̄Ω2

4Ω̃

}

Ω=0

=
h̄ω

2
. (3.12)

which is the expected result for the ground-state energy of the quadratic potential.

3.3 Order Three

To illustrate the fact the higher orders yield improved results, the expression for the

energy up to third order is shown next, full details can be obtained through the use

of the codes included in the appendix 5.1.1, or can be found in reference [39].

3.3.1 Ground State Energy to Order Three

To third order, i.e. to δ3, the ground state energy is given by

E
(3)
0 =

h̄

32m2Ω̃5

[
6µh̄Ω̃(−ω2 + 2Ω̃2) + m2(ω6 − 5ω4Ω̃2 + 15ω2Ω̃4 + 5Ω̃6)

]
. (3.13)

Again, the Ω can be fixed from the PMS, which in this case, for h̄ = ω = m = 1

yields

∂E
(3)
0

∂Ω
= 0 ⇒ Ω = 2

(
3µ

5

)1/3

+O(µ−1/3) , (3.14)
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which, in turn yields

E
(3)
0 =

3

16

(
75µ

8

)1/3

+O(µ−1/3) . (3.15)

Even though these results are not given in full detail, their derivation, with the use

of Mathematica, is much easier than their reproduction in Latex in this thesis.

The proceeding chapter presents results of this procedure extended to much higher

orders.

3.4 Higher Orders

The previous procedure can be repeated both for higher orders of δ and for higher

energy states. Appendices 5.1.2 and 5.1.3 list the Mathematica codes used to

evaluate the wavefunctions for the 1st excited state up to orders δ3 and δ3, i.e.

ψ
(3)
1 (x) and ψ

(5)
1 (x).



Chapter 4

Conclusions

14



Chapter 5

Appendix

5.1 Computer codes

5.1.1 Eigenenergy of ground state to order δ3

The Mathematica code to evaluate the eigenenergy of the ground state to order δ3,

i.e. E
(3)
0 (x) is ColimaO(3).nb,

15
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 and En to order 3

Calculus`DSolveIntegrals`

SetAttributes m, Constant ;

SetAttributes h, Constant ; SetAttributes , Constant ;

SetAttributes , Constant ; SetAttributes e, Constant ;

SetAttributes , Constant ; SetAttributes , Constant

Solution requires two expansions:

Clear , e, Fef, e00, e01, e02, e03, f00, f01, f02, f03

x_ : f00 x f01 x 2 f02 x 3 f03 x

e : e00 e01 2 e02 3 e03

The differential equation is:

Fef _, e_, x_: x, _: :

D D , x , x
2 m x

h
D , x

2 m e

h2

m

h

2 m

h
x2 D , x

2 m3 2

h2
x3

m2 2 2

h2
x2

2 m

h
x

Using the expansions of  and e we get:

C1 D Fef x , e, x, , , 3
��

. 0

12 e03 m f00 x

h2

12 e02 m f01 x

h2

12 e01 m f02 x

h2

6
2 x m

h

2 x
3

m3 2

h2

m
2
x
2 2 2

h2
f02 x

6
2 e00 m

h2

m

h
f03 x

6 2 x
2

m f02 x

h

12 m x f03 x

h
6 f03 x
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The term proportional to 1  is obtained as:

f00 x_ : 1;

e00 : h 2;

e01 :
h 2 2

4
;

f01 x_ :
m 2 2

4 h
x
2

m

3 2 h

x
3

f02 x_ :
3 h m2 2 2 2

16 h m 3
x
2

2 h m2 2 2 2

32 h2 2
x4

m3 2 2 2

12 2 h2
x5

m

36 h2
x6;

e02 :
h 3 h m2 2 2 2

16 m2 3

f03 x_ : a1 x a2 x2 a3 x3 a4 x4 a5 x5 a6 x6 a7 x7 a8 x8 a9 x9;

EQ0 C1 . x 0

EQ1 D C1, x . x 0

EQ2 D C1, x, 2 . x 0

EQ3 D C1, x, 3 . x 0

EQ4 D C1, x, 4 . x 0

EQ5 D C1, x, 5 . x 0

EQ6 D C1, x, 6 . x 0

EQ7 D C1, x, 7 . x 0

EQ8 D C1, x, 8 . x 0

EQ9 D C1, x, 9 . x 0

2 ColimaO(3).nb
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Simplify PowerExpand Solve

EQ0 0, EQ1 0, EQ2 0, EQ3 0, EQ4 0, EQ5 0, EQ6 0, EQ7 0,

EQ8 0, EQ9 0 , a1, a2, a3, a4, a5, a6, a7, a8, a9, e03

a1 0, e03
h 2 2 6 h m2 2 2 2

32 m2 5
,

a4

2 2 5 h m2 2 2 2

64 h2 4
,

a5
3 h m2 2 2 2

48 2 h2 m 3
, a8

m2 2 2

144 h3
,

a9
m3 2 3 2

324 2 h3
, a2

2 2 6 h m2 2 2 2

32 h m 5
,

a3 0, a6
m 2 2 6 h m2 2 2 2

384 h3 3
,

a7
m 2 h m2 2 2 2

96 2 h3 2

The n=0 energy to order 3  is obtained summing e00+ e01+e02+e03:

ener03 :
h 2 2 6 h m2 2 2 2

32 m2 5

h 2
h 2 2

4

h 3 h m2 2 2 2

16 m2 3

Simplify ener03

h 6 h 2 2 2 m2 6 5 4 2 15 2 4 5 6

32 m2 5

ColimaO(3).nb 3
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5.1.2 Wavefunction of 1st excited state to order δ3

The Mathematica code to evaluate the 1st excited state of the wavefunction to order

δ3, i.e. ψ
(3)
1 (x) is Psi0.nb,



20

Expression for  in the 

first excited state up to 

order 3

SetAttributes m, h, , , e, , , Constant ;
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The expression for  up to 3 is:

x 2 x
m 2 2

h

2 2 h 2 2 1 4

m 2

2 2 x2 2 2 1 4

h

m3 2 x3 2 2 5 4

2 h3 2

2
x3 2 2 5 4

2 h m 4

m5 2 x9 2 2 5 4

160 h7 2

x6 2 2 1 4
60 h 7 m2 2 2 2

120 2 h5 2 3

x4 2 2 1 4
2 h m2 2 2 2

4 2 h3 2 m 4

m x5 2 2 5 4
7 h 2 m2 2 2 2

64 h5 2 4

m3 2 x7 2 2 5 4
76 h 3 m2 2 2 2

576 h7 2 3

3 h 2 2 1 4
4 h 3 m2 2 2 2

4 2 m3 6

x2 2 2 1 4
27 h 7 m2 2 2 2

4 2 h m2 5

m x8 2 2 1 4
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The expression for  is:
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Plot x , x, 3, 3
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5.1.3 Wavefunction of 1st excited state to order δ5

The Mathematica code to evaluate the 1st excited state of the wavefunction to order

δ5, i.e. ψ
(5)
1 (x) is Psi2.nb,
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Expression for  in 

second excited state to 

order 5

SetAttributes m, h, , , e, , , Constant ;
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The expression for  to order 5 is:
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The expression for  to order 5  is:
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